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Building a Human Behavior Map from Local Observations
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Abstract— This paper presents a novel method for classifying
regions from human movements in service robots’ working
environments. The entire space is segmented subject to the
class type according to the functionality or affordance of each
place which accommodates a typical human behavior. This is
achieved based on a grid map in two steps. First a probabilistic
model is developed to capture human movements for each
grid cell by using a non-ergodic HMM. Then the learned
transition probabilities corresponding to these movements are
used to cluster all cells by using the K-means algorithm. The
knowledge of typical human movements for each location,
represented by the prototypes from K-means and summarized
in a ‘behavior-based map’, enables a robot to adjust the
strategy of interacting with people according to where they
are located, and thus greatly enhances its capability to assist
people. The performance of the proposed classification method
is demonstrated by experimental results from 8 hours of data
that are collected in a kitchen environment.

I. INTRODUCTION

Service robots must interact with people while collaborat-
ing with them. Inevitably the people and the robots will have
to move through the same working environment. Therefore,
the robots can benefit by mapping human motion patterns
within the environment. For example, in a dinning area, in
which areas do people stand while working. These areas
might be good ones for the robot to offer help. If there are
doorways in which people move quickly, the robot should
avoid getting in the way of them [1].

For service robots, the complete environment model
should include the knowledge of local human behaviors.
That is, in each specific location (for example, a cell in
the grid map), what are the typical human activities. The
behavior layer (also termed as the ‘behavior-based map’ in
this paper) in the representation hierarchy of the environment
is as important as the metric layer (such as where is the
kitchen and its dimension) and the semantic layer (such as
if the segmented object in a certain location is a dining
table). Although it is different from the other two which
are about static objects that can be perceived all the time,
the behavior layer plays an important role in the robot’s
operation in human-populated environments. It enhances the
robot’s capability to serve people by choosing the best
strategy according to the areas where they are located.

In the research of obtaining semantic information through
human-environment interactions, the affordance of objects
has been used. The concept of affordance [2] was initially
introduced into the computer vision community to model
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the relationship between the human behavior and the envi-
ronment, including objects, events and places. To quote [2],
“Affordance: A situation where an object’s sensory charac-
teristics intuitively imply its functionality and use.” In [3] a
spatial-affordance map is used to give a spatial dependence
to the Poisson process parameters used for person tracking.
Our behavior map is similar but not designed specifically for
the data association during people tracking. Rather our map
models a number of general motion patterns and is more
intended for prediction then tracking.

Our work on region classification is motivated by the func-
tionalities or affordances of places. For example a doorway is
for people to pass without stopping, a hallway is for people
to walk in all directions or to stop for chatting/looking, a
display window area outside a shop is for people to wander
and do ‘window shopping’, a dining area in the kitchen
is for people to sit and eat, a corridor is for people to
pass and occasionally stop. Although not directed exploited
in the proposed method, these underlying functionalities or
affordances consolidate the feasibility of grouping locations
according to human behaviors.

Due to the dynamic nature of humans in motion, the
knowledge of human activities in each location of the en-
vironment can only be learned from data collected over long
periods. For a robot to learn motion patterns it is important
that the model can be learned from local observations. The
robot will not be able to follow people but will rather only
observe partial trajectories. Our learning approach requires
observations in a 9-cell patch of a grid map to learn the
model of the center cell. This is an important point, that the
robot must interact with people based on where they are.
It is not always realistic to expect that the robot will have
tracked the person to that location. This is why methods such
as the IOHMM as in [4] or the SVM learning of whole track
classes as in [5] were not chosen here.

Summarizing, we are not tracking people but rather learn-
ing about the space they travel through. The robot should
be able to learn the behaviors associated with regions of the
space in which it moves. This mapping will be useful to it
in planning tasks such as cleaning, navigation or interacting
with people. The robot is not able to follow people to obtain
long complete tracks but rather short segments of tracks. The
method of learning must work on such observations.

In this paper we provide an unsupervised learning ap-
proach. In our method, a probabilistic model is developed to
capture people’s moving activities in public areas represented
by a grid map. In the light of the successful application
of HMMs on modeling motion patterns of dynamic objects
[6] [4], we exploit the HMM to learn the human moving



tendency in each individual grid cell, but in a novel man-
ner that explicitly models the transition tendency from the
current cell to a neighbor cell and the tendency of staying.
Collectively, the transition probabilities in all cells represent
the moving trend of humans in broader areas. Then based
on these transition probabilities, the K-means algorithm is
applied to cluster all cells into different categories repre-
senting places with different typical human activities, such
as minimal movements and mostly staying, only passing in
certain directions without staying and mostly passing with
moderate staying, etc.

The contributions of this work include:

1) A probabilistic method is designed to model human
moving tendency including staying in the current location.
Compared with other region classification methods, which
are mostly only based on the most dominating local activities
[1] [5], our method provides a more detailed summary of
local activities to the region classifier, which is then capable
of dealing with more complicated situations. In contrast to
trajectory-based motion learning algorithms [7], our model
focuses on the local area and does not require tracking
humans in motion, which greatly simplifies the implemen-
tation and application of our method. As illustrated by the
experimental results, local human behaviors are sufficient for
region classification and building the behavior-based map.

2) An unsupervised learning method based on the K-means
algorithm is developed to classify regions with different
human movements.

II. RELATED WORK

There are many works on modeling the behavior associ-
ated with a particular person such as [8]. In this paper how-
ever we are interested in modeling the behavior associated
with a particular region of space.

The occupancy grid map [9] and related grid-based repre-
sentations have been widely used in the study of dynamics
of the environment. The dynamic occupancy grid [6], which
utilizes a HMM [10] with a two-state Markov chain to model
the occupancy of a cell, successfully relaxed the assumption
of static environments for the traditional occupancy grid
maps. The dynamics of each cell is explicitly represented
by the transition probabilities. However, the method is in-
herently homogeneous, averaging dynamics over a certain
timescale. The online training procedure provides adaptive
capabilities from the recent tendency. In [11], each cell is
modeled as an independent two-state Markov chain, and the
transition probabilities are modeled as two Poisson processes
and learned in an online manner, approximated by the
frequency of ‘exit’ and ‘enter’ events.

Common to the above methods based on occupancy grids
are that each individual cell is modeled independently and
that correlations between cells are completely ignored. In
the Conditional Transition Maps developed by Kucner et
al. [12], the cross-cell spatial relation is modeled as a
probability distribution of an object leaving to a neighbor
cell conditioned on the entry direction. Cross-correlation is
used to find entry and exit events and the value of conditional
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transition parameters are learned by counting these events.
In [13], local spatial-temporal correlations in the dynamics
of human movements is captured by using Input-Output
HMMs. However, these methods do not model staying in the
same cell. In our work, we explicitly characterize staying by
the self-transition probability to the cell itself. This enables
the model to describe the special case of movements, for
example, when a person is standing in the corridor and
talking with others or sitting in the dinning area of the
kitchen and having lunch.

In [14], a classification method is proposed to understand
which locations are appropriate for a shopping-assistant robot
to wait to serve customers. A grid-based representation with
33 cm square cells (similar to the cell size that we use, 40 cm)
is used to estimate if the robot’s waiting in a cell will disturb
pedestrians from counting the number of people that passed
the cell per hour from collected data. In our method, the
cells are classified by a more detailed description of human
activities in a cell, and thus providing the robot with more
informative guidance in interacting with humans.

There are several works on classifying cells by the human
activities within. The work in [1] provides several techniques
for motion prediction with the aim of enabling the robot
to proactively approach customers, for example, in a shop-
ping mall. Collected trajectories are categorized by using
a SVM according to the local behaviors. Global behaviors
are learned through clustering using the dial pulse (DP)
matching method. However, the similarity measurement used
is not sensitive to trajectories with no or little overlap. Each
local partition (from non-uniform sized spatial division) of
the environment is color-coded according to its dominant
local motion primitive class, as well as the transitions be-
tween adjacent areas, which are computed for each pair
of adjacent areas by counting the transitions. In [5], grid
cells are categorized based on the most prevalent motion
pattern learned from a pre-filtering SVM, and sub-patterns
are learned by using the Partitioning Around Medoids (PAM)
algorithm with an improved dissimilarity measurement. Both
of these methods provide good results. In our method, we
learn a probabilistic model to provide a full summary of local
activities and input to the region classifier.

Human activities have been used to infer about semantics
in the environment. In [15], human body movements, which
are detected and recognized from data collected by motion
sensors mounted on the human body, together with the
location of the human are used to update the semantic map.
Grabner et al. [16] have proposed an affordance detector
which is defined as an actor-object matching problem. The
functionality is handled as a cue complementary to appear-
ance, rather than being considered after appearance-based
detection.

III. MODELING HUMAN MOVEMENTS IN GRID MAPS

Similar to the occupancy grid map representation [9], we
divide the overall map into grid cells in the two dimensional
space. Accordingly, the original data sequence is discretized
in the time domain such that the observed human moves only



to a neighbor cell or stays in the same cell in one time step.
The dynamics of human movements is studied on the cell
level.

The continuous movement of a human can be considered
as the combination of a sequence of one-step movements,
which are defined as moving from the current cell to one of
the neighbor cells within one or multiple time steps subject
to temporal and spatial discretization. It is worth noting that
before reaching any of the neighbor cells the human may stay
in the current cell for multiple time steps. Figure 1 shows
the possible directions that a human in a cell may move.

We model the human moving tendency from the current
cell to a neighbor cell by a non-ergodic HMM [17], and its
structure facilitates capturing the spatial-temporal correlation
between the two cells involved in a movement.
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Fig. 1. Tllustration of one-step movements in a corridor environment. The
human is originally located in cell C' and may move to any of the eight
neighboring cells. Note that the human may stay in the cell C' for multiple
time steps before starting to move.

A. Left-to-right HMM

Based on the above analysis, for each cell, we model the
one-step movement by a variant of the left-to-right HMM
with nine states [17]. Different from normal left-to-right
HMMs, our model has eight absorbing states, instead of just
one. Abusing the term ‘left-to-right’, we refer to the structure
of our model as left-to-right in the rest of this paper for
conciseness.

A small grid map as shown in Figure 1 is attached to
each cell in which the current cell is denoted as C. The
process of one-step movement for an individual cell starts
from the human entering the current cell. In each of the
following time steps, the human can either stay in the current
cell or move in one of the eight directions (left, right,
up, down, upper left, lower right, upper right, lower left)
as illustrated in Figure 1, and the process ends when the
human reaches any of the neighbor cells. The latent variable
x; represents the location of the human in the nine cells
involved in the current one-step movement at time step ¢, and
it can take nine states {C,L,R,U,D,UL,LR,UR,LL},
corresponding to the nine cells (center, left, right, up, down,
upper left, lower right, upper right, lower left). Let z; be
a random variable that represents the observation of the
human in a cell at time step ¢, and it can take nine states
{C,L,R,U,D,UL,LR,UR, LL}.

The process under consideration
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Fig. 2. Transition diagram of our model of one-step movement by a variant
of the left-to-right HMM.

{L,R,U,D,UL,LR,UR, LL} are specified as ‘absorbing
or final states’. Let A;; represent the state transition
probability from the ! state to the k'" state, where
l,k=1,...,9. Figure 2 shows the transition diagram of our
HMM-based model. The corresponding transition matrix is
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The ones on the main diagonal indicate that the corre-
sponding states {L, R,U, D, UL, LR,UR, LL} are absorb-
ing states.

B. Training Procedure

As the HMMs in different cells are independent condi-
tioned on the observation set, the training for an individual
HMM can be performed separately. We adapt the scheme of
the generalized EM algorithm [18] to the special needs in
training our model. Due to the special left-to-right structure
of the HMM that we exploit, a single long-observation
sequence is not suitable for training. This is because once any
of the absorbing states is reached, the rest of the sequence
provides no further information. We generate training data
for each cell in the form of a set of short-observation
sequences each starting from the current cell and ending in
one of its neighbor cells. The procedure for training general
HMMs is modified as follows to handle the left-to-right
structure [17].

e As shown by the transition diagram in Figure 2, the
process always starts from the first state, C, termed as
the starting state, and hence the prior is set as 7
(1,0,0,0,0,0,0,0,0) and not re-estimated.

At the beginning of the forward-backward scheme [19],
set the transition probabilities A;;, = 0,(I > k) and
A, = 0,(I < k,0 > 1). In the transition matrix
(1), the off-diagonal elements (except those in the first
row) are zero because the transition from any of the



absorbing states in {L,R,U, D, UL, LR,UR,LL} to
other absorbing or non-absorbing states is not allowed.
The value of these elements will remain zero during the
whole training process. The self-transition probabilities
of the absorbing states are set as one, A;, = 1,(l =
k,l>1).

The probability S(x) in the forward-backward scheme
is defined as B(x:) = p(zeat,---,27|T), (¢
1,...,T — 1), where T is the total number of time
steps in the current training sequence [19]. The initial
condition B(z7) is set as

1
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Suppose the training data for the current cell are a set of P
short-observation sequences, {lep (p);p = 1,...,P}. Each
sequence 21(p), . . ., zr, (p) consists of all observations of the
corresponding one-step movement which lasts for 7}, time
steps. For example, the sequence C,C, C, C, R corresponds
to the one-step movement staring from the current cell, then
staying for three time steps, and then moving to the cell on
the right. In the following the parameter p is omitted.

For each short-observation sequence, let v(z;) denote the
marginal posterior distribution of the latent variable z,, and
&(xi—1,x¢) denote the joint posterior distribution of two
successive latent variables, given the observations and the
model parameters,

V() =
§(we—1,2t)

where © is the latest estimate of © representing all model
parameters. The expectation of the observation likelihood can
be written as
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where p(z|z)) is the observation model and K is the
number of states that the latent variable can take and in our
case is 9.

During the process of training the model parameters using
the generalized EM algorithm, the sum of the expectation of
the likelihood in equation (4) for all the P short-observation
sequences of the current cell is maximized with respect to
O, and therefore the estimated values of parameters in © are
obtained.

IV. REGION CLASSIFICATION BY USING K-MEANS

Human living environments are structural and functional.
Human behaviors in these environments are defined by the
functionality or affordance of each local region, such as the
hallway, the pathway, the dining area, the sink area, the fridge
and cabinet area. For example, the most frequent behavior of
people in a corridor is passing while where to turn is defined
by the shape of the corridor. People are most likely to be

if 27 € {L,R,U,D,UL,LR,UR, LL}
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sitting on the seats (and eating) when they are in a dining area
of a kitchen. Collectively, the local human motion in each
small area, such as a grid cell, provides valuable information
for the representation of the environment on the behavior
level. The functionalities or affordances of different places
allow the local areas in the environment to be classified by
local human activities.

We have studied the human activities in Section III, where
the learned transition probabilities of each grid cell explicitly
model human moving tendencies in eight directions and stay-
ing. For each cell, we stack the nine transition probabilities
into a vector

(&)

Then we apply a linear re-scaling of the data points, which
is known as standardizing. In the resulting data points each
of the variables has zero mean and unit standard deviation.

The K-means algorithm is used to cluster the grid cells
into different categories. In the experiments of Section V,
the parameter K is set manually with examination of human
behaviors in the environment. The human motion prototypes
can be obtained from the resulting centroids after clustering
using K-means. These prototypes represent typical human
movements in a cell of each region category, such as mostly
staying with moderate motion in the area next to the sink of
the kitchen, as shown in the experimental results of Section
V.

[A117A127 .. 3A183 A19]'

V. EXPERIMENTS
A. Experimental setup

The goal of these experiments is to verify the capability
of the method we propose to capture the dynamics of local
human movements and to classify regions based on these
movements. Considering the size of a human body, we
choose a coarse representation of the environment by setting
the grid size as 0.4 x 0.4m in our map. The experimental
results show that this representation is sufficient for studying
the human movement pattern in our experimental environ-
ment - a kitchen in an office building, as shown in Figure
3.

We used a SICK LMS200 laser range-finder for collecting
2D data at approximately 37Hz. The laser range-finder was
set up on a table in the kitchen at the height of a human’s
waist and its location is shown as the star in Figure 3(a). The
data collection process started from 11:12am on a weekday
and went on for 8 hours and 6 minutes. The time is chosen
to cover when there are most human activities in the kitchen
during the day including the periods for lunch and afternoon
tea. The model learned from this data represents averaged
characteristics of human motion. Learning for each specific
time period of the day and studying how the model evolves
with time is among our future work.

B. Generating observations for training

We applied the endpoint model [20] to generate occupancy
observations for each cell in the map. With temporal dis-
cretization, the original prolonged occupancy observations
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Fig. 3. The kitchen Environment. (a) Layout of furniture in the kitchen.
The blue star at the bottom indicates the laser sensor. (b) Furniture on the
left side of (a). From the left to right, they are the fridge, the microwave,
the dish dryer, the sink and the cabinet for tea. (c) The door, the dustbin
and the table with hot water cookers on the top side of (a). (d) The dinning
area on the right side of (a).

related to one cell are transformed into a sequence of
interesting events of entering and exiting a grid cell by
analyzing the occupancy in the cell of concern and its eight
neighbor cells. As the entering/exiting events in different
cells are treated separately, tracking of human across several
cells is not necessary, which significantly simplifies the data
processing.

As discussed in Section III-B, the training of our motion
model requires short-observation sequences (starting from
the current cell and ending in one of the neighbor cells, i.e.
the absorbing states) in order to make full use of training
data. For each cell, a set of short-observation sequences in
the form of zj,...,2r are generated. For example, in the
observation sequence C,C,C, R, the human is originally
located in the current cell, stays for two time steps and then
moves to the neighbor cell on the right.

C. Results of motion learning and region classification

Figure 4 shows the motion learning and region classifica-
tion results in the grid map which is overlapped with the part
of the floor plan corresponding to the kitchen. The two sets
of results are shown together for the ease of understanding.
In each cell, the transition probabilities from the current cell
to the eight neighbor cells are indicated by the eight arrows,
and the transition probability of staying in the current cell is
indicated by the red line segment. The classification result is
illustrated by the color of the solid square in each cell and
cells in the same class have squares with the same color.

In Figure 4, each class of cells with the same color
represents a typical human movement. For example, the
brown cell category features exiting the current cell in all
directions and all the cells are in the open space in the
kitchen where people tend to move in all directions. The
cyan cell category features staying in the cell and the most
evident examples are cells in the dinning area where people
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sit and have lunch, around the table with hot water cookers
and beside the fridge, the dish dryer and the sink.

There are some areas where people tend to come and
stay for a while, as indicated by the red line segment. For
example, people tend to walk to the sink and stay to wash
their mug or lunch box then leave. In some areas, people
tend to stop and talk with others. Other spots where people
tend to stay for a short while include those close to the fridge
where they store or fetch food and the hot water cooker table
where they get boiled water. The corresponding cells in these
areas have red line segments with significant length.

45-

i

4

\
| | | | KI>E‘I>II | | | | | | | | | | | | | |
S e ed Kk n m owln/alal il
e e T Y
o | F Kk Bk ke s st ot wh e L 2
: [ wk oKk k e d A wd a/w al
T/ sk skt akek el w2/
M e ek e ek ke wkomkomic ok o/ wen/
TR A AN A
é%.}[@'# o/

~
u

A

3
X (m)
Fig. 4. Results of motion learning and region classification. The arrows
and the red line segment indicate transition probabilities of moving to eight

neighbor cells and staying in the current cell respectively. The colored square
in each cell indicates the region class.
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Fig. 5. Centroids from the K-means algorithm for each type of region.
With the same color-coding as Figure 4 and Figure 6, the colored square
represents the corresponding region category. The deep blue area is mean-
ingless so the centroid is not included. For each centroid, the arrows and
the red line segment indicate tendency of moving and staying respectively.

The representative activity of each type of cells can be seen
from the centroids resulting from the K-means algorithm,
as shown in Figure 5. For example, the one (with a brown
square) on the right of the lower row in Figure 5 features
moving to all directions, corresponding to the brown area
in Figure 4. These centroids (prototypes) can be considered
as local behavior primitives and the real data points are
approximate combinations of them.

The clustered local regions consisting of cells of the same
color constitute a segmentation of the environment by human
movements and result in a behavior-based map. For example,
in Figure 6, the brown area represents the open space in



Fig. 6. Results of region classification. Each color represents a type of
region with the same color-coding in Figure 4.

the central area of the kitchen where people tend to walk
in all directions. The red areas indicate the two pathway
from the brown area to the dining area where people tend
to mostly walk straight with the constraint of the wall and
the table of hot water cookers. The sky blue area at the door
is the pathway from outside to the brown area where people
tend to walk straight but not sideways with the constrains of
the dustbin and the table of hot water cookers. In this area,
people do not tend to stop to avoid getting into others’ way of
entering/exiting the kitchen. The deep blue areas correspond
to regions where there are not enough training data in the
cells because they are mostly corresponding to walls and hot
water cookers on the table.

D. Computational cost

Currently the motion learning and region classification
method is implemented in Matlab. The training for each
cell is carried out separately, and then all cells are clustered
by the resulting transition probabilities using the K-means
algorithm. For the results that are shown in Figure 4, the total
computational cost of training the 117 cells using the 9872
short-observations is 308 seconds and the time for clustering
is 0.13 seconds on a laptop (2.90GHz Intel Core i7 processor,
8.00GB of RAM).

VI. DISCUSSIONS

The region classification method described in above sec-
tions results in a behavior-based map summarizing local
human behaviors, as illustrated by Figures 4 and 6, which can
be readily integrated into a planning component for a service
robot. For example, the behavior-based map in Figure 6 can
be combined with an occupancy grid map and utilized in a
LPA* based path planner [21]. The local behaviors in each
cell correspond to a value of cost or award in the objective
function, depending on the goal, for example, meeting or
avoiding the human. The behavior-based map can also be
combined with other cues of the environment and generate
decisions for the robot, such as where to be stationed to serve
people. For example, stationary persons are likely to be in
regions where the representative centroid has a long red line
segment, which represents the tendency of staying in the cell,
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and these regions should be prioritized in the task of serving
coffee [22]. In the following, we describe more application
scenarios.

In the proposed method, the clusters of cells resulting
from K-means do not directly provide information about
the meaning of each type of region. However, by analyzing
the centroids, the robot can infer about the general motion
pattern in the corresponding type of region, which can be
exploited to make decisions on the interaction strategy. For
example, the centroid with a sky blue square on the left of the
upper row in Figure 5 (please distinguish this from the deep
blue squares in Figures 4 and 6 which represent cells where
there are not enough training data) indicates that cells of
this category feature “moving in vertical directions without
stoping”. Hence long narrow areas consisting of cells of this
type (such as the doorway area colored as sky blue in Figures
4 and 6) are likely to be “fast passing areas” and the robot
should not stay in these areas to avoid interrupting people’s
routine walks.

If semantics of the environment is also available, then the
robot is further facilitated to make decisions about its action.
In the above example, if it is known that the object next to
the sky blue area in the upper part of Figures 4 and 6 is
a door, then the robot is able to pick the suitable place to
station itself and wait for people to be served [14], i.e. next
to the door but not in the “fast passing area”, the doorway.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an unsupervised approach to
region classification based on human movements for service
robots with a grid map. For each cell, we model all possible
human movements with transition probabilities by using the
HMM. These transition probabilities are then used to classify
all cells of the map into categories with different typical
human behaviors, forming a behavior layer of the map.

Together with the metric and semantic layers, the behavior
layer contributes to a more thorough representation of the
environment for service robots and plays an important role
in their interaction with humans. The classification of regions
based on activities in each areas enables the robot to estimate
the typical movement of the person from local observations
and thereby adjust the interaction strategy.

In our method, local behavior primitives are learned and
used for inferring the type of cells. This allows segmenting
the environment into small areas by the typical human
activity corresponding to the affordance of different type of
places. In terms of summarizing long-term observations of
human movements, our method takes a location-based point
of view, which is different from the trajectory-based methods
focusing on characterizing long continuous trajectories [7].
In this regard, our method has the practical advantage of
working without tracking moving people, and thus does not
need to deal with the multi-target tracking problem. Our
future work includes implementing and running the proposed
algorithm on our robot as well as investigating how human
movements and region classes change over time during the
day.
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