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Abstract

We present a study of spatio-temporal environment representations and ex-
ploration strategies for long-term deployment of mobile robots in real-world,
dynamic environments. We propose a new concept for life-long mobile robot
spatio-temporal exploration that aims at building, updating and maintain-
ing the environment model during the long-term deployment. The addi-
tion of the temporal dimension to the explored space makes the exploration
task a never-ending data-gathering process, which we address by applica-
tion of information-theoretic exploration techniques to world representations
that model the uncertainty of environment states as probabilistic functions
of time. We evaluate the performance of different exploration strategies
and temporal models on real-world data gathered over the course of sev-
eral months. The combination of dynamic environment representations with
information-gain exploration principles allows to create and maintain up-to-
date models of continuously changing environments, enabling efficient and
self-improving long-term operation of mobile robots.

Keywords: mobile robotics, spatio-temporal exploration, long-term
autonomy

1. Introduction

As robots gradually leave the well-structured worlds of factory assembly
lines and enter natural, human-populated environments, new challenges ap-
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pear. One of the first problems is to operate in less structured and more
uncertain environments. This challenge gave birth to the field of probabilis-
tic mapping, which enables the representation of incomplete world knowledge
obtained through noisy sensory measurements [1]. Initially, the environment
models had to be created during a human-guided procedure [2], but later, the
combination of probabilistic mapping and planning methods allowed robots
to create the environment models themselves by means of autonomous ex-
ploration [3]. However, as robots became able to operate autonomously for
longer periods of time, a new challenge appeared – their typical operating
environments are subject to change.

These changes manifest themselves through sensory measurements – ev-
ery perceived change causes the sensory data to disagree with the origi-
nal model obtained during the exploration phase. Although probabilistic
mapping methods can deal with conflicting measurements, their approach
is rooted in the idea that these variations are caused by inherent sensor
noise rather than by structural environment change. Thus, these conflicting
measurements are generally treated as outliers caused by unwanted noise.
Recently, some authors exploited these conflicting measurements in order to
obtain information about the world dynamics and proposed representations
that model the environment dynamics explicitly. These dynamic representa-
tions have shown their potential by improving mobile robot localization in
changing environments [4, 5, 6, 7].

Similarly to traditional robotic mapping, introduction of spatio-temporal
mapping naturally requires novel exploration strategies that allow to build
and maintain spatio-temporal maps during the robot’s deployment. Classic
exploration strategies aim at building a spatial-only model that covers the
robot’s entire operational environment, ignoring the fact the environment
might change after its completion. Unlike the classic exploration approaches,
spatio-temporal exploration is a never-ending task, for several reasons. First,
some areas of the operational environment are not exactly predictable during
certain times, which requires the robot to re-observe those locations at the
times when their state is uncertain. For example, even if we know the general
habits of a certain person, her presence at her workplace is uncertain around
the start and end of office hours, and thus, it makes sense to observe the work-
place during these times. Second, the patterns in the environment dynamics
might change and identification of the new patterns requires re-observation of
the particular area at the right times. For example, the workplace might be
occupied by a new employee with a different working pattern. Additionally,
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the general structure of the environment can change due to reconstruction
or displacement of furniture.

Thus, the robot needs to take repeated observations of locations in its
operational environment over time in order to successfully build and maintain
a spatio-temporal model. This requires the robot to continuously explore the
environment in addition to the other tasks it was designed for. Therefore,
spatio-temporal exploration must become a part of the robot’s daily routine
that has to be carried out along with other tasks that the robot is required
to perform. The ability to build and maintain the aforementioned spatio-
temporal representations allows the mobile robot to better cope with changes
in the environment and to perform its daily duties efficiently. Hence, being
able to build, maintain and reason over such an environment representation
plays a key role in achieving long-term operation without any major human
intervention, i.e., long-term autonomy.

We present an exploration method that integrates sensory data captured
at different times and locations into a dynamic spatio-temporal model and
uses the model to determine where and when to perform future observations,
while being able to cope with the other tasks the robot needs to perform.
We show that the application of information-theoretic planning principles
to environment models that represent uncertainties of environment states in
the frequency domain results in an intelligent exploratory behaviour, which
evolves as the environment knowledge becomes more refined over time. More-
over we evaluate all possible combinations of four different spatio-temporal
models and five planning strategies by their long-term performance, accord-
ing to their ability to provide an accurate environment model over time. To
complete this study we also evaluate the impact of different exploration ver-
sus exploitation ratios on the overall accuracy of the model. The exploration
versus exploitation dilemma means that the robot has to find a balance be-
tween the time spent exploring and the quality of its internal model [38]. The
work presented in this article extends the study presented in [8] by providing
a more detailed description of the spatio-temporal models and exploration
strategies and by introducing a new recency-based short-term model, as well
as a novelty-driven exploration strategy that takes into account the predic-
tions of both the recency- and periodicity-based models.
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2. Related work

In order to explore the environment in an efficient way, the robot not only
has to be able to create a map from its sensory inputs, but also to use the
map to plan its path so that it can reach previously unknown areas of the
environment. Therefore, mobile robot exploration is an iterative process in
which the robot integrates its observations into its world model, interprets
the world model to determine which parts of the environment are unknown,
and plans a path to visit and observe these unknown areas. Therefore, an
efficient exploration system consists of three essential components: mapping,
goal generation and path planning. For the purpose of spatio-temporal ex-
ploration, we have to use mapping methods that allow to represent dynamic
environments and goal generation methods that can determine not only the
position, but also the times of observations – i.e. we have to schedule the
observations in such a way that the robot can perform its other tasks as well.

2.1. Exploration methods

One of the earliest and well-known methods is frontier-based exploration [2,
9, 10]. This approach represents the environment as an occupancy grid,
which is processed to obtain boundaries (frontiers) between the known and
unknown parts of the environment. The robot movement is then planned so
that these frontiers are visited and removed. The advantage of this approach
is its scalability – the frontiers can be distributed among a number of robots
that can explore the environment in a cooperative manner [11]. Even though
these strategies ensure the completeness of the environment model, i.e. they
aim at removing all the frontiers, they do not take into account the model
quality.

Another class of exploration methods is based on the notion of entropy.
These methods generate a set of candidate observations and estimate the
amount of information these are expected to provide [12]. The information
gain is calculated as the reduction in entropy of the world model, which re-
quires a probabilistic representation of the environment states. The lower the
entropy of the environment model, the more it reflects the actual environment
state.

An information-gain-based approach that integrates localization, map-
ping and exploration is presented in [13]. The method uses a particle filter
to build the map of the environment and an entropy estimation method to
plan the next location to be visited by the robot. However, the candidate
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observations are not evaluated simply by their information gain. Rather, the
evaluation takes into account other criteria, such as the time to reach the
respective location [14]. An advantage of these methods is that they not
only attempt to cover the entire environment as quickly as possible, but also
plan re-observations of previously visited locations to increase the quality of
the resulting map [15].

Some exploration strategies aim at building maps of the environment tak-
ing into account some a priori knowledge instead of building it from scratch.
For instance, Oßwald et al. [16] propose a novel exploration strategy that aims
at decreasing the exploration time by assuming that the layout of the envi-
ronment is known, such as graphs automatically obtained from floor plans.
In this method a Travelling Salesman Planner generates a global plan for the
exploration run, while a frontier-based strategy is used to explore the envi-
ronment at each node of the graph. In [17] an exploration strategy capable of
predicting how the unexplored areas may look based on previously mapped
areas is proposed. This strategy combines the knowledge obtained through
previous exploration tasks (in different environments) to predict which ob-
servation points might close the loop with information-driven exploration to
more map the environment more efficiently.

The aforementioned exploration strategies aim at building a map of the
environment in the initial stage of the robot deployment, but fail at maintain-
ing it over time, ignoring the changes in the environment. Thus the model
accuracy will decrease as the environment changes, which would eventually
lead to major localization and navigation failures.

Other strategies could include intrinsic motivation systems, which drive
the robot towards situations that maximize the performance of the learning
process [18, 19]. These strategies are able to actively identify anomalous or
novel situations that might lead to decisions that provide more information
and allows to deal with situations where the information-gain never decreases
due to physical constraints. For example, novelty detection strategies, which
involve the recognition of environmental stimuli that differ from those usually
seen, allow the robot to gradually redirect its attention according to the
evolution of its internal models [20].

2.2. Dynamic environment representations

Once robots have attained the ability to operate for longer periods of time,
the effects of the environment changes have to be taken into account. The
first approaches were aimed at short-term dynamics. These methods identify
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dynamic objects and remove them from the environment representations [21,
22] or use them as moving landmarks [23] for self-localization. However, some
dynamic objects do not move at the time of mapping and, consequently, the
robot needs further observations to identify them. Ambrus et al. [24] propose
to process several 3d point clouds of the same environment obtained over a
period of several weeks to separate movable objects and refine the model of
static environment structure at the same time.

Other approaches do not explicitly segment movable objects, but use
representations that are able to model large-scale, substantial environment
changes over long time periods. Some authors [25, 26] represent the environ-
ment dynamics by multiple temporal models with different timescales, and
Dayoub and Duckett [27] use a ranking scheme that allows to identify envi-
ronmental features that are more likely to be stable in long-term. Churchill
and Newman [4] propose to cluster similar observations at the same spa-
tial locations to form ‘experiences’ which are then associated with a given
place and show that this approach improves autonomous vehicle localization.
Tipaldi et al. [6] represent the states of the environment components (cells of
an occupancy grid) with a hidden Markov model and show that their repre-
sentation also improves localization. In [28], each cell in the occupancy grid
stores not only the probability of it being occupied, but also the likelihood
of the cell to change after a given time. Kucner et al. [29] propose a method
that learns conditional probabilities of neighbouring cells of an occupancy
grid to model typical motion patterns in dynamic environments. Neubert et
al. [7] proposed a method that can learn appearance changes based on a long-
term dataset collected across multiple seasons and use the learned model to
predict the environment appearance for a given time. Another approach that
possesses the ability to predict environment changes is proposed by Rosen
et al. [30], which uses Bayesian-based survivability analysis to predict which
environment features will still be visible after some time and which features
will disappear.

Another family of algorithms aims at creating models of the environment
that allow them to predict where and when to make observations of spe-
cific phenomena within the environment. Typically, these algorithms rely on
Gaussian Processes [31, 32, 33], which allow the robot to learn patterns in
the environment. Even though these approaches are able to build models of
given phenomena, these models are not used by the robot itself to improve
essential competences such as localization.

Finally, Krajńık et al. [34] propose to represent the environment dynamics
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in the spectral domain and apply this approach to image features to improve
localization [5], to occupancy grids to reduce memory requirements [35],
and to topological maps to improve both path planning [36] and robotic
search [37]. While being applicable to most environment models used in
mobile robotics, the aforementioned method suffers from a major drawback
due to its reliance on the traditional Fast Fourier Transform (FFT) method,
which requires the environment observations to be taken on a regular and
frequent basis. This means that the robot’s activity has to be divided into a
learning phase, when it would frequently visit individual locations to build
its dynamic environment model, and a deployment phase when it would use
its model to perform useful tasks. This division means that while the robot
can create dynamic models, which are more suitable for long-term auton-
omy, it cannot maintain them during subsequent operation. Thus, the robot
does not adapt to dynamics that were not present during the learning phase.
This fundamental limitation is addressed by the incremental update scheme
introduced in this paper.

2.3. Exploration vs Exploitation

The long-term deployment of mobile robots in human-populated envi-
ronments must take into account the need to balance exploitation of what
the robot already knows and exploration to select better actions in the fu-
ture [38]. This issue is addressed in [39], which describes the deployment
of a mobile robot in a care centre. Several tasks need to be performed by
the robot but there is one that directly addresses the exploration/exploita-
tion dilemma. Here, the mobile robot has to act as an information terminal
providing information services to visitors. This task is scheduled at different
locations in order to increase the number of interactions. However, the sched-
uler must address two different objectives: exploration and exploitation. The
first one creates and maintains a spatio-temporal model of the interactions,
providing interaction likelihoods for the different locations and times. The
second one aims at visiting the different locations at times where the likeli-
hood of observing interactions is uncertain. Based on the above work, Kulich
et al. [40] developed several policies to schedule actions that allow to increase
exploitation, or more specifically to increase the number of interactions with
humans. In order to increase the interactions, the robot needs to learn human
behaviours, more specifically where and when it is more likely for a human
to ask for assistance. However, this needs to be achieved in parallel with the
human interactions as well as the other daily tasks.
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3. Spatio-temporal exploration

The primary purpose of robotic exploration is to automously acquire a
complete and precise model of the robot’s operational environment. To ex-
plore efficiently, the robot has to direct its attention to environment areas
that are currently unknown. If the world was static, these areas would simply
correspond to previously unvisited locations. In the case of dynamic envi-
ronments, visiting all locations only once is not enough, because they may
change over time. Thus, dynamic exploration requires that the environment
locations are revisited and their re-observations are used to update a dy-
namic environment model. However, revisiting the individual locations with
the same frequency and on a regular basis is not efficient because the envi-
ronment dynamics will, in general, not be homegeneous (i.e. certain areas
change more often and the changes occur only at certain times). Similarly
to the static environment exploration problem, the robot should revisit only
the areas whose states are unknown at the time of the planned visits. Thus,
the robot has to use its environment model to predict the uncertainty of the
individual locations over time and use these predictions to plan observations
that improve its knowledge about the world’s dynamics.

To tackle the problem of predicting environment uncertainty over time,
we propose to model the probabilities and entropies of the environment states
as functions of time. While the main idea is still that some of the environ-
ment’s mid- to long-term dynamics are periodic [34], the underlying math-
ematical representation had to be reformulated. Unlike the method in [34]
that requires frequent and regular environment observations, the method
proposed in this paper allows to incrementally and continuously update the
spatio-temporal model from sparse observations taken at different locations
and times. This eliminates the need for a separate training and deployment
phase, and allows integration of spatio-temporal exploration into the robot’s
daily routine. Thus, the robot can continuously refine its internal environ-
ment model and improve its efficiency from the experience gathered over long
periods of time.

3.1. Problem definition

Let us represent the environment as a set S of n discrete non-stationary
independent binary states si(t) that are observable by a mobile robot through
its sensors. The states si(t) might represent the occupancy of individual cells
in an occupancy grid, the traversability of edges in a topological map, the
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visibility of environmental features, etc. Since these states are dynamic and
the robot cannot observe all the states all the time, it maintains an internal
environment model that we denote as a set S ′, where each element s′i(t) cor-
responds to the real-world state si(t). To represent the fact that the currently
unobserved states are uncertain, we associate each state with a probability
value pi(t) such that pi(t) = P (si(t) = 1). We refer to the probability func-
tion pi(t) and the way it is calculated from the past observations of si(t) as
a temporal model.

Let us define a location as a set of environment states that can be ob-
served simultaneously, i.e. a location Lj is a subset of S such that by visiting
location Lj at time t, observations of the states that belong to Lj are ob-
tained. Given that the robot location at time t is l(t), the robot can directly
observe only the states si of location Ll(t) and states observable at other
locations have to be estimated. Thus, the states of the robot’s internal envi-
ronment model are

s′i(t) =
si(t) if si ∈ Ll(t)
pi(t) ≥ 0.5 otherwise.

(1)

The purpose of the exploration process is to obtain and maintain as faithful
an environment model as possible, i.e. to minimize the difference between
the states of the real environment S and its model S ′. Technically, this cor-
responds to minimization of the model error ε(T ) calculated as the difference
between the real and estimated states over the time period [0, T ) as

ε(T ) =
1

T

T−1∑
t=0

n∑
i=1

|s′i(t)− si(t)|. (2)

Although the reduction of the error ε(T ) can be partially achieved by visiting
the relevant locations as often as possible, the robot has to perform other
tasks and the number of observations is typically limited. Thus, the robot
has to carefully plan where and when to perform observations so that it
obtains the relevant data to create, maintain and refine its spatio-temporal
models of the environment. From a technical point of view, the robot has to
use its internal temporal models pi(t) to determine a sequence of locations
l(t). We refer to the way the robot plans the sequence of l(t) from the pi(t)
as its exploration strategy.
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4. Spatio-Temporal models

The underlying spatial environment representations that we will use to
test our approach are occupancy grids, topological and feature-based maps.
The elementary states of these models represent the occupancy of individual
cells, the presence of people at the particular areas and the visibility of image
features. Unlike classic environment models that represent the probabilities
of the elementary states s(t) by constant values p, we represent the proba-
bility of each elementary state as a function of time p(t). In particular, we
model each p(t) as a combination of harmonic functions that correspond to
hidden periodic processes in the environment.

4.1. Spectral maps

The idea of identifying periodic patterns in the measured states and using
them for future predictions was originally presented in [34]. These methods
process the sequence of the measured state s(t) by the Fast Fourier Transform
(FFT) to obtain the corresponding frequency spectrum s(ω) and extract its
most prominent spectral components s′(ω). Then, they employ the Inverse
Fast Fourier Transform (IFFT) to recover the sequence of state probabilities
p(t), which can be used for anomaly detection [34] or state prediction [5].
However, the reliance of these methods on the Fast Fourier Transform (FFT)
algorithm makes their real-world application impractical. First, the FFT
can transform only the complete sequence of a state s(t) or its full spectral
representation s(ω). Thus, updating the spectral representation with new
measurements or prediction of a single probability requires to recalculate the
entire sequence of observations, which becomes computationally expensive as
the observations accumulate. Most importantly, the FFT algorithm requires
that the environment observations are sampled at regular intervals, which
imposes an inefficient exploration scheme and goes against the concept of
spatio-temporal exploration that aims at deciding when and where to observe
the environment in a non-regular way.

4.1.1. Frequency map enhancement (FreMEn)

Similarly to the aforementioned spectral representation [34], our method
still aims to identify the periodic patterns of the environment states and use
them for predictions. Unlike the previous representation in [34], the method
proposed here allows to update the underlying dynamic models incrementally
from sparse, irregular observations. The proposed method represents each
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state by the number of performed measurements n, its mean probability µ,
and two sets A, B of complex numbers αk and βk that correspond to the
set Ω of periodicities ωk that might be present in the modelled environment.
The set Ω was chosen to cover periodicities ranging from 4 weeks to 2 hours
with distribution similar to the traditional FFT, i.e. ωk = 2π k

4×7×24×3600 , where
k ∈ {1, 2, . . . 4×7×12}. Initially, the mean value µ is set to 0.5 and all αk,βk
are set to 0, which corresponds to a completely unknown state.

4.1.2. Addition of a new measurement

Each time a state s(t) is observed at time t, we update its representation,
i.e. the number of measurements n, the mean µ and values of A, B, which
are actually a sparse spectral representation of s(t), as follows:

µ ← 1
n+1

(nµ+ s(t) ),

αk ← 1
n+1

(nαk + s(t)e−jtωk ) ∀ωk ∈ Ω,

βk ← 1
n+1

(nβk + µe−jtωk ) ∀ωk ∈ Ω,

n ← n+ 1.

(3)

The proposed update step is analogous to incremental averaging – the ab-
solute values of |αk − βk| correspond to the average influence of a periodic
process (with a frequency of ωk) on the values of s(t). Note that the size
of the representation of the state (i.e. the number of elements in A, B) is
independent of the number of observations, which means that the memory
requirements of the proposed representation do not grow with time. Note
also that if the times of observations t are equally spaced and the frequencies
ωk are selected as described in Section 4.1.1, then (3) corresponds closely to
the traditional Discrete Fourier Transform.

4.1.3. Performing predictions

To predict the value of state s(t) for a future time t, we first create a
set C consisting of γk = αk − βk and then sort it descendingly according to
the absolute values |γk|. Then, we extract the first m elements γl along with
their corresponding frequencies ωl and calculate the state’s probability over
time as

p(t) = ς(µ+
m∑
l=1

2|γl|cos(ωlt+ arg(γl))), (4)

where ς(.) ensures that p(t) ∈ [0, 1]. The choice of m determines how many
periodic processes are considered for prediction. Setting m too low would
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mean that we might omit some environment processes that actually influ-
ence the state, while setting m too high might include components of C that
are caused by sensor noise. To estimate the optimal value of m, we compare
the predictions performed by (4) to the measured values by means of (2),
and select the value of m that minimizes the prediction error ε. This choice
of m is performed automatically during the robot operation – initially, m
equals 0 and is increased only after the robot obtains enough data to ver-
ify the prediction accuracy of its spatio-temporal models. Since the most
prominent periodicities in human-populated environments are related to the
day/night cycle, the value of m typically equals to zero for the first two days
of exploration, because inferring a day-long periodicity requires two days of
data gathering – one day to build the model and one day to verify it.

One of the main advantages of the proposed representation is that the
state is modelled probabilistically. This allows to calculate the time intervals
when the particular states are uncertain, which is crucial to direct the robot’s
attention during exploration.

4.2. Short-term memory

We propose to model the short-term dynamics using a similar model
to [28]. This model is based on a Markov chain and aims not only at repre-
senting the environment states but also how likely they are to change given
the last observed state and the time it was observed. Assuming that each
measured state s can be occupied or free, the goal of this method is to esti-
mate the conditional probabilities that represent the transition from one state
to another, which are p(s = 0|s = 1) and p(s = 1|s = 0). These probabilities
are estimated by means of a Poisson process, i.e., these probabilities can be
approximated by the ratio between the number of state changes observed
and the total number of observations. However, as described in Section 3,
due to the nature of spatio-temporal exploration the observations of states
are not performed uniformly in time, and consequently the discrete Markov
chain described in [28] as well as the estimation of the aforementioned prob-
abilities do not apply in our case. Thus, we propose a continuous Markov
chain to model the recency of the environment states, as shown in Figure 1.
In this case, the transition rates between the states 0 and 1, α and β, are
inversely proportional to the average time that an observed state remains at
0 or 1. From the Markov chain shown in Figure 1, we infer the equations
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Figure 1: The underlying Markov chain in the short-term memory model.

ṗ0(t) = −α p0(t) + β p1(t),

ṗ1(t) = −β p1(t) + α p0(t).
(5)

Since we only have two states for any time t, we have p0(t)+p1(t) = 1. Thus,
by differentiating and substituting the previous set of equations we obtain
Equation 6, which allows us to predict the probability of the state s(t) for a
given future time t, where T is the time of the most recent observation.

p(t) =
α

α + β
+ (p(T )− α

α + β
)e−(α+β)(t−T ). (6)

4.3. Alternative temporal models

The most popular way to deal with the uncertainty of the environment
is based on Bayesian filtering, which updates the state estimates based on
the sensor noise characteristics. The typical measurement rate of the robot
sensors exceeds the mid- to long-term environment dynamics, therefore the
Bayesian update scheme causes the probabilities of the observed states to
quickly converge towards the latest observed values. Typically, the tradi-
tional environment representations tend to reflect the latest state measure-
ments, discarding older measurements. However, for long-term deployment
it is sensible to use representations that somehow reflect the prior environ-
ment states since the initial deployment stage. To strengthen our study, we
describe in this section two additional environment representations that take
into account all the previous observations, a long-term memory model and
Gaussian Mixture Models (GMM).
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4.3.1. Long-term memory

A way to reflect the uncertainty of the observed states in the long-term
is to implement a long-term memory (LM). The model that we propose
works as a memory that takes into account all the observations and calculates
the probability of a given state simply as the arithmetic mean of all its past
observations.

4.3.2. Gaussian Mixture Models

Gaussian Mixture Models that can approximate multi-dimensional func-
tions as a weighted sum of Gaussian component densities are a well-established
method of function approximation. A Gaussian Mixture Model of a function
f(t) is a weighted sum of m Gaussian functions:

f(t) =
1√
2π

m∑
j=1

wj
σj
e
−

(t−µj)
2

2σ2
j . (7)

GMMs find their applications in numerous fields ranging from botany to psy-
chology [41]. The parameters of individual components of GMMs, i.e. the
weights wk, means µj and variances σj are typically estimated from train-
ing data using the iterative Expectation Maximization (EM) or Maximum
A-Posteriori (MAP) algorithms. While GMMs can model arbitrarily-shaped
functions, their limitation rests in the fact that they cannot naturally repre-
sent functions that are periodic.

To deal with this issue, we simply assume that people perform most of
their activities on a daily basis and thus we consider the object presence in
individual areas as being the same for every day. While this assumption is not
entirely correct (as working days will typically be different from weekends),
such a temporal model might still be better than a ‘static’ model where the
probability of object presence is a constant.

Prior knowledge of the periodicity allows to transform the measured se-
quence of states s(t) into a sequence p′(t) by

p′(t) =
k

τ

k/τ∑
i=1

s(t+ iτ), (8)

where τ is the assumed period and k is the s(t) sequence length. After cal-
culating p′(t), we employ the Expectation Maximization algorithm to find
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the means µj, variances σj and weights wj of its Gaussian Mixture approx-
imation. Thus, the probability of occupancy of a room at time t is given
by

p(t) =
1√
2π

m∑
j=1

wj
σj
e
−

(mod(t,τ)−µj)
2

2σ2
j , (9)

where τ is the a priori known period of the function p(t) and mod is a modulo
operator. The periodic-GMM-based (PerGaM) model is complementary to
the FFT-based one. It can approximate even short, multiple events, but it
can represent only one period (τ) that has to be known a priori. Since the
dominating periodicity of human populated environments is 1 day, we chose
τ = 86400s.

5. Exploration strategies

As noted in Section 3.1, an exploration strategy is defined as a process
that determines both which locations to visit and when to visit them. One
has to assume that a real mobile robot has to perform other tasks as well
and can spend only a fraction of the total time on actual exploration. We
refer to this fraction as the exploration ratio e, e.g. e = 0.2 means that the
robot can spend 20% of its operational time on exploration.

Thus, given an exploration ratio e and a set T of time intervals [ts, ts+1),
the exploration algorithm has to determine a sequence l(ts) of locations to
visit. To represent situations where the time slot [ts, ts+1) is allocated to an
unrelated activity, the value of l(ts) is set to zero, whereas a non-zero value
of l(ts) signifies the location to be observed during [ts, ts+1).

5.1. Information-gain strategies

The information-gain strategies take into account the experiences the
robot has gathered so far to plan when and which location to visit. These
strategies attempt to reduce the uncertainty of the environment models by
planning the observations that maximize the potential information gain. To
estimate how much information is gained by a particular observation, we will
use the notion of entropy. We assume that direct observation of particular
states at a given time reduces the entropy of these states to zero. Thus, the
information gained by a particular observation can be estimated as the sum
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of the entropies of the states observed at a given location as

I(L, t) = −
∑
i∈L

(pi(t)ln(pi(t)) + (1− pi(t))ln(1− pi(t))). (10)

The Greedy strategy calculates the potential information gains for all given
time slots and locations, then assigns the best location to visit at each time
slot. Then, it selects a subset T ′ of time slots with the highest information
gain such that e = |T ′|/|T |. The remaining time slots are assigned to other
tasks. Thus, this strategy maximizes the potential information gain obtained
over the time slots in the set T .

The Monte Carlo strategy chooses the locations randomly, but the prob-
ability of selecting a given location at a given time is proportional to the
estimated information gain. At first, it estimates the I(l, ts) for all given
time slots and locations and sums these values to I ′. Then, it calculates the
value of I(0, ts) = I ′(1 − e)/(ne). Finally, it calculates the probabilities of
each l(ts) as

P (l(ts) = j) =
I(j, ts) + ι∑
i∈L I(i, ts) + ι

. (11)

Here, the value of I(0, ts) does not represent actual information gain, but is
added to ensure that the exploration ratio e is satisfied by ensuring sufficient
chance of assigning the time slots to exploration-unrelated tasks. The pos-
itive constant ι ensures that the locations will be occasionally visited even
at times when the spatio-temporal model predicts their state with absolute
certainty. This allows the robot to detect unexpected changes in the envi-
ronment dynamics.

The Novelty-driven strategy follows the same principle as the Monte
Carlo one. However, unlike the Monte-Carlo strategy, which strictly follows
a schedule determined by Equation 11, the novelty-driven strategy uses a
combination of temporal models to identify situations where a change in the
Monte-Carlo schedule would result in a high amount of information obtained.
To identify such situations, the novelty-driven strategy predicts the amount
of information obtainable in the following time slot by:

I(t) = −pexpc(t)ln(pinfo(t))− (1− pexpc(t))ln(1− pinfo(t)), (12)

where piexpc(t) is calculated by the short-term memory model (see Section 4.2)
and serves as a measure of expectation, whereas piinfo is provided by another
model and represents the amount of information expected. If I ′(L, t) >>
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I(L, t), i.e. the amount of information predicted by Equation 12 is signif-
icantly higher than the value calculated by Equation 10, then the location
to visit in the following time-slot is changed accordingly. Thus, if the ob-
served states at a recently visited location did not match their predictions,
the robot re-observes the location again to obtain more information about
this unexpected event.

5.2. Uninformed strategies

For comparison purposes, we include strategies which select the places
to visit regardless of the environment dynamics. These strategies calculate
the sequence of visits l(ts) simply from the values of the ratio e, number of
locations n and number of time slots m.

The Round-Robin strategy visits all areas of the environment with the
same frequency, interleaving the observations with other tasks so that the
exploration ratio e is satisfied.

The Random strategy also attempts to visit all areas with the same
frequency, but the sequence of l(ts) is not deterministic, but random. The
probability of a given slot being assigned to a non-exploration task is equal
to 1 − e and the probability of visiting the individual locations is uniform
and equal to e/n.

6. Evaluation datasets

To evaluate the ability of the various temporal models and exploration
strategies, we performed a comparison on two datasets gathered over sev-
eral weeks. The first, ‘Aruba’ dataset was gathered by a team of the Center
for Advanced Studies in Adaptive Systems (CASAS) to support their re-
search concerning smart environments [42]. The second, ‘Brayford’ dataset
was created at the Lincoln Centre for Autonomous System Research (LCAS)
for their research on long-term mobile robot autonomy [5]. The aforemen-
tioned datasets were processed so that the dynamics of these environments
are represented as visual-feature-based, topological and metric maps.

6.1. The Aruba dataset

The ‘Aruba’ dataset consists of maps capturing 16 week long dynamics
of a large apartment that was occupied by a single, house-bound person
who occasionally received visitors. An occupancy grid and a topological
map were created for every minute of a 16 week long period – the resulting
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dataset contains over 160 000 metric and topological maps. Since the original
dataset [42] is simply a year-long collection of measurements from 50 different
sensors spread over an eight-room apartment, these maps had to be created
by means of simulation.

First, we processed the events from the original dataset’s motion detec-
tors to establish the location of people in the flat for every minute of the
16 weeks. Then, we partitioned the flat into ten different areas, where eight
areas represent the rooms and two correspond to corridors. This allowed us
to create a topological map that indicates the presence of people in these
locations. To obtain the metric representation, we created a simulated envi-

Figure 2: Aruba environment simulation.

ronment with the same structure as the ‘CASAS’ apartment, see Figure 2.
Then the simulation was provided with a sequence of person locations recov-
ered in the previous step. As a result, the simulated environment contains
physical models of people at locations provided by the real-world dataset,
and thus it reflects the dynamics of the real apartment. A virtual, RGB-D
camera equipped robot was also introduced into the virtual environment.
Every time the configuration of the simulated environment (i.e. locations
of the people) changed, the robot used its 3D sensors to create occupancy
grids of the flat’s individual rooms. Thus, we obtained occupancy grids that
reflect the real environment dynamics minute-by-minute for 16 weeks.
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6.2. The Brayford dataset

The Brayford dataset was originally collected for the purpose of bench-
marking long-term mobile robot localization algorithms in dynamic envi-
ronments [5]. The data collection was performed by a human-sized robot
equipped with an RGB-D camera in a large, open-space office of the Lincoln
Centre for Autonomous Systems. The robot was set up to obtain RGB-D
images of eight designated areas every 10 minutes for a period of one week.
Representative examples of the captured images are shown in Figure 3. While

Figure 3: Examples of Brayford dataset images.

the high-level environment model of this dataset contains information about
people presence at the individual locations, the states of the low-level model
represent the visibilities of image features [43] established by the method pre-
sented in our earlier work on visual localisation in changing environments [5].
The resulting dataset contains more than 8000 feature-based and 8000 se-
mantic maps collected over a period of one week.

6.3. Dataset summary

Both datasets contain a high-level model representing people presence at
different locations and a low-level model based on RGB-D sensing. In the
following sections, we will refer to these models as ‘symbolic’ and ‘metric’,
respectively. The aforementioned datasets are available as a part of the long-
term dataset collection [44].

7. Experimental results

We assume that the aforementioned datasets reflect the real state of the
environments they have been captured in and thus we use the sequence of the
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observations in the datasets as ground truth. To evaluate how the various
temporal models and exploration strategies affect the robot’s ability to create
and update its internal environment models, we emulate the exploration
process using the datasets gathered. We assume that exploration can be
performed during only half of the robot’s operational time (i.e. e = 0.5)
and that a single observation takes 10 minutes. While 10 minutes might
seem like a long time, creation of a 3D occupancy grid of a given location
means that the robot has to position itself precisely, and capture and process
approximately 50 RGB-D images from different viewpoints. This time also
includes navigation to the given spot, leaving the charging station, etc.

This exploration procedure corresponds to the situation when the robot
updates its spatio-temporal model and generates a new observation schedule
every 24 hours at midnight. The robot starts with an empty environment
model that has all probabilities constant and equal to 0.5.

First, the entropy functions of the individual locations are calculated
and 72 observations for the following day are scheduled. Then, these 72
observations are retrieved from the given dataset and the temporal models of
the environment states are updated. The updated temporal models are used
to recalculate the spatio-temporal entropy and the next day’s observation
schedule is then generated. These steps are repeated for every day of the
given dataset.

7.1. Evaluating environment model error

To compare the performance of the temporal models and exploration
strategies described in Sections 4 and 5, the resulting world model is com-
pared to the actual dataset using Equation 2, which estimates the error in
the environment model. Since there are 4 temporal models and 5 exploration
strategies, each comparison considers 20 values that characterize the ratio of
incorrectly estimated states to the total number of environment states. One
dataset evaluation consist of two comparisons, each corresponding to the
given environment representation.

The results of the ‘Aruba’ dataset summarized in Table 1 show that the
combination of FreMEn with the novelty-driven or Monte-Carlo strategies
reduces the model error by more than 40%. Nevertheless, the combination
of FreMEn and the novelty-driven strategy performs slightly better than
the combination of the same model with the Monte-Carlo one. One may
think that the greedy strategy would be the best performer since it always
chooses the room with higher entropy, but in most situations this strategy
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Table 1: Aruba dataset results: Model errors for different exploration strategies and
spatio-temporal models [%]

Spatio-Temporal model
Symbolic Metric

Strategy SM LM FT GM SM LM FT GM

Round Robin 09.3 09.7 06.5 07.5 08.9 09.3 05.6 05.8
Random 08.9 09.5 09.2 07.5 08.7 09.0 08.3 07.2
Greedy 08.5 08.7 07.0 09.4 07.7 10.9 06.2 07.1
Monte-Carlo 08.5 08.9 05.8 06.4 08.0 08.3 05.0 05.7
Novelty-driven 08.5 08.9 05.7 06.1 08.0 08.4 04.9 05.4

fails to maintain an up-to-date model. For example, in the case of noisy and
unpredictable signals in a given room, the robot will attempt to focus its
attention mainly in that room. While this is a logical behaviour – not being
able to model the location, the robot will gather the data about it through
direct observation, it might not be really desirable, because the robot might
not be getting valuable data at all. Also, this behaviour would mean that
the robot would not observe the remaining rooms, since the entropy of the
current room is higher due to the higher uncertainties.

Figure 4 shows that the FreMEn model error is lower during the first day,
showing that this strategy allows quicker identification of the environment
patterns. Since more than 99% of the cells in the ‘Aruba’ occupancy grids
represent empty space or static objects, the model error (Equation 2) is
calculated for the cells that change their occupancy at least once.

Table 2: Brayford dataset results: Model errors for different exploration strategies and
spatio-temporal models [%]

Spatio-Temporal model
People Presence Visual Features

Strategy SM LM FT GM SM LM FT GM

Round Robin 23.7 23.7 16.3 20.2 25.7 27.0 12.7 17.9
Random 23.7 23.8 23.0 23.8 25.9 27.0 25.2 20.3
Greedy 20.2 22.3 19.2 20.1 29.9 29.3 24.4 18.6
Monte-Carlo 23.5 23.5 16.4 19.3 25.6 27.0 12.3 16.9
Novelty-driven 23.4 23.5 15.2 19.4 25.6 27.0 12.1 17.1
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Figure 4: Comparison of the average error of the novelty-driven and Monte Carlo explo-
ration strategies. The remaining models are not displayed due to their similar performance.

The model errors of the ‘Brayford’ dataset as shown in Table 2 again indi-
cate that the most faithful environment representation is based on frequency-
enhanced temporal models (see Section 4.1.1) in combination with the novelty-
driven strategy. The improvement is more prominent in the case of people
presence models. The reason for this might be that the visibility of image
features tends to follow regular patterns given by the daily illumination cy-
cle, whereas the presence of people can be influenced by unexpected events.
Note that the model errors of the feature-based maps are higher that the
ones reported in [8] because we used a higher number of visual features in
our model.

Figure 4 shows that initially, the GMM model achieves the lowest error,
but in the long-term, it is outperformed by FreMEn. This is caused by the
fact that the GMM model is tailored to represent daily periodicities, while
the FreMEn model has to identify the patterns of changes from the data by
itself. After several days, FreMEn identifies several important periodicities
(not only the daily one) and its prediction capability improves, allowing it
to better schedule observations and decrease the model error. Figure 4 also
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shows that the novelty-driven strategy performs slightly, but consistently
better than the Monte-Carlo one. In the experiments performed, we observe
that the novelty-driven strategy identifies one or two unexpected observations
per day.

7.2. Exploration vs. Exploitation

In the above experiments, the robot’s exploration ratio e was set to 0.5.
Thus, the robot could spend 50% of its time gathering data about its op-
erational environment. However, such a ratio is unrealistic – the robot has
to spend some time replenishing its batteries and we have to assume that it
should perform other tasks as well depending on the application. Moreover,
we have to assume that the purpose of the robot is not in creating precise
environment models, but to perform useful tasks. Thus, exploration is just
an instrument to obtain and maintain knowledge to improve the robot’s per-
formance. If the robot spends too much time on exploration, it would not
be able to exploit the obtained knowledge in its everyday activities.

We evaluate the efficiency of the individual exploration strategies with dif-
ferent exploration ratios for predicting person presence on the Aruba dataset.
We combine the Frequency Map Enhancement models with four different ex-
ploration strategies, fix the exploration ratio to a value between 0 and 1,
and let the robot explore the Aruba environment for two consecutive weeks.
The resulting error of the model obtained is shown in Figure 5. The results
indicate that if the fraction of the time that the robot can spend on actual ex-
ploration is low, the dynamic models might make wrong assumptions about
the environment changes and perform worse than their static counterparts
– this is especially notable with the Greedy and Round Robin strategies.
However, this effect can be mitigated by a proper exploration strategy – the
graph shows that both Monte Carlo and novelty-based strategies improve the
model even if the robot cannot spend too much time on exploration.

Note that the initial model error is 10% – this is caused by the fact that
the Aruba dataset represents the presence of people in 10 different areas and
the flat has only one inhabitant. Without any observations, the robot simply
assumes that the flat is empty, which results in 10% error.

7.3. Qualitative evaluation

To gain an insight into the robot’s exploratory behaviour, we interpret the
data gathered during the exploration of the ‘Aruba’ topological map. Here,
the robot’s task was to create a spatio-temporal model of person presence in
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Figure 5: Exploration vs. exploitation analysis: The influence of the fraction of time spend
with exploration on the performance of the exploration strategies.

the individual rooms of a small apartment. For the purpose of this explana-
tion, let us focus on the dynamics of three rooms only – the bedroom, the
kitchen and a storage room. Let the robot use the best-performing explo-
ration method that combines the FreMEn temporal models and the Monte
Carlo exploration strategy. Applying the proposed spatio-temporal explo-
ration method to this dataset produced the behaviour in Figure 6. The top
part of Figure 6 shows the real state of the environment, where the three bi-
nary functions si(t) represent the room’s occupancies over time. The second
part shows the robot’s internal model of the environment, i.e. the proba-
bilities pi(t). The third graph displays the information that is expected to
be obtained by visiting these three locations at a given time. Finally, the
bottom graph shows which locations have been visited at a particular time –
we assume that the exploration ratio e = 0.5, which reflects the situation
where the robot has to spend half of its time on its charging station. Now let
us explain how the robot’s understanding of the environment changes over
time and how this affects its exploratory behaviour day by day.

7.3.1. Day one

Initially, the robot has no knowledge of the environment and therefore the
probabilities pi(t) of the world states s(t) are equal to 0.5. This means that
the expected information gain from visiting any of the rooms equals 1 bit at
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Figure 6: Spatio-temporal exploration behaviour: The robot uses its probabilistic world
model (second row) and spatio-temporal entropy estimates (third row) to schedule its ob-
servations (bottom graph) and learn the environment dynamics (top). As the environment
knowledge improves over time, the scheduled observations provide more information which
allows for further refinement of the environment model.

any time of the first day. Thus, the robot has no room or time preference
when scheduling the first day’s observations.

7.3.2. Day two

After performing the first day’s observations, the environment models
provide enough evidence that the three rooms are not occupied with the
same probability. This is reflected in the second day’s environment model –
see the probability functions pi(t) of the second day in Figure 6. Thus the
robot expects to gain more information by visiting the bedroom and kitchen
than by going to the storage room. This is reflected in the second day’s
observation schedule – the last row of Figure 6 shows that the first two
rooms are visited more often.

7.3.3. Day three

The additional observations obtained during the second day provide in-
formation about the rooms’ dynamics: the robot assumes that the bedroom
has a daily periodicity and that the kitchen is visited five times per day. This
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causes the expected information gain to be time-dependent – the third day
of the third row of Figure 6 shows that evening and morning observations of
the bedroom provide more information than in the afternoon. This fact is
rather intuitive: visiting the room at the time of its state transition allows
to refine the room’s state periodicity. Thus, on the third day, the bedroom
is visited mostly in the evening and morning, while the afternoon visits are
scheduled to the kitchen.

7.3.4. Days four and five

Based on the data gathered during the third day, the robot modifies its
hypothesis about the periodicity of activities in the kitchen and assumes that
it is visited three times per day. During the following days, the robot tends
to visit the kitchen and bedroom more often, and checks the storage room
only occasionally. While the kitchen is visited mostly in the early afternoon,
the bedroom is visited late evenings and mornings, which allows to refine the
robot’s model of the person’s daily habits.

This example indicates that the combination of a probabilistic temporal
model with an information-based strategy not only allows the robot to obtain
knowledge about the environment dynamics, but the observations are sched-
uled in a seemingly logical way: at first, all the locations are visited often
and with the same frequency. As the spatio-temporal environment model
becomes more refined, the robot tends to visit particular locations only at
times when their states are uncertain.

8. Conclusion

In this paper, we presented a method for life-long spatio-temporal ex-
ploration of dynamic environments. We assume that the robot’s operational
environment is subject to perpetual change, which requires a method that can
model and predict these variations. The purpose of spatio-temporal explo-
ration is not only to obtain the environment structure and keep it up-to-date
with any changes, but also to allow the robot to observe and understand the
world dynamics.

We hypothetise that the problem of spatio-temporal exploration can be
tackled by combining information-gain-based exploration strategies with prob-
abilistic dynamic environment models. To verify our approach, we compare
the performance of five exploration strategies and four temporal models on
real-world data gathered over the course of several months. We show that the
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combination of spectral-based temporal models with information-gain-based
novelty-driven strategies results in an intelligent exploration behaviour that
improves as the environment knowledge becomes more refined.

Analysis of the robot behaviour shows that when introduced to a new
environment, the robot prefers to explore unknown locations. After it has
obtained the spatial models, it starts to revisit these locations in order to
learn about their dynamics. Finally, the learned dynamics allow the robot
to schedule which locations to visit at which times and adapt this schedule
in thr case of unexpected observations.

The evaluations performed in this paper involved several assumptions to
simplify the problem. The first assumption was that the time the robot
spends moving to a particular location is negligible compared to the time it
takes to make an observation. The second assumption was that the locations
of observations were predefined and that the robot could position itself with
perfect accuracy. The third assumption is that the observations are error-
free, i.e. there is no noise on the sensory data. While these assumptions were
needed for validation purposes in this work due to the known difficulties of
ground-truthing when comparing exploration strategies, more recent work
has overcome these limitations and achieved full 4D metric-based spatio-
temporal exploration [45].

The analysis presented here opens several questions for further investi-
gation, which we would like to address in the future. In particular, we will
investigate not only the impact of exploration on the quality of the spatio-
temporal models, but its impact on the efficiency of the robot operation
over time. We will investigate how much time the robot should spend on
exploration (represented by ‘exploration ratio’ e) during the initial stages of
deployment, when the environment model is created, and what is the optimal
e later on, when the model is just maintained or when the model needs to be
re-built due to changes in the environment dynamics. We will also investi-
gate which situations in our datasets influenced the novelty-driven strategy,
so that it performed better than the Monte-Carlo strategy.
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