
Superpixels: An Evaluation of the State-of-the-Art

David Stutz, Alexander Hermans, Bastian Leibe

Visual Computing Institute, RWTH Aachen University, Germany

Abstract

Superpixels group perceptually similar pixels to create visually meaningful entities while heavily reducing the number
of primitives. As of these properties, superpixel algorithms have received much attention since their naming in 2003.
By today, publicly available and well-understood superpixel algorithms have turned into standard tools in low-level
vision. As such, and due to their quick adoption in a wide range of applications, appropriate benchmarks are crucial for
algorithm selection and comparison. Until now, the rapidly growing number of algorithms as well as varying experimental
setups hindered the development of a unifying benchmark. We present a comprehensive evaluation of 28 state-of-the-art
superpixel algorithms utilizing a benchmark focussing on fair comparison and designed to provide new and relevant
insights. To this end, we explicitly discuss parameter optimization and the importance of strictly enforcing connectivity.
Furthermore, by extending well-known metrics, we are able to summarize algorithm performance independent of the
number of generated superpixels, thereby overcoming a major limitation of available benchmarks. Furthermore, we
discuss runtime, robustness against noise, blur and affine transformations, implementation details as well as aspects of
visual quality. Finally, we present an overall ranking of superpixel algorithms which redefines the state-of-the-art and
enables researchers to easily select appropriate algorithms and the corresponding implementations which themselves are
made publicly available as part of our benchmark at davidstutz.de/projects/superpixel-benchmark/.

Keywords: superpixels; superpixel segmentation; image segmentation; perceptual grouping; benchmark; evaluation

1. Introduction

Introduced by Ren and Malik in 2003 [1], superpixels
group pixels similar in color and other low-level properties.
In this respect, superpixels address two problems inherent
to the processing of digital images [1]: firstly, pixels are
merely a result of discretization; and secondly, the high
number of pixels in large images prevents many algorithms
from being computationally feasible. Ren and Malik intro-
duce superpixels as more natural entities – grouping pixels
which perceptually belong together while heavily reducing
the number of primitives.

Superpixels have been been used in a wide range of ap-
plications – even before the term “superpixel” was coined.
As early as 1988, Mester and Franke [2] present segmen-
tation results similar to superpixels. Later, in 1997, early
versions of the watershed algorithm were known to produce
superpixel-like segments [3]. In the early 2000s, Hoiem et
al. [4, 5] used the segmentation algorithms of [6] and [7]
to generate oversegmentations for 3D reconstruction and
occlusion boundaries. Similarly, the normalized cuts algo-
rithm was early adopted for oversegmentation [1] and se-
mantic segmentation [8]. In [4, 5] and [9], superpixels have
been used to extract meaningful features for subsequent
tasks – extensive lists of used features are included. Since

the introduction of the first superpixel algorithms around
2009, they have been applied to many important problems
in computer vision: tracking [10, 11], stereo and occlusion
[12, 13], 3D-reconstruction [14], saliency [15], object de-
tection [16, 17], depth recovery [18] and depth estimation
[19], indoor scene understanding [20], scene flow [21], and
as basis for convolutional neural networks [22] to name
just a few. Superpixels have also been adopted in domain
specific applications such as medical image segmentation
[23, 24, 25] or medical image retrieval [26]. Moreover, su-
perpixels have been found useful for dataset annotation
[27, 28]. Finally, several superpixel algorithms (among
others [29], [30] and [31]) have been adapted to videos
and image volumes – a survey and comparison of some of
these so-called supervoxel algorithms can be found in [32].

In view of this background, most authors do not make
an explicit difference between superpixel algorithms and
oversegmentation algorithms, i.e. superpixel algorithms are
usually compared with oversegmentation algorithms and
the terms have been used interchangeably (e.g. [33, 34,
35]). Veksler et al. [36] distinguish superpixel algorithms
from segmentation algorithms running in “oversegmenta-
tion mode”. More recently, Neubert and Protzel [37] dis-
tinguish superpixel algorithms from oversegmentation al-
gorithms with respect to their behavior on video sequences.
In general, it is very difficult to draw a clear line be-
tween superpixel algorithms and oversegmentation algo-

ar
X

iv
:1

61
2.

01
60

1v
2

 [
cs

.C
V

]
 1

5
D

ec
 2

01
6

rithms. Several oversegmentation algorithms were not in-
tended to generate superpixels, nevertheless, some of them
share many characteristics with superpixel algorithms. We
use the convention that superpixel algorithms offer control
over the number of generated superpixels while segmenta-
tion algorithms running in “oversegmentation mode” do
not. This covers the observations made by Veksler et al.
and Neubert and Protzel.

In general, most authors (e.g. [33, 38, 30, 34]) agree on
the following requirements for superpixels:

– Partition. Superpixels should define a partition of the
image, i.e. superpixels should be disjoint and assign a
label to every pixel.

– Connectivity. Superpixels are expected to represent con-
nected sets of pixels.

– Boundary Adherence. Superpixels should preserve image
boundaries. Here, the appropriate definition of image
boundaries may depend on the application.

– Compactness, Regularity and Smoothness. In the ab-
sence of image boundaries, superpixels should be com-
pact, placed regularly and exhibit smooth boundaries.

– Efficiency. Superpixels should be generated efficiently.
– Controllable Number of Superpixels. The number of gen-

erated superpixels should be controllable.
Some of these requirements may be formulated implic-

itly, e.g. Liu et al. [38] require that superpixels may not
lower the achievable performance of subsequent process-
ing steps. Achanta et al. [30] even require superpixels to
increase the performance of subsequent processing steps.
Furthermore, the above requirements should be fulfilled
with as few superpixels as possible [38].

Contributions. We present an extensive evaluation
of 28 algorithms on 5 datasets regarding visual quality,
performance, runtime, implementation details and robust-
ness to noise, blur and affine transformations. In partic-
ular, we demonstrate the applicability of superpixel al-
gorithms to indoor, outdoor and person images. To en-
sure a fair comparison, parameters have been optimized on
separate training sets; as the number of generated super-
pixels heavily influences parameter optimization, we ad-
ditionally enforced connectivity. Furthermore, to evaluate
superpixel algorithms independent of the number of su-
perpixels, we propose to integrate over commonly used
metrics such as Boundary Recall [39], Undersegmentation
Error [33, 30, 35] and Explained Variation [40]. Finally,
we present a ranking of the superpixel algorithms consid-
ering multiple metrics and independent of the number of
generated superpixels.

Outline. In Section 2 we discuss important related
work regarding the comparison of superpixel algorithms
and subsequently, in Section 3, we present the evaluated
superpixel algorithms. In Section 4 we discuss relevant
datasets and introduce the used metrics in Section 5. Then,
Section 6 briefly discusses problems related to parameter
optimization before we present experimental results in Sec-
tion 7. We conclude with a short summary in Section 8.

2. Related Work

Our efforts towards a comprehensive comparison of avail-
able superpixel algorithms is motivated by the lack thereof
within the literature. Notable publications in this regard
are [34], [30], [35], and [37]. Schick et al. [34] introduce
a metric for evaluating the compactness of superpixels,
while Achanta et al. [30] as well as Neubert and Protzel
[35] concentrate on using known metrics. Furthermore,
Neubert and Protzel evaluate the robustness of superpixel
algorithms with respect to affine transformations such as
scaling, rotation, shear and translation. However, they do
not consider ground truth for evaluating robustness. More
recently, Neubert and Protzel [37] used the Sintel dataset
[41] to evaluate superpixel algorithms based on optical flow
in order to assess the stability of superpixel algorithms in
video sequences.

Instead of relying on a general evaluation of superpixel
algrorithms, some authors compared the use of superpixel
algorithms for specific computer vision tasks. Achanta et
al. [30] use the approaches of [8] and [42] to assess super-
pixel algorithms as pre-processing step for semantic seg-
mentation. Similarly, Strassburg et al. [43] evaluate su-
perpixel algorithms based on the semantic segmentation
approach described in [9]. Weikersdorfer et al. [44] use su-
perpixels as basis for the normalized cuts algorithm [45]
applied to classical segmentation and compare the results
with the well-known segmentation algorithm by Arbeláez
et al. [46]. Koniusz and Mikolajczyk [47], in contrast, eval-
uate superpixel algorithms for interest point extraction.

In addition to the above publications, authors of su-
perpixel algorithms usually compare their proposed ap-
proaches to existing superpixel algorithms. Usually, the
goal is to demonstrate superiority with regard to specific
aspects. However, used parameter settings are usually not
reported, or default parameters are used, and implemen-
tations of metrics differ. Therefore, these experiments are
not comparable across publications.

Complementing the discussion of superpixel algorithms
in the literature so far, and similar to [34], [30] and [35],
we concentrate on known metrics to give a general, ap-
plication independent evaluation of superpixel algorithms.
However, we consider minimum/maximum as well as stan-
dard deviation in addition to metric averages in order as-
sess the stability of superpixel algorithms as also consid-
ered by Neubert and Protzel [35, 37]. Furthermore, we
explicitly document parameter optimization and strictly
enforce connectivity to ensure fair comparison. In contrast
to [35], our robustness experiments additionally consider
noise and blur and make use of ground truth for evalu-
ation. Finally, we render three well-known metrics inde-
pendent of the number of generated superpixels allowing
us to present a final ranking of superpixel algorithms.

2

3. Algorithms

In our comparison, we aim to discuss well-known algo-
rithms with publicly available implementations alongside
lesser-known and more recent algorithms for which im-
plementations were partly provided by the authors. To
address the large number of superpixel algorithms, and
inspired by Achanta et al. [30], we find a rough categoriza-
tion of the discussed algorithms helpful. For each algo-
rithm, we present the used acronym, the reference and its
number of citations1. In addition, we provide implemen-
tation details such as the programming lanugage, the used
color space, the number of parameters as well as whether
the number of superpixels, the compactness and the num-
ber of iterations (if applicable) are controllable.

Watershed-based. These algorithms are based on
the waterhed algorithm (W) and usually differ in how the
image is pre-processed and how markers are set. The num-
ber of superpixels is determined by the number of mark-
ers, and some watershed-based superpixel algorithms offer
control over the compactness, for example WP or CW.

Name

W – Watershed

Reference (Google Scholar Citations) Color

Meyer [7], 1992 (234)

Implementation Superpixels Compactness Iterations

C/C++; RGB; 1 Parameter X – –

Name

CW – Compact Watershed

Reference (Google Scholar Citations) Color

Neubert and Protzel [48], 2014 (11)

Implementation Superpixels Compactness Iterations

C/C++; RGB; 2 Parameters X X –

Name

MSS – Morphological Superpixel Segmentation

Reference (Google Scholar Citations) Color

Benesova and Kottman [49], 2014 (4)

Implementation Superpixels Compactness Iterations

C/C++; RGB; 5 Parameters X – –

Name

WP – Water Pixels

Reference (Google Scholar Citations) Color

Machairas et al. [50, 51], 2014 (5 + 8)

Implementation Superpixels Compactness Iterations

Python; RGB; 2 Parameters X X –

Density-based. Popular density-based algorithms are
Edge-Augmented Mean Shift (EAMS) and Quick Shift
(QS). Both perform mode-seeking in a computed density
image; each pixel is assigned to the corresponding mode it
falls into. Density-based algorithms usually cannot offer
control over the number of superpixels or their compact-
ness and are, therefore, also categorized as oversegmenta-
tion algorithms.

Name

EAMS – Edge-Augmented Mean Shift

Reference (Google Scholar Citations) Color

Comaniciu and Meer [52], 2002 (9631)

Implementation Superpixels Compactness Iterations

MatLab/C; RGB; 2 Parameters – – –

1Google Scholar citations as of October 13, 2016.

Name

QS – Quick Shift

Reference (Google Scholar Citations) Color

Vedaldi and Soatto [53], 2002 (376)

Implementation Superpixels Compactness Iterations

MatLab/C; Lab; 3 Parameters – – –

Graph-based. Graph-based algorithms treat the im-
age as undirected graph and partition this graph based on
edge-weights which are often computed as color differences
or similarities. The algorithms differ in the partitioning
algorithm, for example FH, ERS and POISE exhibit a
bottom-up merging of pixels into superpixels, while NC
and CIS use cuts and PB uses elimination [54].

Name

NC – Normalized Cuts

Reference (Google Scholar Citations) Color

Ren and Malik [1], 2002 (996)

Implementation Superpixels Compactness Iterations

MatLab/C; RGB; 3 Parameters X – –

Name

FH – Felzenswalb and Huttenlocher

Reference (Google Scholar Citations) Color

Felzenswalb et al. [6], 2004 (4144)

Implementation Superpixels Compactness Iterations

C/C++; RGB; 3 Parameters – – –

Name

RW – Random Walks

Reference (Google Scholar Citations) Color

Grady et al. [55, 56], 2004 (189 + 1587)

Implementation Superpixels Compactness Iterations

MatLab/C; RGB; 2 Parameters X – –

Name

CIS – Constant Intensity Superpixels

Reference (Google Scholar Citations) Color

Veksler et al. [36], 2010 (223)

Implementation Superpixels Compactness Iterations

C/C++; Gray; 4 Parameters X – X

Name

ERS– Entropy Rate Superpixels

Reference (Google Scholar Citations) Color

Liu et al.et al. [38], 2011 (216)

Implementation Superpixels Compactness Iterations

C/C++; RGB; 3 Parameters X – –

Name

PB – Boolean Optimization Superpixels

Reference (Google Scholar Citations) Color

Zhang et al. [57], 2011 (36)

Implementation Superpixels Compactness Iterations

C/C++; RGB; 3 Parameters X – –

Name

POISE – Proposals for Objects from Improved

Seeds and Energies

Reference (Google Scholar Citations) Color

Humayun et al. [58], 2015 (3)

Implementation Superpixels Compactness Iterations

MatLab/C; RGB; 5 Parameters X – –

Contour evolution. These algorithms represent su-
perpixels as evolving contours starting from inital seed pix-
els.

Name

TP – Turbo Pixels

Reference (Google Scholar Citations) Color

Levinshtein et al. [33], 2009 (559)

Implementation Superpixels Compactness Iterations

MatLab/C; RGB; 4 Parameters X – –

3

Name

ERGC – Eikonal Region Growing Clustering

Reference (Google Scholar Citations) Color

Buyssens et al. [59, 60], 2014 (2 + 1)

Implementation Superpixels Compactness Iterations

C/C++; Lab; 3 Parameters X X –

Path-based. Path-based approaches partition an im-
age into superpixels by connecting seed points through
pixel paths following specific criteria. The number of su-
perpixels is easily controllable, however, compactness usu-
ally is not. Often, these algorithms use edge information:
PF uses discrete image gradients and TPS uses edge de-
tection as proposed in [61].

Name

PF – Path Finder

Reference (Google Scholar Citations) Color

Drucker et al. [62], 2009 (18)

Implementation Superpixels Compactness Iterations

Java; RGB; 2 Parameters X – –

Name

TPS – Topology Preserving Superpixels

Reference (Google Scholar Citations) Color

Dai et al. [63, 64], 2012 (8 + 1)

Implementation Superpixels Compactness Iterations

MatLab/C; RGB; 4 Parameters X – –

Clustering-based. These superpixel algorithms are
inspired by clustering algorithms such as k-means initial-
ized by seed pixels and using color information, spatial in-
formation and additional information such as depth (as for
example done by DASP). Intuitively, the number of gen-
erated superpixels and their compactness is controllable.
Although these algorithms are iterative, post-processing is
required in order to enforce connectivity.

Name

SLIC – Simple Linear Iterative Clustering

Reference (Google Scholar Citations) Color

Achanta et al. [65, 30], 2010 (438 + 1843)

Implementation Superpixels Compactness Iterations

C/C++; Lab; 4 Parameters X X X

Name

DASP – Depth-Adaptive Superpixels

Reference (Google Scholar Citations) Color

Weikersdorfer et al. [44], 2012 (22)

Implementation Superpixels Compactness Iterations

C/C++; RGBD; 5 Parameters X X X

Name

VC – VCells

Reference (Google Scholar Citations) Color

Wang and Wang [66], 2012 (36)

Implementation Superpixels Compactness Iterations

C/C++; Lab; 6 Parameters X X –

Name

VCCS – Voxel-Cloud Connectivity Segmentation

Reference (Google Scholar Citations) Color

Papon et al. [67], 2013 (87)

Implementation Superpixels Compactness Iterations

C/C++; RGBD; 4 Parameters – X –

Name

preSLIC – Preemptive SLIC

Reference (Google Scholar Citations) Color

Neubert and Protzel [48], 2014 (11)

Implementation Superpixels Compactness Iterations

C/C++; Lab; 4 Parameters X X X

Name

LSC – Linear Spectral Clustering

Reference (Google Scholar Citations) Color

Li and Chen [68], 2015 (2)

Implementation Superpixels Compactness Iterations

C/C++; Lab; 4 Parameters X X X

We note that VCCS directly operates within a point
cloud and we, therefore, backproject the generated super-
voxels onto the image plane. Thus, the number of gener-
ated superpixels is harder to control.

Energy optimization. These algorithms iteratively
optimize a formulated energy. The image is partitioned
into a regular grid as initial superpixel segmentation, and
pixels are exchanged between neighboring superpixels with
regard to the energy. The number of superpixels is con-
trollable, compactness can be controlled and the iterations
can usually be aborted at any point.

Name

CRS – Contour Relaxed Superpixels

Reference (Google Scholar Citations) Color

Conrad et al. [69, 70], 2011 (14 + 4)

Implementation Superpixels Compactness Iterations

C/C++; YCrCb; 4 Parameters X X X

Name

SEEDS – Superpixels Extracted via Energy-

Driven Sampling

Reference (Google Scholar Citations) Color

Van den Bergh et al. [71], 2012 (98)

Implementation Superpixels Compactness Iterations

C/C++; Lab; 6 Parameters X – X

Name

CCS – Convexity Constrained Superpixels

Reference (Google Scholar Citations) Color

Tasli et al. [72, 73], 2013 (6 + 4)

Implementation Superpixels Compactness Iterations

C/C++; Lab; 3 Parameters X X X

Name

ETPS – Extended Topology Preserving

Segmentation

Reference (Google Scholar Citations) Color

Yao et al. [74], 2015 (6)

Implementation Superpixels Compactness Iterations

C/C++; RGB; 5 Parameters X X X

Wavelet-based. We found that Superpixels from Edge-
Avoiding Wavelets (SEAW) [43] is not yet captured in the
discussed categories. In particular, it is not comparable to
the algorithms discussed so far.

Name

SEAW – Superpixels from Edge-Avoiding

Wavelets

Reference (Google Scholar Citations) Color

Strassburg et al. [43], 2015 (0)

Implementation Superpixels Compactness Iterations

MatLab/C; RGB; 3 Parameters X – –

While the above algorithms represent a large part of
the proposed superpixel algorithms, some algorithms are
not included due to missing, unnoticed or only recently
published implementations2. These include [75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 84, 88, 89].

2Visit davidstutz.de/projects/superpixel-benchmark/ to inte-
grate your algorithm into the comparison. We are currently working
on integrating [84] and [88].

4

Figure 1: Example images from the used datasets. From left to right:
BSDS500, SBD, NYUV2, SUNRGBD, and Fash. Black contours
represent ground truth and red rectangles indicate excerpts used for
qualitative comparison in Figures 5 and 6. Best viewed in color.

4. Datasets

We chose five different datasets to evaluate superpixel
algorithms: two indoor datasets, two outdoor datasets and
one person dataset. We found that these datasets real-
isticly reflect the setting of common applications, while
leveraging the availability of large, pixel-level annotated
datasets. In addition, these datasets enable us to draw
a more complete picture of algorithm performance going
beyond the datasets commonly used within the literature.
Furthermore, both indoor datasets provide depth informa-
tion, allowing us to evaluate superpixel algorithms requir-
ing depth information as additional cue. In the following
we briefly discuss the main aspects of these datasets; Fig-
ure 1 shows example images and Table 1 summarizes key
statistics.

BSDS500 [46]. The Berkeley Segmentation Dataset 500
(BSDS500) was the first to be used for superpixel algo-
rithm evaluation (e.g. [1, 33]). It contains 500 images and
provides at least 5 high-quality ground truth segmenta-
tions per image. Therefore, we evaluate algorithms on
all ground truth segmentations and, for each image and a
given metric, choose the the ground truth segmentation re-
sulting in the worst score for averaging. The images repre-
sent simple outdoor scenes, showing landscape, buildings,
animals and humans, where foreground and background
are usually easily identified. Nevertheless, natural scenes
where segment boundaries are not clearly identifiable, con-
tribute to the difficulty of the dataset.

SBD [90]. The Stanford Background Dataset (SBD)
combines 715 images from several datasets [91, 92, 93, 94].
As result, the dataset contains images of varying size, qual-
ity and scenes. The images show outdoor scenes such as
landscape, animals or street scenes. In contrast to the
BSDS500 dataset the scenes tend to be more complex, of-
ten containing multiple foreground objects or scenes with-
out clearly identifiable foreground. The semantic ground
truth has been pre-processed to ensure connected segments.

NYUV2 [95]. The NYU Depth Dataset V2 (NYUV2)
contains 1449 images including pre-processed depth. Sil-
berman et al. provide instance labels which are used to
ensure connected segments. Furthermore, following Ren
and Bo [96], we pre-processed the ground truth to remove

BSDS500 SBD NYUV2 SUNRGBD Fash

Im
a
g
e
s

Train 100 238 199 200 222

Test 200 477 399 400 463

S
iz
e Train 481× 321 316× 240 608× 448 658× 486 400× 600

Test 481× 321 314× 242 608× 448 660× 488 400× 600

Table 1: Basic statistics of the used datasets: the total number of
images, the number of training and test images and the size of the
images (averaged per dimension). The number of images for the
SUNRGBD dataset excludes the images from the NYUV2 dataset.
For the NYUV2 and SUNRGBD datasets, training and test images
have been chosen uniformly at random if necessary. Note that the
odd numbers used for the NYUV2 dataset are for no special reason.

small unlabeled regions. The provided ground truth is of
lower quality compared to the BSDS500 dataset. The im-
ages show varying indoor scenes of private apartments and
commercial accomodations which are often cluttered and
badly lit. The images were taken using Microsoft’s Kinect.

SUNRGBD [97]. The Sun RGB-D dataset (SUNRGBD)
contains 10335 images including pre-processed depth. The
dataset combines images from the NYUV2 dataset and
other datasets [98, 99] with newly acquired images. In con-
trast to the NYUV2 dataset, the SUNRGBD dataset com-
bines images from the following devices: Intel RealSense,
Asus Xtion and Microsoft Kinect v1 and v2 – we refer
to [97] for details. We removed the images taken from
the NYUV2 dataset. The images show cluttered indoor
scenes with bad lighting taken from private apartments as
well as commercial accomodations. The provided seman-
tic ground truth has been pre-processed similarly to those
of the NYUV2 dataset.

Fash [27]. The Fashionista dataset (Fash) contains 685
images which have previously been used for clothes pars-
ing. The images show the full body of fashion bloggers
in front of various backgrounds. Yamaguchi et al. lever-
aged Amazon Mechanical Turk to acquire semantic ground
truth based on pre-computed segments ([27] suggests that
the algorithm in [46] has been used). The ground truth
has been pre-processed to ensure connected segments.

5. Benchmark

Our benchmark aims to score the requirements for su-
perpixels discussed in Section 1; in particular boundary
adherence and compactness (note that connectivity is en-
forced during parameter optimization, see Section 6.2). As
these metrics inherently depend on the number of gener-
ated superpixels, we further extend these metrics to al-
low the assessment of superpixel algorithms independent
of the number of generated superpixels. Therefore, let
S = {Sj}Kj=1 and G = {Gi} be partitions of the same im-
age I : xn 7→ I(xn), 1 ≤ n ≤ N , where S represents a
superpixel segmentation and G a ground truth segmenta-
tion.

Boundary Recall (Rec) [39] is the most commonly used
metric to asses boundary adherence given ground truth.
Let FN(G,S) and TP(G,S) be the number of false nega-
tive and true positive boundary pixels in S with respect

5

to G. Then Rec is defined as

Rec(G,S) =
TP(G,S)

TP(G,S) + FN(G,S)
. (1)

Overall, high Rec represents better boundary adher-
ence with respect to to the ground truth boundaries, i.e.
higher is better. In practice, a boundary pixel in S is
matched to an arbitrary boundary pixel in G within a lo-
cal neighborhood of size (2r + 1)× (2r + 1), with r being
0.0025 times the image diagonal rounded to the next inte-
ger (e.g. r = 1 for the BSDS500 dataset).

Undersegmentation Error (UE) [33, 30, 35] measures
the “leakage” of superpixels with respect to G and, there-
fore, implicitly also measures boundary adherence. The
original formulation by Levinshtein et al. [33] can be writ-
ten as

UELevin(G,S) =
1

|G|
∑
Gi

(∑
Sj∩Gi 6=∅ |Sj |

)
− |Gi|

|Gi|
(2)

where the inner term represents the “leakage” of super-
pixel Sj with respect to G. However, some authors [30, 35]
argue that Equation (2) penalizes superpixels overlapping
only slightly with neighboring ground truth segments and
is not constrained to lie in [0, 1]. Achanta et al. [30] suggest
to threshold the “leakage” term of Equation (2) and only
consider those superpixels Sj with a minimum overlap of
5

100 · |Sj |. In contrast, Neubert and Protzel [35] propose a
new formulation not suffering from the above drawbacks:

UENP(G,S) =
1

N

∑
Gi

∑
Sj∩Gi 6=∅

min{|Sj ∩Gi|, |Sj −Gi|}. (3)

All formulations have in common that lower UE refers
to less leakage with respect to the ground truth, i.e. lower
is better. In the following we use UE ≡ UENP.

Explained Variation (EV) [40] quantifies the quality
of a superpixel segmentation without relying on ground
truth. As image boundaries tend to exhibit strong change
in color and structure, EV assesses boundary adherence
independent of human annotions. EV is defined as

EV(S) =

∑
Sj
|Sj |(µ(Sj)− µ(I))2∑
xn

(I(xn)− µ(I))2
(4)

where µ(Sj) and µ(I) are the mean color of superpixel
Sj and the image I, respectively. As result, higher EV
quantifies the variation of the image explained by the su-
perpixels, i.e. higher is better.

Compactness (CO) [34] has been introduced by Schick
et al. [34] to evaluate the compactness of superpixels:

CO(G,S) =
1

N

∑
Sj

|Sj |
4πA(Sj)

P (Sj)
. (5)

CO compares the area A(Sj) of each superpixel Sj

with the area of a circle (the most compact 2-dimensional
shape) with same perimeter P (Sj), i.e. higher is better.

While we will focus on Rec, UE, EV and CO, fur-
ther notable metrics include: Achievable Segmentation
Accuracy (ASA) [38] quantifies the achievable accuracy
for segmentation using superpixels as pre-processing step:

ASA(G,S) =
1

N

∑
Sj

max
Gi

{|Sj ∩Gi|}; (6)

Intra-Cluster Variation (ICV) [49] computes the aver-
age variation within each superpixel:

ICV(S) =
1

|S|
∑
Sj

√∑
xn∈Sj

(I(xn)− µ(Sj))2

|Sj |
; (7)

Mean Distance to Edge (MDE) [49] refines Rec by also
considering the distance to the nearest boundary pixel
within the ground truth segmentation:

MDE(G,S) =
1

N

∑
xn∈B(G)

distS(xn) (8)

where B(G) is the set of boundary pixels in G, and
distS is a distance transform of S.

5.1. Expressiveness and Chosen Metrics

Due to the large number of available metrics, we ex-
amined their expressiveness in order to systematically con-
centrate on few relevant metrics. We found that UE tends
to correlate strongly with ASA which can be explained by
Equations (3) and (6), respectively. In particular, simple
calculation shows that ASA strongly resembles (1 − UE).
Surprisingly, UENP does not correlate with UELevin sug-
gesting that either both metrics reflect different aspects
of superpixels, or UELevin unfairly penalizes some super-
pixels as suggested in [30] and [35]. Unsurprisingly, MDE
correlates strongly with Rec which can also be explained
by their respective definitions. In this sense, MDE does
not provide additional information. Finally, ICV does not
correlate with EV which may be attributed to the miss-
ing normalization in Equation (7) when compared to EV.
This also results in ICV not begin comparable across im-
ages as the intra-cluster variation is not related to the
overall variation within the image. As of these considera-
tions, we concentrate on Rec, UE and EV for the presented
experiments. Details can be found in Appendix C.1.

5.2. Average Recall, Average Undersegmentation Error and
Average Explained Variation

As the chosen metrics inherently depend on the number
of superpixels, we seek a way of summarizing the perfor-
mance with respect to Rec, UE and EV independent of K.
To this end, we use the area above the Rec, (1 − UE)
and EV curves in the interval [Kmin,Kmax] = [200, 5200]

6

to quantify performance independent of K. In Section 7.2,
we will see that these metrics appropriately summarize the
performance of superpixel algorithms. To avoid confusion,
we denote these metrics by Average Recall (ARec), Av-
erage Undersegmentation Error (AUE) and Average Ex-
plained Variation (AEV) – note that this refers to an aver-
age over K. By construction, lower ARec, AUE and AEV
is better.

6. Parameter Optimization

For the sake of fair comparison, we optimized param-
eters on the training sets depicted in Table 1. Unfortu-
nately, parameter optimization is not explicitly discussed
in related work (e.g. [34, 30, 35, 34]) and used parameters
are not reported in most publications. In addition, vary-
ing runtimes as well as categorical and integer parameters
render parameter optimization difficult such that we had
to rely on discrete grid search, jointly optimizing Rec and
UE, i.e. minimizing (1 − Rec) + UE. In the following, we
briefly discuss the main difficulties encountered during pa-
rameter optimization, namely controlling the number of
generated superpixels and ensuring connectivity.

6.1. Controlling the Number of Generated Superpixels

As discussed in Section 1, superpixel algorithms are ex-
pected to offer control over the number of generated super-
pixels. We further expect the algorithms to meet the de-
sired number of superpixels within acceptable bounds. For
several algorithms, however, the number of generated su-
perpixels is strongly dependent on other parameters. Fig-
ure 2 demonstrates the influence of specific parameters on
the number of generated superpixels (before ensuring con-
nectivity as in Section 6.2) for LSC, CIS, VC, CRS and
PB. For some of the algorithms, such parameters needed
to be constrained to an appropriate value range even after
enforcing connectivity.

For oversegmentation algorithms such as FH, EAMS
and QS not providing control over the number of gener-
ated superpixels, we attempted to exploit simple relation-
ships between the provided parameters and the number
of generated superpixels. For EAMS and QS this allows
to control the number of generated superpixels at least
roughly. FH, in contrast, does not allow to control the
number of generated superpixels as easily. Therefore, we
evaluated FH for a large set of parameter combinations
and chose the parameters resulting in approximately the
desired number of superpixels.

6.2. Ensuring Connectivity

Unfortunately, many implementations (note the differ-
ence between implementation and algorithm) cannot en-
sure the connectivity of the generated superpixels as re-
quired in Section 1. Therefore, we decided to strictly
enforce connectivity using a connected components algo-
rithm, i.e. after computing superpixels, each connected

component is relabeled as separate superpixel. For some
implementations, this results in many unintended super-
pixels comprising few pixels. In these cases we additionally
merge the newly generated superpixels into larger neigh-
boring ones. However, even with these post-processing
steps, the evaluated implementations of CIS, CRS, PB,
DASP, VC, VCCS or LSC generate highly varying num-
bers of superpixels across different images.

0

0.2

0.4

0.6

0.8

1
·104

parameter

K

BSDS500

0.6

0.8

1

parameter

R
e
c

Figure 2: K and Rec on the training set of the BSDS500 dataset when
varying parameters strongly influencing the number of generated su-
perpixels of: LSC; CIS; VC; CRS; and PB. The parameters have
been omitted and scaled for clarity. A higher number of superpixels
results in increased Rec. Therefore, unnoticed superpixels inherently
complicate fair comparison. Best viewed in color.

1 3 5 10 25
0.4

0.6

0.8

1

iterations

R
e
c

BSDS500

1 3 5 10 25

101

iterations

lo
g
t

Figure 3: Rec and runtime in seconds t on the training set of
the BSDS500 dataset when varying the number of iterations of:
SLIC; CRS; SEEDS; preSLIC; LSC; and ETPS. Most algo-
rithms achieve reasonable Rec with about 3 − 10 iterations. Still,
parameter optimization with respect to Rec and UE favors more it-
erations. Best viewed in color.

0.6

0.8

1

compactness

R
e
c

BSDS500

0.2

0.4

0.6

compactness

C
O

Figure 4: Rec and CO on the training set of the BSDS500 data-
set when varying the compactness parameter of: SLIC; CRS; VC;
preSLIC; CW; ERGC; LSC; and ETPS. The parameters have
been omitted and scaled for clarity. High CO comes at the cost of
reduced Rec and parameter optimization with respect to Rec and
UE results in less compact superpixels. Best viewed in color.

CIS SLIC CRS ERS
PB SEEDS VC CCS
CW ERGC preSLIC WP
ETPS LSC

7

6.3. Common Trade-Offs: Runtime and Compactness

Two other types of parameters deserve detailed discus-
sion: the number of iterations and the compactness param-
eter. The former controls the trade-off between runtime
and performance, exemplarily demonstrated in Figure 3
showing that more iterations usually result in higher Rec
and higher runtime in seconds t. The latter controls the
trade-off between compactness and performance and Fig-
ure 4 shows that higher CO usually results in lower Rec.
Overall, parameter optimization with respect to Rec and
UE results in higher runtime and lower compactness.

7. Experiments

Our experiments include visual quality, performance
with respect to Rec, UE and EV as well as runtime. In
contrast to existing work [34, 30, 35, 34], we consider min-
imum/maximum and standard deviation of Rec, UE and
EV (in relation to the number of generated superpixels K)
and present results for the introduced metrics ARec, AUE
and AEV. Furthermore, we present experiments regarding
implementation details as well as robustness against noise,
blur and affine transformations. Finally, we give an overall
ranking based on ARec and AUE.

7.1. Qualitative

Visual quality is best determined by considering com-
pactness, regularity and smoothness on the one hand and
boundary adherence on the other. Here, compactness refers
to the area covered by individual superpixels (as captured
in Equation (5)); regularity corresponds to both the super-
pixels’ sizes and their arrangement; and smootness refers
to the superpixels’ boundaries. Figures 5 and 6 show re-
sults on all datasets. We begin by discussing boundary
adherence, in particular, with regard to the difference be-
tween superpixel and oversegmentation algorithms, before
considering compactness, smoothness and regularity.

The majority of algorithms provides solid adherence to
important image boundaries, especially for large K. We
consider the woman image – in particular, the background
– and the caterpillar image in Figure 5. Algorithms with
inferior boundary adherence are easily identified as those
not capturing the pattern in the background or the silhou-
ette of the caterpillar: FH, QS, CIS, PF, PB, TPS, TP
and SEAW. The remaining algorithms do not necessarily
capture all image details, as for example the woman’s face,
but important image boundaries are consistently captured.
We note that of the three evaluated oversegmentation al-
gorithms, i.e. EAMS, FH and QS, only EAMS demon-
strates adequate boundary adherence. Furthermore, we
observe that increasing K results in more details being
captured by all algorithms. Notable algorithms regard-
ing boundary adherence include CRS, ERS, SEEDS,
ERGC and ETPS. These algorithms are able to capture
even smaller details such as the coloring of the caterpillar
or elements of the woman’s face.

Compactness strongly varies across algorithms and a
compactness parameter is beneficial to control the degree
of compactness as it allows to gradually trade boundary
adherence for compactness. We consider the caterpillar
image in Figure 5. TP, RW, W, and PF are examples for
algorithms not providing a compactness parameter. While
TP generates very compact superpixels and RW tends to
resemble grid-like superpixels, W and PF generate highly
non-compact superpixels. In this regard, compactness de-
pends on algorithm and implementation details (e.g. grid-
like initialization) and varies across algorithms. For algo-
rithms providing control over the compactness of the gen-
erated superpixels, we find that parameter optimization
has strong impact on compactness. Examples are CRS,
LSC, ETPS and ERGC showing highly irregular super-
pixels, while SLIC, CCS, VC and WP generate more
compact superpixels. For DASP and VCCS, requiring
depth information, similar observations can be made on
the kitchen image in Figure 6. Inspite of the influence of
parameter optimization, we find that a compactness pa-
rameter is beneficial. This can best be observed in Fig-
ure 8, showing superpixels generated by SLIC and CRS
for different degrees of compactness. We observe that com-
pactness can be increased while only gradually sacrificing
boundary adherence.

We find that compactness does not necessarily induce
regularity and smoothness; some algorithms, however, are
able to unite compactness, regularity and smoothness. Con-
sidering the sea image in Figure 5 for CIS and TP, we
observe that compact superpixels are not necessarily ar-
ranged regularly. Similarly, compact superpixels do not
need to exhibit smooth boundaries, as can be seen for PB.
On the other hand, compact superpixels are often gener-
ated in a regular fashion, as can be seen for many algo-
rithms providing a compactness parameter such as SLIC,
VC and CCS. In such cases, compactness also induces
smoother and more regular superpixels. We also observe
that many algorithms exhibiting excellent boundary ad-
herence such as CRS, SEEDS or ETPS generate highly
irregular and non-smooth superpixels. These observations
also justify the separate consideration of compactness, reg-
ularity and smoothness to judge visual quality. While
the importance of compactness, regularity and smoothness
may depend on the application at hand, these properties
represent the trade-off between abstraction from and sen-
sitivity to low-level image content which is inherent to all
superpixel algorithms.

In conclusion, we find that the evaluated path-based
and density-based algorithms as well as oversegmentation
algorithms show inferior visual quality. On the other hand,
clustering-based, contour evolution and iterative energy
optimization algorithms mostly show good boundary ad-
herence and some provide a compactness parameter, e.g.
SLIC, ERGC and ETPS. Graph-based algorithms show
mixed results – algorithms such as FH, CIS and PB show-
ing inferior boundary adherence, while ERS, RW, NC
and POISE exhibit better boundary adherence. However,

8

W
BSDS500 SBD Fash

E
A
M

S

BSDS500 SBD Fash
N
C

F
H

R
W

Q
S

P
F

T
P

C
IS

S
L
IC

C
R
S

E
R
S

P
B

S
E
E
D
S

T
P
S

V
C

C
C
S

C
W

E
R
G
C

M
S
S

p
re

S
L
IC

W
P

E
T
P
S

L
S
C

P
O
IS

E

S
E
A
W

Figure 5: Qualitative results on the BSDS500, SBD and Fash datasets. Excerpts from the images in Figure 1 are shown for K ≈ 400 in
the upper left corner and K ≈ 1200 in the lower right corner. Superpixel boundaries are depicted in black; best viewed in color. We judge
visual quality on the basis of boundary adherence, compactness, smoothness and regularity. Boundary adherence can be judged both on the
caterpillar image as well as on the woman image – the caterpillar’s boundaries are hard to detect and the woman’s face exhibits small details.
In contrast, compactness, regularity and smoothness can be evaluated considering the background in the caterpillar and see images. Best
viewed in color.

9

N
C

NYUV2 NYUV2

R
W

NYUV2 NYUV2

S
E
A
W

NYUV2 NYUV2

W

NYUV2 SUNRGBD

E
A
M

S

NYUV2 SUNRGBD

F
H

NYUV2 SUNRGBD

Q
S

P
F

T
P

C
IS

S
L
IC

C
R
S

E
R
S

P
B

D
A
S
P

S
E
E
D
S

T
P
S

V
C

C
C
S

V
C
C
S

C
W

E
R
G
C

M
S
S

p
re

S
L
IC

W
P

E
T
P
S

L
S
C

P
O
IS

E

Figure 6: Qualitative results on the NYUV2 and SUNRGBD datasets. Excerpts from the images in Figure 1 are shown for K ≈ 400 in the
upper left corner and K ≈ 1200 in the lower right corner. Superpixel boundaries are depicted in black; best viewed in color. NC, RW and
SEAW could not be evaluated on the SUNRGBD dataset due to exhaustive memory usage of the corresponding MatLab implementations.
Therefore, results for the NYUV2 dataset are shown. Visual quality is judged regarding boundary adherence, compactness, smoothness and
regularity. We also find that depth information, as used in DASP and VCCS, may help resemble the underlying 3D-structure. Best viewed
in color.

S
L
IC

C
R
S

Figure 7: The influence of a low, on the left, and high, on the right, compactness parameter demonstrated on the caterpillar image from
the BSDS500 datasets using SLIC and CRS for K ≈ 400. Superpixel boundaries are depicted in black; best viewed in color. Superpixel
algorithms providing a compactness parameter allow to trade boundary adherence for compactness. Best viewed in color.

10

103
0

0.2

0.4

0.6

logK

C
O

BSDS500

103
0

0.2

0.4

0.6

logK

C
O

NYUV2

Figure 8: CO on the BSDS500 and NYUV2 datasets. Considering
Figures 5 and 6, CO appropriately reflects compactness. However,
it does not take into account other aspects of visual quality such as
regularity and smoothness. Therefore, we find that CO is of limited
use in a quantitative assessment of visual quality. Best viewed in
color.

W EAMS NC FH

RW QS PF TP

CIS SLIC CRS ERS

PB SEEDS TPS VC

CCS CW ERGC MSS

preSLIC WP ETPS LSC

POISE SEAW

good boundary adherence, especially regarding details in
the image, often comes at the price of lower compactness,
regularity and/or smoothness as can be seen for ETPS
and SEEDS. Furthermore, compactness, smoothness and
regularity are not necessarily linked and should be dis-
cussed separately.

7.1.1. Compactness

CO measures compactness, however, does not reflect
regularity or smoothness; therefore, CO is not sufficient
to objectively judge visual quality. We consider Figure
8, showing CO on the BSDS500 and NYUV2 datasets,
and we observe that CO correctly measures compactness.
For example, WP, TP and CIS, exhibiting high CO, also
present very compact superpixels in Figures 5 and 6. How-
ever, these superpixels do not necessarily have to be visu-
ally appealing, i.e. may lack regularity and/or smoothness.
This can exemplarily be seen for TPS, exhibiting high
compactness bur poor regularity, or PB showing high com-
pactness but inferior smoothness. Overall, we find that
CO should not be considered isolated from a qualitative
evaluation.

7.1.2. Depth

Depth information helps superpixels resemble the 3D-
structure within the image. Considering Figure 6, in par-
ticular both images for DASP and VCCS, we deduce
that depth information may be beneficial for superpixels
to resemble the 3D-structure of a scene. For example,
when considering planar surfaces (e.g. the table) in both
images from Figure 6 for DASP, we clearly see that the
superpixels easily align with the floor in a way perceived

as 3-dimensional. For VCCS, this effect is less observable
which may be due to the compactness parameter.

7.2. Quantitative

Performance is determined by Rec, UE and EV. In
contrast to most authors, we will look beyond metric av-
erages. In particular, we consider the minimum/maximum
as well as the standard deviation to get an impression of
the behavior of superpixel algorithms. Furthermore, this
allows to quantize the stability of superpixel algorithms as
also considered by Neubert and Protzel in [37].

Rec and UE offer a ground truth dependent overview
to assess the performance of superpixel algorithms. We
consider Figures 9a and 9b, showing Rec and UE on the
BSDS500 dataset. With respect to Rec, we can easily
identify top performing algorithms, such as ETPS and
SEEDS, as well as low performing algorithms, such as
FH, QS and PF. However, the remaining algorithms lie
closely together in between these two extremes, showing
(apart from some exceptions) similar performance espe-
cially for large K. Still, some algorithms perform consis-
tently better than others, as for example ERGC, SLIC,
ERS and CRS. For UE, low performing algorithms, such
as PF or QS, are still easily identified while the remain-
ing algorithms tend to lie more closely together. Neverthe-
less, we can identify algorithms consistently demonstrating
good performance, such as ERGC, ETPS, CRS, SLIC
and ERS. On the NYUV2 dataset, considering Figures
10a and 10b, these observations can be confirmed except
for minor differences as for example the excellent perfor-
mance of ERS regarding UE or the better performance of
QS regarding UE. Overall, Rec and UE provide a quick
overview of superpixel algorithm performance but might
not be sufficient to reliably discriminate superpixel algo-
rithms.

In contrast to Rec and UE, EV offers a ground truth
independent assessment of superpixel algorithms. Con-
sidering Figure 9c, showing EV on the BSDS500 dataset,
we observe that algorithms are dragged apart and even
for large K significantly different EV values are attained.
This suggests, that considering ground truth independent
metrics may be beneficial for comparison. However, EV
cannot replace Rec or UE, as we can observe when com-
paring to Figures 9a and 9b, showing Rec and UE on the
BSDS500 dataset; in particular QS, FH and CIS are per-
forming significantly better with respect to EV than re-
garding Rec and UE. This suggests that EV may be used
to identify poorly performing algorithms, such as TPS,
PF, PB or NC. On the other hand, EV is not necessar-
ily suited to identify well-performing algorithms due to the
lack of underlying ground truth. Overall, EV is suitable to
complement the view provided by Rec and UE, however,
should not be considered in isolation.

The stability of superpixel algorithms can be quantified
by min Rec, max UE and min EV considering the behavior
for increasing K. We consider Figures 9d, 9e and 9f, show-
ing min Rec, max UE and min EV on the BSDS500 dataset.

11

102.7 103 103.48 103.78
0.5

0.6

0.8

1

logK

(a)

R
e
c

102.7 103 103.48 103.78

0.05

0.1

0.15

0.2

logK

(b)

U
E

BSDS500

102.7 103 103.48 103.78
0.7

0.8

0.9

0.975

logK

(c)

E
V

102.7 103 103.48 103.78
0.3

0.4

0.6

0.8

1

logK

(d)

m
in

R
e
c

102.7 103 103.48 103.78
0.1

0.2

0.4

0.6

logK

(e)

m
a
x
U
E

102.7 103 103.48 103.78
0.2

0.4

0.6

0.8

0.9

logK

(f)
m
in

E
V

102.7 103 103.48 103.78
0

0.02

0.04

0.06

0.08

0.1

K

(g)

st
d

R
e
c

102.7 103 103.48 103.78

0.02

0.04

0.06

0.08

0.1

K

(h)

st
d

U
E

102.7 103 103.48 103.78
0.02

0.05

0.1

0.15

K

(i)

st
d

E
V

2,000 4,000 6,000 8,000

2

4

6

8

10

12
·103

K

(j)

m
a
x
K

C
C
S

S
E
E
D
S

S
L
IC

R
W

C
WT
P

P
O
IS

E

F
H

E
A
M

S

C
R
S

S
E
A
W

E
R
G
C

P
F

T
P
S

N
C

V
C

P
B

p
re
S
L
ICW

L
S
C

W
P

Q
S

C
IS

E
R
S

M
S
S

E
T
P
S

0

200

400

600

st
d

K

(k)

Figure 9: Quantitative experiments on the BSDS500 dataset; remember that K denotes the number of generated superpixels. Rec (higher is
better) and UE (lower is better) give a concise overview of the performance with respect to ground truth. In contrast, EV (higher is better)
gives a ground truth independent view on performance. While top-performers as well as poorly performing algorithms are easily identified,
we provide more find-grained experimental results by considering min Rec, max UE and min EV. These statistics additionally can be used
to quantity the stability of superpixel algorithms. In particular, stable algorithms are expected to exhibit monotonically improving min Rec,
max UE and min EV. The corresponding std Rec, std UE and std EV as well as max K and std K help to identify stable algorithms. Best
viewed in color.

W EAMS NC FH RW QS PF TP CIS

SLIC CRS ERS PB SEEDS TPS VC CCS CW

ERGC MSS preSLIC WP ETPS LSC POISE SEAW

12

102.7 103 103.48 103.78
0.6

0.7

0.8

0.9

1

logK

(a)

R
e
c

102.7 103 103.48 103.78
0.05

0.1

0.15

0.2

logK

(b)

U
E

NYUV2

102.7 103 103.48 103.78
0.8

0.85

0.9

0.95

1

logK

(c)

E
V

102.7 103 103.48 103.78
0.25

0.4

0.6

0.8

1

logK

(d)

m
in

R
e
c

102.7 103 103.48 103.78
0.1

0.2

0.4

0.6

logK

(e)

m
a
x
U
E

102.7 103 103.48 103.78
0.3

0.4

0.6

0.8

1

logK

(f)
m
in

E
V

102.7 103 103.48 103.78
0

0.02

0.04

0.06

0.08

K

(g)

st
d

R
e
c

102.7 103 103.48 103.78
0.01

0.02

0.04

0.06

0.08

0.1

K

(h)

st
d

U
E

102.7 103 103.48 103.78
0

0.02

0.04

0.06

0.08

0.1

K

(i)

st
d

E
V

2,000 4,000 6,000 8,000

2

4

6

8

10

12
·103

K

(j)

m
a
x
K

C
C
S

S
E
E
D
S

S
L
IC

R
W

C
WT
P

P
O
IS

E

F
H

E
A
M

S

C
R
S

S
E
A
W

E
R
G
C

P
F

T
P
S

N
C

V
C

P
B

V
C
C
S

p
re
S
L
ICW

L
S
C

W
P

Q
S

C
IS

E
R
S

D
A
S
P

M
S
S

E
T
P
S

0

50

100

150

200

st
d

K

(k)

Figure 10: Quantitative results on the NYUV2 dataset; remember that K denotes the number of generated superpixels. The presented
experimental results complement the discussion in Figure 9 and show that most observations can be confirmed across datasets. Furthermore,
DASP and VCCS show inferior performance suggesting that depth information does not necessarily improve performance. Best viewed
in color.

W EAMS NC FH RW QS PF TP CIS

SLIC CRS ERS PB DASP SEEDS TPS VC CCS

VCCS CW ERGC MSS preSLIC WP ETPS LSC POISE

SEAW

13

We define the stability of superpixel algorithms as follows:
an algorithm is considered stable if performance mono-
tonically increases with K (i.e. monotonically increasing
Rec and EV and monotonically decreasing UE). Further-
more, these experiments can be interpreted as empirical
bounds on the performance. For example algorithms such
as ETPS, ERGC, ERS, CRS and SLIC can be consid-
ered stable and provide good bounds. In contrast, algo-
rithms such as EAMS, FH, VC or POISE are punished
by considering min Rec, max UE and min EV and cannot
be described as stable. Especially oversegmentation algo-
rithms show poor stability. Most strikingly, EAMS seems
to perform especially poorly on at least one image from the
BSDS500 dataset. Overall, we find that min Rec, max UE
and min EV appropriately reflect the stability of superpixel
algorithms.

The minimum/maximum of Rec, UE and EV captures
lower/upper bounds on performance. In contrast, the cor-
responding standard deviation can be thought of as the
expected deviation from the average performance. We
consider Figures 9g, 9h and 9i showing the standard devia-
tion of Rec, UE and EV on the BSDS500 dataset. We can
observe that in many cases good performing algorithms
such as ETPS, CRS, SLIC or ERS also demonstrate
low standard deviation. Oversegmentation algorithms, on
the other hand, show higher standard deviation – together
with algorithms such as PF, TPS, VC, CIS and SEAW.
In this sense, stable algorithms can also be identified by
low and monotonically decreasing standard deviation.

The variation in the number of generated superpixels
is an important aspect for many superpixel algorithms.
In particular, High standard deviation in the number of
generated superpixels can be related to poor performance
regarding Rec, UE and EV. We find that superpixel al-
gorithms ensuring that the desired number of superpix-
els is met within appropriate bounds are preferrable. We
consider Figures 9j and 9k, showing max K and std K for
K ≈ 400 on the BSDS500 dataset. Even after enforcing
connectivity as described in Section 6.2, we observe that
several implementations are not always able to meet the
desired number of superpixels within acceptable bounds.
Among these algorithms are QS, VC, FH, CIS and LSC.
Except for the latter case, this can be related to poor per-
formance with respect to Rec, UE and EV. Conversely,
considering algorithms such as ETPS, ERGC or ERS
which guarantee that the desired number of superpixels is
met exactly, this can be related to good performance re-
garding these metrics. To draw similar conclusions for
algorithms utilizing depth information, i.e. DASP and
VCCS, the reader is encouraged to consider Figures 10j
and 10k, showing max K and std K for K ≈ 400 on the
NYUV2 dataset. We can conclude that superpixel algo-
rithms with low standard deviation in the number of gener-
ated superpixels are showing better performance in many
cases.

Finally, we discuss the proposed metrics ARec, AUE
and AEV (computed as the area above the Rec, (1 −

UE) and EV curves within the interval [Kmin,Kmax] =
[200, 5200]). We find that these metrics appropriately re-
flect and summarize the performance of superpixel algo-
rithms independent of K. As can be seen in Figure 11a,
showing ARec, AUE and AEV on the BSDS500
dataset, most of the previous observations can be con-
firmed. For example, we exemplarily consider SEEDS
and observe low ARec and AEV which is confirmed by
Figures 9a and 9c, showing Rec and EV on the BSDS500
dataset, where SEEDS consistently outperforms all algo-
rithms except for ETPS. However, we can also observe
higher AUE compared to algorithms such as ETPS, ERS
or CRS wich is also consistent with Figure 9b, showing
UE on the BSDS500 dataset. We conclude, that ARec,
AUE and AEV give an easy-to-understand summary of al-
gorithm performance. Furthermore, ARec, AUE and AEV
can be used to rank the different algorithms according to
the corresponding metrics; we will follow up on this idea
in Section 7.7.

The observed ARec, AUE and AEV also properly re-
flect the difficulty of the different datasets. We consider
Figure 11 showing ARec, AUE and AEV for all
five datasets. Concentrating on SEEDS and ETPS, we
see that the relative performance (i.e. the performance of
SEEDS compared to ETPS) is consistent across data-
sets; SEEDS usually showing higher AUE while ARec
and AEV are usually similar. Therefore, we observe that
these metrics can be used to characterize the difficulty and
ground truth of the datasets. For example, considering
the Fash dataset, we observe very high AEV compared to
the other datasets, while ARec and AUE are usually very
low. This can be explained by the ground truth shown in
Figure B.17e, i.e. the ground truth is limited to the fore-
ground (in the case of Figure B.17e, the woman), leaving
even complicated background unannotated. Similar argu-
ments can be developed for the consistently lower ARec,
AUE and AEV for the NYUV2 and SUNRGBD datasets
compared to the BSDS500 dataset. For the SBD dataset,
lower ARec, AUE and AEV can also be explained by the
smaller average image size.

In conclusion, ARec, AUE and AEV accurately reflect
the performance of superpixel algorithms and can be used
to judge datasets. Across the different datasets, path-
based and density-based algorithms perform poorly, while
the remaining classes show mixed performance. However,
some iterative energy optimization, clustering-based and
graph-based algorithms such as ETPS, SEEDS, CRS,
ERS and SLIC show favorable performance.

7.2.1. Depth

Depth information does not necessarily improve per-
formance regarding Rec, UE and EV. We consider Fig-
ures 10a, 10b and 10c presenting Rec, UE and EV on the
NYUV2 dataset. In particular, we consider DASP and
VCCS. We observe, that DASP consistently outperforms
VCCS. Therefore, we consider the performance of DASP
and investigate whether depth information improves per-

14

C
C
S

S
E
E
D
S

S
L
IC

R
W

C
WT
P

P
O
IS

E

F
H

E
A
M

S

C
R
S

S
E
A
W

E
R
G
C

P
F

T
P
S

N
C

V
C

P
B

p
re
S
L
ICW

L
S
C

W
P

Q
S

C
IS

E
R
S

M
S
S

E
T
P
S

(D
A
S
P
)

(V
C
C
S
)

0

10

20

30 ARec

AUE

AEV

(a) BSDS500

n
o
d
ep

th

n
o
d
ep

th

C
C
S

S
E
E
D
S

S
L
IC

R
W

C
WT
P

P
O
IS

E

F
H

E
A
M

S

C
R
S

S
E
A
W

E
R
G
C

P
F

T
P
S

N
C

V
C

P
B

V
C
C
S

p
re
S
L
ICW

L
S
C

W
P

Q
S

C
IS

E
R
S

D
A
S
P

M
S
S

E
T
P
S

0

10

20

30
ARec

AUE

AEV

(b) NYUV2

C
C
S

S
E
E
D
S

S
L
IC

R
W

C
WT
P

P
O
IS

E

F
H

E
A
M

S

C
R
S

S
E
A
W

E
R
G
C

P
F

T
P
S

(N
C
)

V
C

P
B

p
re
S
L
ICW

L
S
C

W
P

Q
S

C
IS

E
R
S

M
S
S

E
T
P
S

(D
A
S
P
)

(V
C
C
S
)

0

10

20
ARec

AUE

AEV

(c) SBD

fa
il
ed

n
o
d
ep

th

n
o
d
ep

th

C
C
S

S
E
E
D
S

S
L
IC

C
WT
P

P
O
IS

E

F
H

E
A
M

S

C
R
S

E
R
G
C

P
F

T
P
S

V
C

P
B

V
C
C
S

p
re
S
L
ICW

L
S
C

W
P

Q
S

C
IS

E
R
S

D
A
S
P

M
S
S

E
T
P
S

(S
E
A
W

)

(N
C
)

(R
W

)

0

10

20

30
ARec

AUE

AEV

(d) SUNRGBD

fa
il
ed

fa
il
ed

fa
il
ed

C
C
S

S
E
E
D
S

S
L
IC

R
W

C
WT
P

P
O
IS

E

F
H

E
A
M

S

C
R
S

S
E
A
W

E
R
G
C

P
F

T
P
S

N
C

V
C

P
B

p
re
S
L
ICW

L
S
C

W
P

Q
S

C
IS

E
R
S

M
S
S

E
T
P
S

(D
A
S
P
)

(V
C
C
S
)

0

5

10

15

20
ARec

AUE

AEV

(e) Fash

n
o
d
ep

th

n
o
d
ep

th

Figure 11: ARec, AUE and AEV (lower is better) on the used datasets. We find that ARec, AUE and AEV appropriately summarize
performance independent of the number of generated superpixels. Plausible examples to consider are top-performing algorithms such as
ETPS, ERS, SLIC or CRS as well as poorly performing ones such as QS and PF. Best viewed in color.

15

formance. Note that DASP performs similar to SLIC,
exhibiting slightly worse Rec and slightly better UE and
EV for large K. However, DASP does not clearly outper-
form SLIC. As indicated in Section 3, DASP and SLIC
are both clustering-based algorithms. In particular, both
algorithms are based on k-means using color and spatial
information and DASP additionally utilizes depth infor-
mation. This suggests that the clustering approach does
not benefit from depth information. We note that a sim-
ilar line of thought can be applied to VCCS except that
VCCS directly operates within a point cloud, rendering
the comparison problematic. Still we conclude that depth
information used in the form of DASP does not improve
performance. However, we note that evaluation is carried
out in the 2D image plain only.

7.3. Runtime

Considering runtime, we report CPU time3 excluding
connected components but including color space conver-
sions if applicable. We assured that no multi-threading
or GPU computation were used. We begin by considering
runtime in general, with a glimpse on realtime applica-
tions, before considering iterative algorithms.

We find that some well performing algorithms can be
run at (near) realtime. We consider Figure 12 showing run-
time in seconds t on the BSDS500 (image size 481× 321)
and NYUV2 (image size 608× 448) datasets. Concretely,
considering the watershed-based algorithms W and CW,
we can report runtimes below 10ms on both datasets, cor-
responding to roughly 100fps. Similarly, PF runs at be-
low 10ms. Furthermore, several algorithms, such as SLIC,
ERGC, FH, PB, MSS and preSLIC provide runtimes
below 80ms and some of them are iterative, i.e. reduc-
ing the number of iterations may further reduce runtime.
However, using the convention that realtime corresponds
to roughly 30fps, this leaves preSLIC and MSS on the
larger images of the NYUV2 dataset. However, even with-
out explicit runtime requirements, we find runtimes be-
low 1s per image to be beneficial for using superpixel al-
gorithms as pre-processing tool, ruling out TPS, CIS,
SEAW, RW and NC. Overall, several superpixel algo-
rithms provide runtimes appropriate for pre-processing tools;
realtime applications are still dependent on a few fast al-
gorithms.

Iterative algorithms offer to reduce runtime while grad-
ually lowering performance. Considering Figure 13, show-
ing Rec, UE and runtime in seconds t for all iterative al-
gorithms on the BSDS500 dataset, we observe that the
number of iterations can safely be reduced to decrease run-
time while lowering Rec and increasing UE only slightly.
In the best case, for example considering ETPS, reducing
the number of iterations from 25 to 1 reduces the runtime
from 680ms to 58ms, while keeping Rec und UE nearly

3 Runtimes have been taken on an Intel® Core™ i7-3770 @
3.4GHz, 64bit with 32GB RAM.

4001,200 3,600

10−2

10−1

100

101

102

K

lo
g
t

BSDS500

4001,200 3,600

10−2

10−1

100

101

102

K

lo
g
t

NYUV2

Figure 12: Runtime in seconds on the BSDS500 and NYUV2 data-
sets. Watershed-based, some clustering-based algorithms as well as
PF offer runtimes below 100ms. In the light of realtime applica-
tions, CW, W and PF even provide runtimes below 10ms. How-
ever, independent of the application at hand, we find runtimes below
1s beneficial for using superpixel algorithms as pre-processing tools.
Best viewed in color.

135 10 25
0.4

0.6

0.8

1

iterations

R
e
c

135 10 25
0

0.1

0.2

iterations

U
E

BSDS500

135 10 25
10−2

10−1

100

iterations

lo
g
t

Figure 13: Rec, UE and runtime in seconds t for iterative algorithms
with K ≈ 400 on the BSDS500 dataset. Some algorithms allow to
gradually trade performance for runtime, reducing runtime by several
100ms in some cases. Best viewed in color.

W EAMS NC FH

reFH RW QS PF

TP CIS SLIC vlSLIC

CRS ERS PB DASP

SEEDS reSEEDS TPS VC

CCS VCCS CW ERGC

MSS preSLIC WP ETPS

LSC POISE SEAW

constant. For other cases, such as SEEDS, Rec decreases
abruptly when using less than 5 iterations. Still, runtime
can be reduced from 920ms to 220ms. For CRS and CIS,
runtime reduction is similarly significant, but both algo-
rithms still exhibit higher runtimes. If post-processing is
necessary, for example for SLIC and preSLIC, the num-
ber of iterations has to be fixed in advance. However, for
other iterative algorithms, the number of iterations may
be adapted at runtime depending on the available time.
Overall, iterative algorithms are beneficial as they are able
to gradually trade performance for runtime.

We conclude that watershed-based as well as some path-
based and clustering-based algorithms are candidates for
realtime applications. Iterative algorithms, in particular
many clustering-based and iterative energy optimization
algorithms, may further be speeded up by reducing the
number of iterations and trading performance for runtime.
On a final note, we want to remind the reader that the

16

image sizes of all used datasets may be relatively small
compared to today’s applications. However, the relative
runtime comparison is still valuable.

7.4. Influence of Implementations

We discuss the influence of implementation details on
performance and runtime for different implementations of
SEEDS, SLIC and FH: reSEEDS is a revised imple-
mentation of SEEDS, vlSLIC is an implementation of
SLIC as part of the VLFeat library [100], and reFH is a
revised implementation of FH. We also include preSLIC.
In particular, reSEEDS and reFH use different data struc-
tures to represent superpixels and, thus, reach better con-
nectivity. vlSLIC, in contrast, is very close to SLIC, but
implemented in C instead of C++. Finally, preSLIC is
based on SLIC while stopping the iterative clustering for
each superpixel individually.

We find that revisiting implementation details may be
beneficial for both performance and runtime. We con-
sider Figure 14 showing Rec, UE and runtime in seconds
t for the introduced implementations of SLIC, SEEDS
and FH on the BSDS500 dataset. For reSEEDS and
reFH, we observe improved performance which can be re-
lated to the improved connectivity. However, even very
similar implementations such as SLIC and vlSLIC dif-
fer slightly in performance; note the lower Rec and higher
UE of vlSLIC compared to SLIC. Overall, the differ-
ence in runtime is most striking, for example reSEEDS
and preSLIC show significantly lower runtime compared
to SEEDS and SLIC. reFH, in contrast, shows higher
runtime compared to FH due to a more complex data
structure.

As expected, implementation details effect runtime, how-
ever, in the presented cases, i.e. for SLIC, SEEDS and
FH, performance is also affected. Nevertheless, it still
needs to be examined whether this holds true for the re-
maining algorithms, as well. Furthermore, the experi-
ments suggest that improving connectivity helps perfor-
mance.

7.5. Robustness

Similar to Neubert and Protzel [35], we investigate the
influence of noise, blur and affine transformations. We
evaluated all algorithms for K ≈ 400 on the BSDS500
dataset. In the following we exemplarily discuss salt and
pepper noise and average blurring.

Most algorithms are robust to salt and pepper noise;
blurring, in contrast, tends to reduce performance. We
consider Figure 15 showing Rec, UE and K for p ∈ {0, 0.04,
0.08, 0.12, 0.16} being the probability of a pixel being salt
or pepper. Note that Figure 15 shows the number of su-
perpixels K before enforcing connectivity as described in
Section 6.2. As we can deduce, salt and pepper noise only
slightly reduces Rec and UE for most algorithms. Some
algorithms compensate the noise by generating more su-
perpixels such as VC or SEAW while only slightly re-
ducing performance. In contrast, for QS the performance

102.7103 103.6
0.5

0.6

0.7

0.8

0.9

1

logK

R
e
c

102.7103 103.6
0.05

0.1

0.15

0.2

logK

U
E

BSDS500

5001,000 4,000
10−2

10−1

K

lo
g
t

Figure 14: Rec, UE and runtime in seconds t on the BSDS500 dataset
for different implementations of SLIC, SEEDS and FH. In partic-
ular, reSEEDS and reFH show slightly better performance which
may be explained by improved connectivity. vlSLIC, in contrast,
shows similar performance to SLIC and, indeed, the implementa-
tions are very similar. Finally, preSLIC reduces runtime by reduc-
ing the number of iterations spend on individual superpixels. Best
viewed in color.

FH reFH SLIC vlSLIC

SEEDS reSEEDS preSLIC

0 0.08 0.16

0.4

0.6

0.8

1
R
e
c

0 0.08 0.16
0

0.1

0.2

0.3

U
E

0 0.08 0.16
0

2

4

6

8

10
·103

K

Figure 15: The influence of salt and pepper noise for p ∈
{0, 0.04, 0.08, 0.12, 0.16} being the probability of salt or pepper. Re-
garding Rec and UE, most algorithms are not significantly influence
by salt and pepper noise. Algorithms such as QS and VC compen-
sate the noise by generating additional superpixels. Best viewed
in color.

0 5 9 13 17

0.4

0.6

0.8

1

R
e
c

0 5 9 13 17
0

0.1

0.2

0.3

U
E

BSDS500

0 5 9 13 17
0

1

2

3
·103

K

Figure 16: The influence of average blur for k ∈ {0, 5, 9, 13, 17} being
the filter size. As can be seen, blurring gradually reduces perfor-
mance – which may be explained by vanishing image boundaries. In
addition, for algorithms such as VC and QS, blurring also leads to
fewer superpixels being generated. Best viewed in color.

W EAMS NC FH

RW QS PF TP

CIS SLIC CRS ERS

PB SEEDS TPS VC

CCS CW ERGC MSS

preSLIC WP ETPS LSC

POISE SEAW

even increases – a result of the strongly increasing number
of superpixels. Similar results can be obtained for Gaus-
sian additive noise. Turning to Figure 16 showing Rec, UE
and K for k ∈ {0, 5, 9, 13, 17} being the size of a box filter
used for average blurring. As expected, blurring leads to

17

Rec UE EV K t

W 0.9998 0.0377 0.9238 20078.2 0.0090

PF 0.9512 0.0763 0.8834 15171.5 0.0105

CIS 0.9959 0.0353 0.9792 15988.6 7.617

SLIC 0.9997 0.0339 0.9570 17029.7 0.1633

CRS 0.9999 0.0265 0.9587 24615.8 4.7014

ERS 0.9999 0.0297 0.9564 20000 0.5935

PB 0.9988 0.0398 0.9477 15058.9 0.0531

SEEDS 0.9997 0.0340 0.9729 18982.5 0.2267

VC 0.9482 0.04621 0.9631 10487.5 2.3174

CCS 0.9999 0.0223 0.9637 17676.9 0.227

CW 0.9999 0.0322 0.9362 26319.8 0.0049

ERGC 0.9999 0.0316 0.9744 21312 0.1217

MSS 0.9989 0.0372 0.9171 25890.5 0.0894

preSLIC 0.9999 0.0359 0.958 17088.3 0.021

WP 0.9980 0.0411 0.9463 15502.7 0.6510

ETPS 0.9999 0.0311 0.9793 17227 1.1657

Table 2: Rec, UE, EV, K and runtime in seconds t for K ≈ 20000
on the BSDS500 dataset including all algorithms able to generate
K� 5000 superpixels. The experiments demonstrate that nearly all
superpixel algorithms are able to capture the image content without
loss of information – with Rec ≈ 0.99 and UE ≈ 0.03 – while reducing
the number of primitives from 481 · 321 = 154401 to K ≈ 20000.

reduced performance with respect to both Rec and UE.
Furthermore, it leads to a reduced number of generated
superpixels for algorithms such as QS or VC. Similar ob-
servations can be made for motion blur as well as Gaussian
blur.

Overall, most superpixel algorithms are robust to the
considered noise models, while blurring tends to reduce
performance. Although the corresponding experiments are
omitted for brevity, we found that affine transformations
do not influence performance.

7.6. More Superpixels

Up to now, we used ARec, AUE and AEV to summa-
rize experimental results for K ∈ [200, 5200]. However, for
some applications, generating K � 5200 superpixels may
be interesting.

For K ≈ 20000, superpixel algorithms can be used to
dramatically reduce the number of primitives with negli-
gible loss of information. We consider Table 2 presenting
Rec, UE, EV, runtime in seconds t and K for K ≈ 20, 000
on the BSDS500 dataset. We note that some algorithms
were not able to generate K � 5200 superpixels and are,
therefore, excluded. Similarly, we excluded algorithms not
offering control over the number of generated superpixels.
We observe that except for VC and PF all algorithms
achive Rec ≥ 0.99, UE ≈ 0.3, and EV > 0.9. Further-
more, the runtime of many algorithms is preserved. For
example W and CW still run in below 10ms and the run-
time for preSLIC and SLIC increases only slightly. Ob-
viously, the number of generated superpixels varies more
strongly for large K. Overall, most algorithms are able
to capture the image content nearly perfectly while reduc-
ing the number of primitives from 321 × 481 = 154401 to
K ≈ 20000.

7.7. Ranking

We conclude the experimental part of this paper with
a ranking with respect to ARec and AUE– reflecting the
objective used for parameter optimization. Unfortunately,
the high number of algorithms as well as the low num-
ber of datasets prohibits using statistical tests to extract
rankings, as done in other benchmarks (e.g. [101, 102]).
Therefore, Table 3 presents the computed average ranks
and the corresponding rank matrix. We find that the pre-
sented average ranks provide a founded overview of the
evaluated algorithms, summarizing many of the observa-
tions discussed before. In the absense of additional con-
straints, Table 3 may be used to select suitable superpixel
algorithms.

8. Conclusion

In this paper, we presented a large-scale comparison
of superpixel algorithms taking into account visual qual-
ity, ground truth dependent and independent metrics, run-
time, implementation details as well as robustness to noise,
blur and affine transformations. For fairness, we system-
atically optimized parameters while strictly enforcing con-
nectivity. Based on the obtained parameters, we pre-
sented experiments based on five different datasets includ-
ing indoor and outdoor scenes as well as persons. In con-
trast to existing work [34, 30, 35, 37], we considered mini-
mum/maximum as well as the standard deviation in addi-
tion to simple metric averages. We further proposed Av-
erage Recall, Average Undersegmentation Error and Av-
erage Explained Variation to summarize algorithm perfor-
mance independent of the number of generated superpix-
els. This enabled us to present an overall ranking of su-
perpixel algorithms aimed to simplify and guide algorithm
selection.

Regarding the mentioned aspects of superpixel algo-
rithms, we made several observations relevant for appli-
cations and future research. Considering visual quality,
we found that the majority of algorithms provides solid
boundary adherence; some algorithms are able to capture
even small details. However, better boundary adherence
may influence compactness, regularity and smoothness.
While regularity and smoothness strongly depends on the
individual algorithms, a compactness parameter is ben-
eficial to trade-off boundary adherence for compactness.
Regarding performance, Boundary Recall [39], Underseg-
mentation Error [33, 30, 35] and Explained Variation [40]
provide a solid overview but are not sufficient to discrim-
inate algorithms reliably. Therefore, we used the mini-
mum/maximum as well as the standard deviation of these
metrics to identify stable algorithms, i.e. algoritms pro-
viding monotonically increasing performance with regard
to the number of generated superpixels. Furthermore, we
were able to relate poor performance to a high standard de-
viation in the number of generated superpixels, justifying
the need to strictly control connectivity. Concerning run-
time, we identified several algorithms providing realtime

18

ARec AUE Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

2.05 6.07 ETPS 1 5 0

1.57 7.98 SEEDS 3.8 0 2 1 1 0 0 0 1 0

3.38 6.28 ERS 3.8 0 1 1 2 0 1 0

4.16 6.29 CRS 4.8 0 0 2 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4.18 6.77 EAMS 5.4 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4.55 6.34 ERGC 5.8 0 0 0 0 2 2 1 0

4.91 6.50 SLIC 6.2 0 0 0 0 2 0 3 0

5.40 7.24 LSC 9.2 0 0 0 1 0 1 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

5.49 7.02 preSLIC 9.2 0 0 0 0 0 0 0 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6.60 6.41 CCS 10.6 0 0 0 0 0 0 0 2 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

6.49 7.19 CW 11 0 0 0 0 0 0 0 0 0 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8.24 7.83 DASP 12 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6.51 7.44 W 12.8 0 0 0 0 0 0 0 0 0 0 2 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

7.44 6.97 WP 13.4 0 0 0 0 0 0 0 0 0 0 0 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

7.85 7.58 POISE 13.8 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

8.13 6.90 NC 15.25 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

7.66 7.43 MSS 15.8 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2 1 0 0 0 0 0 0 0 0 0 0

8.90 7.67 VC 17.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 1 0 0 0 1 0 0 0 0 0

8.31 7.85 PB 18.4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0

8.53 8.15 FH 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 1 0 0 0 0 0 0 0

8.35 7.32 RW 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0

11.45 6.70 CIS 20.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 2 0 0 0 1 0 0 0

11.45 7.19 TPS 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0

11.05 7.93 TP 21.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0

14.22 13.54 VCCS 23 0 1 0 1 0 0 0 0

11.97 8.36 SEAW 24 0 1 0 2 0 1 0 0

15.72 10.75 QS 24.8 0 1 1 2 0 1 0

24.64 14.91 PF 26.2 0 1 3 0 1

Table 3: Average ranks and rank matrix of all evaluated algorithms. We note that we could not evaluate RW, NC and SEAW on the
SUNRGBD dataset and DASP and VCCS cannot be evaluated on the BSDS500, SBD and Fash datasets. The ranking considers both ARec
and AUE to reflect the objective used for parameter optimization.

capabilities, i.e. roughly 30fps, and showed that iterative
algorithms allow to reduce runtime while only gradually
reducing performance. Implementation details are rarely
discussed in the literature; on three examples, we high-
lighted the advantage of ensuring connectivity and showed
that revisiting implementations may benefit performance
and runtime. We further demonstrated that generating a
higher number of superpixels, e.g. roughly 20000, results
in nearly no loss of information while still greatly reduc-
ing the number of primitives. Finally, we experimentally
argued that superpixel algorithms are robust against noise
and affine transformations before providing a final ranking
of the algorithms based on the proposed metrics Average
Recall and Average Undersegmentation Error.

From the ranking in Table 3, we recommend 6 algo-
rithms for use in practice, thereby covering a wide range
of application scenarios: ETPS [74], SEEDS [71], ERS
[38], CRS [69, 70], ERGC [59] and SLIC [65]. These
algorithms show superior performance regarding Bound-
ary Recall, Undersegmentation Error and Explained Vari-
ation and can be considered stable. Furthermore, they
are iterative (except for ERGC and ERS) and provide
a compactness parameter (except for SEEDS and ERS).
Except for ERS and CRS, they provide runtimes below
100ms – depending on the implementation – and preSLIC
[48], which we see as a variant of SLIC, provides realtime
capabilities. Finally, the algorithms provide control over
the number of generated superpixels (therefore, EAMS,

ranked 5th in Table 3, is not recommended), are able to
generate mostly connected superpixels and exhibit a very
low standard deviation in the number of generated super-
pixels.

Software. The individual implementations, together
with the used benchmark, are made publicly available at
davidstutz.de/projects/superpixel-benchmark/.

Acknowledgements. The work in this paper was
funded by the EU project STRANDS (ICT-2011-600623).
We are also grateful for the implementations provided by
many authors.

References

References

[1] X. Ren, J. Malik, Learning a classification model for segmenta-
tion, in: International Conference on Computer Vision, 2003,
pp. 10–17.

[2] R. Mester, U. Franke, Statistical model based image segmen-
tation using region growing, contour relaxation and classifi-
cation, in: SPIE Symposium on Visual Communications and
Image Processing, 1988, pp. 616–624.

[3] B. Marcotegui, F. Meyer, Bottom-up segmentation of image
sequences for coding, Annales des Télécommunications 52 (7)
(1997) 397–407.

[4] D. Hoiem, A. A. Efros, M. Hebert, Automatic photo pop-up,
ACM Transactions on Graphics 24 (3) (2005) 577–584.

[5] D. Hoiem, A. N. Stein, A. A. Efros, M. Hebert, Recovering
occlusion boundaries from a single image, in: International
Conference on Computer Vision, 2007, pp. 1–8.

19

[6] P. F. Felzenswalb, D. P. Huttenlocher, Efficient graph-based
image segmentation, International Journal of Computer Vision
59 (2) (2004) 167–181.

[7] F. Meyer, Color image segmentation, in: International Con-
ference on Image Processing and its Applications, 1992, pp.
303–306.

[8] S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller, Multi-
class segmentation with relative location prior, International
Journal of Computer Vision 80 (3) (2008) 300–316.

[9] J. Tighe, S. Lazebnik, SuperParsing: Scalable nonparametric
image parsing with superpixels, in: European Conference on
Computer Vision, 2010, pp. 352–365.

[10] S. Wang, H. Lu, F. Yang, M.-H. Yang, Superpixel tracking,
in: International Conference on Computer Vision, 2011, pp.
1323–1330.

[11] F. Yang, H. Lu, M.-H. Yang, Robust superpixel tracking,
Transactions on Image Processing 23 (4) (2014) 1639–1651.

[12] Y. Zhang, R. Hartley, J. Mashford, S. Burn, Superpixels, occlu-
sion and stereo, in: International Conference on Digital Image
Computing Techniques and Applications, 2011, pp. 84–91.

[13] K. Yamaguchi, D. A. McAllester, R. Urtasun, Efficient joint
segmentation, occlusion labeling, stereo and flow estimation,
in: European Conference on Computer Vision, 2014, pp. 756–
771.

[14] A. Bódis-Szomorú, H. Riemenschneider, L. van Gool, Super-
pixel meshes for fast edge-preserving surface reconstruction,
in: IEEE Conference on Computer Vision and Pattern Recog-
nition, 2015, pp. 2011–2020.

[15] F. Perazzi, P. Krähenbühl, Y. Pritch, A. Hornung, Saliency
filters: Contrast based filtering for salient region detection, in:
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2012, pp. 733–740.

[16] G. Shu, A. Dehghan, M. Shah, Improving an object detector
and extracting regions using superpixels, in: IEEE Conference
on Computer Vision and Pattern Recognition, 2013, pp. 3721–
3727.

[17] J. Yan, Y. Yu, X. Zhu, Z. Lei, S. Z. Li, Object detection by
labeling superpixels, in: IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 5107–5116.

[18] M. V. den Bergh, D. Carton, L. van Gool, Depth SEEDS:
recovering incomplete depth data using superpixels, in: Win-
ter Conference on Applications of Computer Vision, 2013, pp.
363–368.

[19] F. Liu, C. Shen, G. Lin, Deep convolutional neural fields for
depth estimation from a single image, Computing Research
Repository abs/1411.6387.

[20] A. Geiger, C. Wang, Joint 3d object and layout inference from
a single RGB-D image, in: German Conference on Pattern
Recognition, 2015, pp. 183–195.

[21] M. Menze, A. Geiger, Object scene flow for autonomous ve-
hicles, in: IEEE Conference on Computer Vision and Pattern
Recognition, Boston, Massachusetts, 2015, pp. 3061–3070.

[22] R. Gadde, V. Jampani, M. Kiefel, P. V. Gehler, Superpixel
convolutional networks using bilateral inceptions, Computing
Research Repository abs/1511.06739.

[23] B. Andres, U. Köthe, M. Helmstaedter, W. Denk, F. A. Ham-
precht, Segmentation of SBFSEM volume data of neural tis-
sue by hierarchical classification, in: DAGM Annual Pattern
Recognition Symposium, 2008, pp. 142–152.

[24] A. Lucchi, K. Smith, R. Achanta, V. Lepetit, P. Fua, A fully
automated approach to segmentation of irregularly shaped cel-
lular structures in EM images, in: International Conference
onMedical Image Computing and Computer Assisted Inter-
ventions, 2010, pp. 463–471.

[25] A. Lucchi, K. Smith, R. Achanta, G. Knott, P. Fua,
Supervoxel-based segmentation of mitochondria in EM image
stacks with learned shape features, IEEE Transactions on Med-
ical Imaging 31 (2) (2012) 474–486.

[26] S. Haas, R. Donner, A. Burner, M. Holzer, G. Langs,
Superpixel-based interest points for effective bags of visual
words medical image retrieval, in: International Conference

onMedical Image Computing and Computer Assisted Inter-
ventions, 2011, pp. 58–68.

[27] K. Yamaguchi, K. M. H, L. E. Ortiz, T. L. Berg, Parsing cloth-
ing in fashion photographs, in: IEEE Conference on Computer
Vision and Pattern Recognition, 2012, pp. 3570–3577.

[28] S. Liu, J. Feng, C. Domokos, H. Xu, J. Huang, Z. Hu, S. Yan,
Fashion parsing with weak color-category labels, IEEE Trans-
actions on Multimedia 16 (1) (2014) 253–265.

[29] M. van den Bergh, G. Roig, X. Boix, S. Manen, L. van Gool,
Online video seeds for temporal window objectness, in: Inter-
national Conference on Computer Vision, 2013, pp. 377–384.

[30] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua,
S. Süsstrunk, SLIC superpixels compared to state-of-the-art
superpixel methods, IEEE Transactions on Pattern Analysis
and Machine Intelligence 34 (11) (2012) 2274–2281.

[31] M. Grundmann, V. Kwatra, M. Han, I. A. Essa, Efficient hier-
archical graph-based video segmentation, in: IEEE Conference
on Computer Vision and Pattern Recognition, 2010, pp. 2141–
2148.

[32] C. Xu, J. J. Corso, Evaluation of super-voxel methods for early
video processing, in: IEEE Conference on Computer Vision
and Pattern Recognition, 2012, pp. 1202–1209.

[33] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J.
Dickinson, K. Siddiqi, TurboPixels: Fast superpixels using ge-
ometric flows, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 31 (12) (2009) 2290–2297.

[34] A. Schick, M. Fischer, R. Stiefelhagen, Measuring and evalu-
ating the compactness of superpixels, in: International Con-
ference on Pattern Recognition, 2012, pp. 930–934.

[35] P. Neubert, P. Protzel, Superpixel benchmark and comparison,
in: Forum Bildverarbeitung, 2012.

[36] O. Veksler, Y. Boykov, P. Mehrani, Superpixels and supervox-
els in an energy optimization framework, in: European Con-
ference on Computer Vision, Vol. 6315, 2010, pp. 211–224.

[37] P. Neubert, P. Protzel, Evaluating superpixels in video: Met-
rics beyond figure-ground segmentation, in: British Machine
Vision Conference, 2013.

[38] M. Y. Lui, O. Tuzel, S. Ramalingam, R. Chellappa, Entropy
rate superpixel segmentation, in: IEEE Conference on Com-
puter Vision and Pattern Recognition, 2011, pp. 2097–2104.

[39] D. Martin, C. Fowlkes, J. Malik, Learning to detect natural im-
age boundaries using local brightness, color, and texture cues,
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 26 (5) (2004) 530–549.

[40] A. P. Moore, S. J. D. Prince, J. Warrell, U. Mohammed,
G. Jones, Superpixel lattices, in: IEEE Conference on Com-
puter Vision and Pattern Recognition, 2008, pp. 1–8.

[41] D. J. Butler, J. Wulff, G. B. Stanley, M. J. Black, A naturalistic
open source movie for optical flow evaluation, in: European
Conference on Computer Vision, 2012, pp. 611–625.

[42] J. M. Gonfaus, X. B. Bosch, J. van de Weijer, A. D. Bagdanov,
J. Serrat, J. Gonzàlez, Harmony potentials for joint classifi-
cation and segmentation, in: IEEE Conference on Computer
Vision and Pattern Recognition, 2010, pp. 3280–3287.

[43] J. Strassburg, R. Grzeszick, L. Rothacker, G. A. Fink, On the
influence of superpixel methods for image parsing, in: Inter-
national Conference on Computer Vision Theory and Applica-
tion, 2015, pp. 518–527.

[44] D. Weikersdorfer, D. Gossow, M. Beetz, Depth-adaptive super-
pixels, in: International Conference on Pattern Recognition,
2012, pp. 2087–2090.

[45] J. Shi, J. Malik, Normalized cuts and image segmentation,
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 22 (8) (2000) 888–905.

[46] P. Arbeláez, M. Maire, C. Fowlkes, J. Malik, Contour detection
and hierarchical image segmentation, IEEE Transactions on
Pattern Analysis and Machine Intelligence 33 (5) (2011) 898–
916.

[47] P. Koniusz, K. Mikolajczyk, Segmentation based interest
points and evaluation of unsupervised image segmentation
methods, in: British Machine Vision Conference, 2009, pp.

20

1–11.
[48] P. Neubert, P. Protzel, Compact watershed and preemptive

SLIC: on improving trade-offs of superpixel segmentation algo-
rithms, in: International Conference on Pattern Recognition,
2014, pp. 996–1001.

[49] W. Benesova, M. Kottman, Fast superpixel segmentation using
morphological processing, in: Conference on Machine Vision
and Machine Learning, 2014.

[50] V. Machairas, E. Decencière, T. Walter, Waterpixels: Super-
pixels based on the watershed transformation, in: Interna-
tional Conference on Image Processing, 2014, pp. 4343–4347.

[51] V. Machairas, M. Faessel, D. Cardenas-Pena, T. Chabardes,
T. Walter, E. Decencière, Waterpixels, Transactions on Image
Processing 24 (11) (2015) 3707–3716.

[52] D. Comaniciu, P. Meer, Mean shift: A robust approach toward
feature space analysis, IEEE Transactions on Pattern Analysis
and Machine Intelligence 24 (5) (2002) 603–619.

[53] A. Vedaldi, S. Soatto, Quick shift and kernel methods for mode
seeking, in: European Conference on Computer Vision, Vol.
5305, 2008, pp. 705–718.

[54] P. Carr, R. I. Hartley, Minimizing energy functions on 4-
connected lattices using elimination, in: International Con-
ference on Computer Vision, 2009, pp. 2042–2049.

[55] L. Grady, G. Funka-Lea, Multi-label image segmentation for
medical applications based on graph-theoretic electrical poten-
tials, in: ECCV Workshops on Computer Vision and Mathe-
matical Methods in Medical and Biomedical Image Analysis,
2004, pp. 230–245.

[56] L. Grady, Random walks for image segmentation, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 28 (11)
(2006) 1768–1783.

[57] Y. Zhang, R. Hartley, J. Mashford, S. Burn, Superpixels via
pseudo-boolean optimization, in: International Conference on
Computer Vision, 2011, pp. 1387–1394.

[58] J. M. R. A. Humayun, F. Li, The middle child problem: Re-
visiting parametric min-cut and seeds for object proposals, in:
International Conference on Computer Vision, 2015, pp. 1600
– 1608.

[59] P. Buyssens, I. Gardin, S. Ruan, Eikonal based region grow-
ing for superpixels generation: Application to semi-supervised
real time organ segmentation in CT images, Innovation and
Research in BioMedical Engineering 35 (1) (2014) 20–26.

[60] P. Buyssens, M. Toutain, A. Elmoataz, O. Lézoray, Eikonal-
based vertices growing and iterative seeding for efficient graph-
based segmentation, in: International Conference on Image
Processing, 2014, pp. 4368–4372.

[61] P. Dollár, C. L. Zitnick, Structured forests for fast edge detec-
tion, in: International Conference on Computer Vision, 2013,
pp. 1841–1848.

[62] F. Drucker, J. MacCormick, Fast superpixels for video analysis,
in: Workshop on Motion and Video Computing, 2009, pp. 1–8.

[63] D. Tang, H. Fu, X. Cao, Topology preserved regular superpixel,
in: IEEE International Conference on Multimedia and Expo,
2012, pp. 765–768.

[64] H. Fu, X. Cao, D. Tang, Y. Han, D. Xu, Regularity preserved
superpixels and supervoxels, IEEE Transactions on Multime-
dia 16 (4) (2014) 1165–1175.

[65] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua,

S. Süsstrunk, SLIC superpixels, Tech. rep., École Polytech-
nique Fédérale de Lausanne (2010).

[66] J. Wang, X. Wang, VCells: Simple and efficient superpix-
els using edge-weighted centroidal voronoi tessellations, IEEE
Transactions on Pattern Analysis and Machine Intelligence
34 (6) (2012) 1241–1247.

[67] J. Papon, A. Abramov, M. Schoeler, F. Wörgötter, Voxel cloud
connectivity segmentation - supervoxels for point clouds, in:
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2013, pp. 2027–2034.

[68] Z. Li, J. Chen, Superpixel segmentation using linear spectral
clustering, in: IEEE Conference on Computer Vision and Pat-
tern Recognition, 2015, pp. 1356–1363.

[69] R. Mester, C. Conrad, A. Guevara, Multichannel segmenta-
tion using contour relaxation: Fast super-pixels and tempo-
ral propagation, in: Scandinavian Conference Image Analysis,
2011, pp. 250–261.

[70] C. Conrad, M. Mertz, R. Mester, Contour-relaxed superpixels,
in: Energy Minimization Methods in Computer Vision and
Pattern Recognition, 2013, pp. 280–293.

[71] M. van den Bergh, X. Boix, G. Roig, B. de Capitani, L. van
Gool, SEEDS: Superpixels extracted via energy-driven sam-
pling, in: European Conference on Computer Vision, Vol.
7578, 2012, pp. 13–26.

[72] H. E. Tasli, C. Çigla, T. Gevers, A. A. Alatan, Super pixel ex-
traction via convexity induced boundary adaptation, in: IEEE
International Conference on Multimedia and Expo, 2013, pp.
1–6.

[73] H. E. Tasli, C. Cigla, A. A. Alatan, Convexity constrained effi-
cient superpixel and supervoxel extraction, Signal Processing:
Image Communication 33 (2015) 71–85.

[74] J. Yao, M. Boben, S. Fidler, R. Urtasun, Real-time coarse-to-
fine topologically preserving segmentation, in: IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2015, pp.
2947–2955.

[75] C. Rohkohl, K. Engel, Efficient image segmentation using pair-
wise pixel similarities, in: DAGM Annual Pattern Recognition
Symposium, 2007, pp. 254–263.

[76] D. Engel, L. Spinello, R. Triebel, R. Siegwart, H. H. Bülthoff,
C. Curio, Medial features for superpixel segmentation, in:
IAPR International Conference on Machine Vision Applica-
tions, 2009, pp. 248–252.

[77] A. Ducournau, S. Rital, A. Bretto, B. Laget, Hypergraph
coarsening for image superpixelization, in: International Sym-
posium on I/V Communications and Mobile Network, 2010,
pp. 1–4.

[78] G. Zeng, P. Wang, J. Wang, R. Gan, H. Zha, Structure-
sensitive superpixels via geodesic distance, in: International
Conference on Computer Vision, 2011, pp. 447–454.

[79] F. Perbet, A. Maki, Homogeneous superpixels from random
walks, in: Machine Vision and Applications, Conference on,
2011, pp. 26–30.

[80] Y. Du, J. Shen, X. Yu, D. Wang, Superpixels using random
walker, in: IEEE Global High Tech Congress on Electronics,
2012, pp. 62–63.

[81] J. Yang, Z. Gan, X. Gui, K. Li, C. Hou, 3-d geometry enhanced
superpixels for RGB-D data, in: Pacific-Rim Conference on
Multimedia, 2013, pp. 35–46.

[82] Z. Ren, G. Shakhnarovich, Image segmentation by cascaded
region agglomeration, in: IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2013, pp. 2011–2018.

[83] K.-S. Kim, D. Zhang, M.-C. Kang, S.-J. Ko, Improved simple
linear iterative clustering superpixels, in: International Sym-
posium on Consumer Electronics, 2013, pp. 259–260.

[84] J. Shen, Y. Du, W. Wang, X. Li, Lazy random walks for super-
pixel segmentation, Transactions on Image Processing 23 (4)
(2014) 1451–1462.

[85] P. Morerio, L. Marcenaro, C. S. Regazzoni, A generative su-
perpixel method, in: International Conference on Information
Fusion, 2014, pp. 1–7.

[86] P. Siva, A. Wong, Grid seams: A fast superpixel algorithm
for real-time applications, in: Computer and Robot Vision,
Conference on, 2014, pp. 127–134.

[87] S. R. S. P. Malladi, S. Ram, J. J. Rodriguez, Superpixels using
morphology for rock image segmentation, in: IEEE Southwest
Symposium on Image Analysis and Interpretation, 2014, pp.
145–148.

[88] O. Freifeld, Y. Li, J. W. Fisher, A fast method for inferring
high-quality simply-connected superpixels, in: International
Conference on Image Processing, 2015, pp. 2184–2188.

[89] J. Lv, An improved slic superpixels using reciprocal nearest
neighbor clustering, International Journal of Signal Processing,
Image Processing and Pattern Recognition 8 (5) (2015) 239–
248.

21

[90] S. Gould, R. Fulton, D. Koller, Decomposing a scene into ge-
ometric and semantically consistent regions, in: International
Conference on Computer Vision, 2009, pp. 1–8.

[91] B. C. Russell, A. Torralba, K. P. Murphy, W. T. Freeman, La-
belme: A database and web-based tool for image annotation,
International Journal of Computer Vision 77 (1-3) (2008) 157–
173.

[92] A. Criminisi, Microsoft research cambridge object recog-
nition image database, http://research.microsoft.com/

en-us/projects/objectclassrecognition/ (2004).
[93] L. M. Everingham, L. van Gool, C. K. I. Williams, J. Winn,

A. Zisserman, The PASCAL Visual Object Classes Challenge
2007 (VOC2007) Results, http://www.pascal-network.org/

challenges/VOC/voc2007/workshop/index.html.
[94] D. Hoiem, A. A. Efros, M. Hebert, Recovering surface lay-

out from an image, International Journal of Computer Vision
75 (1) (2007) 151–172.

[95] N. Silberman, D. Hoiem, P. Kohli, R. Fergus, Indoor segmenta-
tion and support inference from RGBD images, in: European
Conference on Computer Vision, 2012, pp. 746–760.

[96] X. Ren, L. Bo, Discriminatively trained sparse code gradients
for contour detection, in: Neural Information Processing Sys-
tems, 2012, pp. 593–601.

[97] S. Song, S. P. Lichtenberg, J. Xiao, SUN RGB-D: A RGB-D
scene understanding benchmark suite, in: IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 567–576.

[98] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz,
K. Saenko, T. Darrell, A category-level 3-d object dataset:
Putting the kinect to work, in: International Conference on
Computer Vision Workshops, 2011, pp. 1168–1174.

[99] J. Xiao, A. Owens, A. Torralba, SUN3D: A database of big
spaces reconstructed using sfm and object labels, in: Interna-
tional Conference on Computer Vision, 2013, pp. 1625–1632.

[100] A. Vedaldi, B. Fulkerson, VLFeat: An open and portable li-
brary of computer vision algorithms, http://www.vlfeat.org/
(2008).

[101] J. Demsar, Statistical comparisons of classifiers over multiple
data sets, Journal of Machine Learning Research 7 (2006) 1–30.

[102] P. Dollár, C. Wojek, B. Schiele, P. Perona, Pedestrian detec-
tion: A benchmark, in: IEEE Conference on Computer Vision
and Pattern Recognition, 2009, pp. 304–311.

22

Appendix A. Algorithms

Complementing the information presented in Section
3, Table A.4 gives a complete overview of all algorithms.

Appendix B. Datasets

The BSDS500 dataset is the only dataset providing sev-
eral ground truth segmentations per image. Therefore,
we briefly discuss evaluation on the BSDS500 dataset in
detail. Furthermore, additional example images from all
used datasets are shown in Figure B.17 and are used for
qualitative results in Appendix E.1.

Assuming at least two ground truth segmentations per
image, Arbeláez et al. [46] consider two methodologies
of computing average Rec: computing the average Rec
over all ground truth segmentations per image, and sub-
sequently taking the worst average (i.e. the lowest Rec);
or taking the lowest Rec over all ground truth segmenta-
tions per image and averaging these. We follow Arbeláez
et al. and pick the latter approach. The same methodol-
ogy is then applied to UE, EV, ASA and UELevin . In this
sense, we never overestimate performance with respect to
the provided ground truth segmentations.

Appendix C. Benchmark

In the following section we discuss the expressiveness
of the used metrics and details regarding the computation
of ARec, AUE and AEV.

Appendix C.1. Expressiveness and Correlation

Complementing Section 5.1, we exemplarily discuss the
correlation computed for SEEDS with K ≈ 400 on the
BSDS500 dataset as shown in Table C.5. We note that the
following observations can be confirmed when considering
different algorithms. Still, SEEDS has the advantage of
showing good overall performance (see the ranking in Sec-
tion 7.7) and low standard deviation in Rec, UE and EV.
We observe a correlation of −0.47 between Rec and UE
reflecting that SEEDS exhibits high Rec but compara-
bly lower UE on the BSDS500 dataset. This justifies the
choice of using both Rec and UE for quantitative compar-
ison. The correlation of UE and ASA is 1, which we ex-
plained with the respective definitions. More interestingly,
the correlation of UE and UELevin is −0.7. Therefore, we
decided to discuss results regarding UELevin in more de-
tail in Appendix E. Nevertheless, this may also confirm
the observations by Neubert and Protzel [35] as well as
Achanta et al. [30] that UELevin unjustly penalizes large
superpixels. The high correlation of −0.97 between MDE
and Rec has also been explained using the respective defi-
nitions. Interestingly, the correlation decreases with rising
K. This can, however, be explained by the implementation
of Rec, allowing a fixed tolerance of 0.0025 times the image
diagonal. The correlation of −0.42 between ICV and EV

Figure B.17: Example images from the used datasets. From left
ro right: BSDS500; SBD; NYUV2; SUNRGBD; and Fash. Black
contours represent ground truth and red rectangles indicate excerpts
used for qualitative comparison in Figures E.18 and E.19. Best
viewed in color.

K = 400 Rec UE UELevin ASA CO EV MDE ICV

Rec 1 -0.47 -0.07 0.46 -0.08 0.11 -0.97 -0.04

UE -0.47 1 0.11 -1 0.07 -0.19 0.47 0.25

UELevin -0.07 0.11 1 -0.1 -0.01 -0.03 0.09 0.05

ASA 0.46 -1 -0.1 1 -0.07 0.18 -0.47 -0.24

CO -0.08 0.07 -0.01 -0.07 1 0.34 0.06 -0.05

EV 0.11 -0.19 -0.03 0.18 0.34 1 -0.16 -0.42

MDE -0.97 0.47 0.09 -0.47 0.06 -0.16 1 0.06

ICV -0.04 0.25 0.05 -0.24 -0.05 -0.42 0.06 1

CD 0.05 0 0 0 -0.86 -0.45 -0.03 0.21

K = 400 Rec UE UELevin ASA CO EV MDE ICV

Rec 1 -0.4 -0.06 0.4 -0.11 0.16 -0.92 -0.09

UE -0.4 1 0.14 -1 -0.01 -0.22 0.45 0.27

UELevin -0.06 0.14 1 -0.14 -0.07 -0.07 0.08 0.09

ASA 0.4 -1 -0.14 1 0.01 0.21 -0.45 -0.27

CO -0.11 -0.01 -0.07 0.01 1 0.24 0.12 -0.15

EV 0.16 -0.22 -0.07 0.21 0.24 1 -0.3 -0.52

MDE -0.92 0.45 0.08 -0.45 0.12 -0.3 1 0.15

ICV -0.09 0.27 0.09 -0.27 -0.15 -0.52 0.15 1

CD 0.13 0 0.03 -0.01 -0.91 -0.31 -0.13 0.15

K = 400 Rec UE UELevin ASA CO EV MDE ICV

Rec 1 -0.26 -0.05 0.28 -0.08 0.12 -0.66 -0.1

UE -0.26 1 0.16 -1 0.02 -0.2 0.41 0.28

UELevin -0.05 0.16 1 -0.16 -0.02 -0.07 0.1 0.07

ASA 0.28 -1 -0.16 1 -0.02 0.2 -0.41 -0.28

CO -0.08 0.02 -0.02 -0.02 1 0.19 0.13 -0.17

EV 0.12 -0.2 -0.07 0.2 0.19 1 -0.36 -0.61

MDE -0.66 0.41 0.1 -0.41 0.13 -0.36 1 0.22

ICV -0.1 0.28 0.07 -0.28 -0.17 -0.61 0.22 1

Table C.5: Pearson correlation coefficient of all discussed metrics
exemplarily shown for SEEDS with K ≈ 400, K ≈ 1200 and K ≈
3600.

was explained by the missing normalization of ICV com-
pared to EV. This observation is confirmed by the decreas-
ing correlation for larger K as, on average, superpixels get
smaller thereby reducing the influence of normalization.

Appendix C.2. Average Recall, Average Undersegmentation
Error and Average Explained Variation

As introduced in Section 5.2, ARec, AUE and AEV are
intended to summarize algorithm performance indepen-
dent of K. To this end, we compute the area above the Rec,
(1−UE) and EV curves within the interval [Kmin,Kmax] =
[200, 5200]. In particular, we use the trapezoidal rule for
integration. As the algorithms do not necessarily generate

23

R
e
fe
re
n
c
e

Y
e
a
r

C
it
a
ti
o
n
s

C
a
te
g
o
ri
z
a
ti
o
n

Im
p
le
m
e
n
ta

ti
o
n

G
R
A
Y

R
G
B

L
a
b

L
u
v

H
S
V

Y
C
rC

b

#
P
a
ra

m
e
te
rs

#
S
u
p
e
rp

ix
e
ls

#
It
e
ra

ti
o
n
s

C
o
m
p
a
c
tn

e
ss

D
e
p
th

E
d
g
e
s

W [7] 1992 234 watershed C/C++ – �X X X X X 1 X – – – –

EAMS [52] 2002 9631 density MatLab/C – �X – X – – 2 – – – – X

NC [1] 2003 996 graph MatLab/C – �X – – – – 3 X – – – –

FH [6] 2004 4144 graph C/C++ – �X – – – – 3 – – – – –

reFH ————”———— ————”———— C/C++ – �X – – – – 3 – – – – –

RW [55, 56] 2004 189 + 1587 graph MatLab/C – �X – – – – 2 X – – – –

QS [53] 2008 376 density MatLab/C – X �X – – – 3 – – – – –

PF [62] 2009 18 path Java – �X – – – – 2 X – – – –

TP [33] 2009 559 contour evolution MatLab/C – �X – – – – 4 X – – – –

CIS [36] 2010 223 graph C/C++ �X X – – – – 4 X X – – –

SLIC [65, 30] 2010 438 + 1843 clustering C/C++ – X �X – – – 4 X X X – –

vlSLIC ————”———— ————”———— C/C++ – �X – – – – 4 X X X – –

CRS [69, 70] 2011 14 + 4 energy optimization C/C++ X X – – – �X 4 X X X – –

ERS [38] 2011 216 graph C/C++ – �X – – – – 3 X – – – –

PB [57] 2011 36 graph C/C++ – �X – – – – 3 X – – – –

DASP [44] 2012 22 clustering C/C++ – �X – – – – 5 X X X – X

SEEDS [71] 2012 98 energy optimization C/C++ – X �X – X – 6 X X – – –

reSEEDS ————”———— ————”———— C/C++ – �X X – X – 6 X X X – –

TPS [63, 64] 2012 8 + 1 path MatLab/C – �X – – – – 4 X – – – X

VC [66] 2012 36 clustering C/C++ – X �X – – – 6 X – X – –

CCS [72, 73] 2013 6 + 4 energy optimization C/C++ – X �X – – – 3 X X X – –

VCCS [67] 2013 87 clustering C/C++ – �X – – – – 4 – – X X –

CW [48] 2014 11 watershed C/C++ – �X – – – – 2 X – X – –

ERGC [59, 60] 2014 2 + 1 contour evolution C/C++ – X �X – – – 3 X – X – –

MSS [49] 2014 4 watershed C/C++ – �X – – – – 5 X – – – –

preSLIC [48] 2014 11 clustering C/C++ – X �X – – – 4 X X X – –

WP [50, 51] 2014 5 + 8 watershed Python – �X – – – – 2 X – X – –

ETPS [74] 2015 6 energy optimization C/C++ – �X – – – – 5 X X X – –

LSC [68] 2015 2 clustering C/C++ – X �X – – – 4 X X X – –

POISE [58] 2015 3 graph MatLab/C – �X – – – – 5 X – – – X

SEAW [43] 2015 0 wavelet MatLab/C – �X – – – – 3 – – – – –

Table A.4: List of evaluated superpixel algorithms. First of all we present the used acronym (in parts consistent with [30] and [35]), the
corresponding publication, the year of publication and the number of Google Scholar citations as of October 13, 2016. We present a coarse
categorization which is discussed in Section 3. We additionally present implementation details such as the programming language, supported
color spaces and provided parameters. The color space used for evaluation is marked by a square. Best viewed in color.

the desired number of superpixels, we additionally consid-
ered the following two cases for special treatment. First, if
an algorithm generates more that Kmax superpixels (or less
than Kmin), we interpolate linearly to determine the value
for Kmax (Kmin). Second, if an algorithm consistently gen-
erates less that Kmax (or more than Kmin) superpixels, we
take the value lower or equal (greater or equal) and closest
to Kmax (Kmin). In the second case, a superpixel algorithm
is penalized if it is not able to generate very few (i.e. Kmin)
or very many (i.e. Kmax) superpixels.

Appendix D. Parameter Optimization

We discuss the following two topics concerning param-
eter optimization in more detail: color spaces and con-
trolling the number of superpixels in a consistent manner.
Overall, we find that together with Section 6, the described
parameter optimization procedure ensures fair comparison
as far as possible.

Appendix D.1. Color Spaces

The used color space inherently influences the perfor-
mance of superpixel algorithms as the majority of super-
pixel algorithms depend on comparing pixels within this
color space. To ensure fair comparison, we included the
color space in parameter optimization. In particular, we
ensured that all algorithms support RGB color space and
considered different color spaces only if reported in the
corresponding publications or supported by the respective
implementation. While some algorithms may benefit from
different color spaces not mentioned in the correspond-
ing publications, we decided to not consider additional
color spaces for simplicity and to avoid additional overhead
during parameter optimization. Parameter optimization
yielded the color spaces highlighted in Table A.4.

Appendix D.2. Controlling the Number of Generated Su-
perpixels

Some implementations, for example ERS and POISE,
control the number of superpixels directly – for example by

24

stopping the merging of pixels as soon as the desired num-
ber of superpixels is met. In contrast, clustering-based
algorithms (except for DASP), contour evolution algo-
rithms, watershed-based algorithms as well as path-based
algorithms utilize a regular grid to initialize superpixels.
Some algorithms allow to adapt the grid in both horizon-
tal and vertical direction, while others require a Cartesian
grid. We expected this difference to be reflected in the
experimental results, however, this is not the case. We
standardized initialization in both cases.

Appendix E. Experiments

We complement Section 7 with additional experimen-
tal results. In particular, we provide additional qualitative
results to better judge the visual quality of individual su-
perpixel algorithms. Furthermore, we explicitly present
ASA and UELevin on the BSDS500 and NYUV2 datasets
as well as Rec, UE and EV on the SBD, SUNRGBD and
Fash datasets.

Appendix E.1. Qualitative

We briefly discuss visual quality on additional examples
provided in Figures E.18 and E.19. Additionally, Figure
E.20 shows the influence of the compactness parameter on
superpixel algorithms not discussed in Section 7.1.

Most algorithms exhibit good boundary adherence, es-
pecially for large K. In contrast to the discussion in Sec-
tion 7.1 focussing on qualitative results with K ≈ 400
and K ≈ 1200, Figures E.18 and E.19 also show results
for K ≈ 3600. We observe that with rising K, most al-
gorithms exhibit better boundary adherence. Exceptions
are, again, easily identified: FH, QS, CIS, PF, PB, TPS
and SEAW. Still, due to higher K, the effect of missed im-
age boundaries is not as serious as with less superpixels.
Overall, the remaining algorithms show good boundary
adherence, especially for high K.

Compactness increases with higher K; still, a compact-
ness parameter is beneficial. While for higher K, super-
pixels tend to be more compact in general, the influence
of parameter optimization with respect to Rec and UE
is still visible – also for algorithms providing a compact-
ness parameter. For example, ERGC or ETPS exhibit
more irregular compared to SLIC or CCS. Complement-
ing this discussion, Figure E.20 shows the influence of the
compactness parameter for the algorithms with compact-
ness parameter not discussed in detail in Section 7.1. It
can be seen, that a compactness parameter allows to grad-
ually trade boundary adherence for compactness in all
of the presented cases. However, higher K also induces
higher compactness for algorithms not providing a com-
pactness parameter such as CIS, RW, W or MSS to
name only a few examples. Overall, compactness bene-
fits from higher K.

Overall, higher K induces both better boundary adher-
ence and higher compactness independent of a compact-
ness parameter being involved.

S
L
IC

v
lS
L
IC

C
R
S

re
S
E
E
D
S

V
C

C
C
S

C
W

p
re

S
L
IC

W
P

E
R
G
C

L
S
C

E
T
P
S

Figure E.20: The influence of a low, on the left, and high, on the
right, compactness parameter demonstrated on the caterpillar image
from the BSDS500 dataset for K ≈ 400. Superpixel boundaries are
depicted in black; best viewed in color. For all shown algorithms,
the compactness parameter allows to gradually trade boundary ad-
herence for compactness. Best viewed in color.

25

W
BSDS500 SBD Fash

E
A
M

S

BSDS500 SBD Fash
N
C

F
H

R
W

Q
S

P
F

T
P

C
IS

S
L
IC

C
R
S

E
R
S

P
B

S
E
E
D
S

T
P
S

V
C

C
C
S

C
W

E
R
G
C

M
S
S

p
re

S
L
IC

W
P

E
T
P
S

L
S
C

P
O
IS

E

S
E
A
W

Figure E.18: Qualitative results on the BSDS500, SBD and Fash datasets; excerpts from the images in Figure 1 are shown for K ≈ 1200, in
the upper left corner, and K ≈ 3600, in the lower right corner. Superpixel boundaries are depicted in black; best viewed in color. We observe
that with higher K both boundary adherence and compactness increases, even for algorithms not offering a compactness parameter. Best
viewed in color.

26

N
C

NYUV2 NYUV2

R
W

NYUV2 NYUV2

S
E
A
W

NYUV2 NYUV2

W

NYUV2 SUNRGBD
E
A
M

S

NYUV2 SUNRGBD

F
H

NYUV2 SUNRGBD

Q
S

P
F

T
P

C
IS

S
L
IC

C
R
S

E
R
S

P
B

D
A
S
P

S
E
E
D
S

T
P
S

V
C

C
C
S

V
C
C
S

C
W

E
R
G
C

M
S
S

p
re

S
L
IC

W
P

E
T
P
S

L
S
C

P
O
IS

E

Figure E.19: Qualitative results on the NYUV2 and SUNRGBD datasets; excerpts from the images in Figure 1 are shown for K ≈ 1200, in the
upper left corner, and K ≈ 3600, in the lower right corner. Superpixel boundaries are depicted in black; best viewed in color. NC, RW and
SEAW could not be evaluated on the SUNRGBD dataset due to exhaustive memory usage of the corresponding MatLab implementations.
Therefore, results on the NYUV2 dataset are shown. Best viewed in color.

27

103

0.7

0.8

0.9

1

logK

R
e
c

103

0.05

0.1

0.15

0.2

logK

U
E

SBD

103

0.8

0.9

1

logK

E
V

103
0.6

0.7

0.8

0.9

1

logK

R
e
c

103

0.05

0.1

0.15

logK

U
E

SUNRGBD

103
0.8

0.85

0.9

0.95

1

logK

E
V

103
0.85

0.9

0.95

1

logK

R
e
c

103
0.02

0.04

0.06

0.08

0.1

logK

U
E

Fash

103

0.8

0.9

1

logK

E
V

Figure E.21: Rec, UE and EV on the SBD, SUNRGBD and Fash datasets. Similar to the results presented for the BSDS500 and NYUV2
datasets (compare Figures 9 and 10), Rec and UE give a roguh overview of algorithm performance with respect to ground truth. Concerning
Rec, we observe similar performance across the three datasets, while algorithms may show different behavior with respect to UE. Similarly,
EV gives a ground truth independent overview of algorithm performance where algorithms show similar performance across datasets. Best
viewed in color.

W EAMS NC FH RW QS PF TP CIS

SLIC CRS ERS PB DASP SEEDS TPS VC CCS

VCCS CW ERGC MSS preSLIC WP ETPS LSC POISE

SEAW

28

1,000 2,000 3,000 4,000

10−3

10−2

10−1

100

101

K

t

SBD

1,000 2,000 3,000 4,000

10−2

10−1

100

101

K

t

SUNRGBD

1,000 2,000 3,000 4,000

10−2

10−1

100

101

K

t

Fash

Figure E.22: Runtime in seconds t on the SBD, SUNRGBD and Fash datasets. The results allow to get an impression of how runtime of
individual algorithms scales with the size of the image. In particular, we deduce that most algorithm’s runtime scales linear in the input size,
while the number of generated superpixels does have little influence. Best viewed in color.

102.7 103 103.48 103.78

0.05

0.1

0.15

0.2

logK

U
E

102.7 103 103.48 103.78

0.88

0.9

0.92

0.94

0.96

logK

A
S
A

BSDS500

102.7 103 103.48 103.78

50

100

150

logK

U
E

L
e
v
in

102.7 103 103.48 103.78
0.05

0.1

0.15

0.2

logK

U
E

102.7 103 103.48 103.78
0.88

0.9

0.92

0.94

0.96

0.98

K

A
S
A

NYUV2

102.7 103 103.48 103.78
0

2

4

6

8

10

K

U
E

L
e
v
in

Figure E.23: UE, ASA and UELevin on the BSDS500 and NYUV2 datasets. We find that ASA does not provide new insights compared to
UE, as it closely reflects (1−UE) except for a minor absolute offset. UELevin , in contrast, provides a different point view compared to UE.
However, UELevin is harder to interpret and strongly varies across datasets. Best viewed in color.

W EAMS NC FH RW QS PF TP CIS

SLIC CRS ERS PB DASP SEEDS TPS VC CCS

VCCS CW ERGC MSS preSLIC WP ETPS LSC POISE

SEAW

29

Appendix E.2. Quantitative

The following experiments complement the discussion
in Section 7.2 in two regards. First, we present additional
experiments considering both ASA and UELevin on the
BSDS500 and NYUV2 datasets. Then, we consider Rec,
UE and EV in more details for the remaining datasets,
i.e. the SBD, SUNRGBD and Fash datasets. We begin
by discussing ASA and UELevin , also in regard to the
observations made in Sections 5.1 and Appendix C.

As observed on the BSDS500 and NYUV2 datasets in
Section 7.2, Rec and UE can be used to roughly asses su-
perpixel algorithms based on ground truth. However, for
large K, these metrics are not necessarily sufficient to dis-
criminate between the superpixel algorithms. Considering
Figure E.21, in particular with regard to Rec, we can iden-
tify algorithms showing above-average performance such
as ETPS and SEEDS. These algorithms perform well on
all three datasets. Similarly, PF, QS, SEAW and TPS
perform poorly on all three datasets. Regarding UE, in
contrast, top-performer across all three algorithms are not
identified as easily. For example, POISE demonstrates
low UE on the SBD and Fash datasets, while performing
poorly on the SUNRGBD dataset. Similarly, ERS shows
excellent performance on the SUNRGBD dataset, while
being outperformed by POISE as well as ETPS on the
SBD and Fash datasets. Overall, Rec and UE do not nec-
essarily give a consistent view on the performance of the
superpixel algorithms across datasets. This may also be
explained by the ground truth quality as already discussed
in Section 7.2.

The above observations also justify the use of EV to
judge superpixel algorithms independent of ground truth.
Considering Figure E.21, in particular, with regard to EV,
we can observe a more consistent view across the data-
sets. Both, top-performing algorithms such as ETPS and
SEEDS, as well as poorly performing algorithms such as
PF, PB or TPS can easily be identified. In between these
two extremes, superpixel algorithms are easier to discrimi-
nate compared to Rec and UE. Furthermore, some super-
pixel algorithms such as QS, FH or CIS are performing
better compared to Rec or UE. This confirms the obser-
vations that ground truth independent assessment is ben-
eficial but cannot replace Rec or UE.

We find that ASA closely mimicks the behavior of (1−
UE) while UELevin may complement our discussion with an
additional viewpoint which is, however, hard to interpret.
We consider Figure E.23 showing UE, ASA and UELevin

for both the BSDS500 and NYUV2 datasets. Focussing
on UE and ASA, we easily see that ASA nearly reflects
(1 − UE) while being a small constant off. In particu-
lar, all algorithms exhibit nearly the same behavior, while
absolutely the algorithms show higher ASA compared to
(1−UE). This demonstrates that ASA does not give new
insights with respect to the quantitative comparison of
superpixel algorithms. In contrast, the algorithms show
different behavior considering UELevin . This is mainly

due to the unconstrained range of UELevin (compared to
UE ∈ [0, 1]). In particular, for algorithms such as EAMS
and FH, UELevin reflects the behavior of max UE as shown
in Figure 9e. The remaining algorithms lie more closely
together. Still, algorithms such as ERS, SEEDS or PB
show better UELevin than UE (seen relatively to the re-
maining algorithms). In the case of EAMS and FH, high
UELevin may indeed be explained by the considerations of
Neubert and Protzel [35] arguing that UELevin unjustly
penalizes large superpixels. For the remaining algorithms,
the same argument can only be applied in smaller scale
as these algorithms usually do not generate large super-
pixels. In this line of throught, the excellent performance
of ERS may be explained by the employed regularizer for
enforcing uniform superpixel size. Overall, ASA does not
contribute to an insightful discussion, while UELevin may
be considered in addition to UE to complete the picture
of algorithm performance.

Appendix E.3. Runtime

We briefly discuss runtime on the SBD, SUNRGBD
and Fash datasets allowing to get more insights on how
the algorithms scale with respect to image size and the
number of generated superpixels.

We find that the runtime of most algorithms scales
roughly linear in the input size, while the number of gen-
erated superpixels has little influence. We first remember
that the average image size of the SBD, SUNRGBD and
Fash datasets is: 314 × 242 = 75988, 660 × 488 = 322080
and 400× 600 = 240000. For K ≈ 400, W runs in roughly
1.9ms and 7.9ms on the SBD and SUNRGBD datasets,
respectively. As the input size for the SUNRGBD dataset
is roughly 4.24 times larger compared to the SBD data-
set, this results in roughly linear scaling of runtime with
respect to the input size. Similar reasoning can be ap-
plied to most of the remaining algorithms, especially fast
algorithms such as CW, PF, preSLIC, MSS or SLIC.
Except for RW, QS and SEAW we also notice that the
number of generated superpixels does not influence run-
time significantly. Overall, the results confirm the claim
of many authors that algorithms scale linear in the input
size, while the number of generated superpixels has little
influence.

30

