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Abstract

Semantic image segmentation is an essential compo-
nent of modern autonomous driving systems, as an accu-
rate understanding of the surrounding scene is crucial to
navigation and action planning. Current state-of-the-art
approaches in semantic image segmentation rely on pre-
trained networks that were initially developed for classify-
ing images as a whole. While these networks exhibit out-
standing recognition performance (i.e., what is visible?),
they lack localization accuracy (i.e., where precisely is
something located?). Therefore, additional processing steps
have to be performed in order to obtain pixel-accurate seg-
mentation masks at the full image resolution. To allevi-
ate this problem we propose a novel ResNet-like architec-
ture that exhibits strong localization and recognition per-
formance. We combine multi-scale context with pixel-level
accuracy by using two processing streams within our net-
work: One stream carries information at the full image res-
olution, enabling precise adherence to segment boundaries.
The other stream undergoes a sequence of pooling oper-
ations to obtain robust features for recognition. The two
streams are coupled at the full image resolution using resid-
uals. Without additional processing steps and without pre-
training, our approach achieves an intersection-over-union
score of 71.8% on the Cityscapes dataset.

1. Introduction

Recent years have seen an increasing interest in self driv-
ing cars and in driver assistance systems. A crucial aspect
of autonomous driving is to acquire a comprehensive under-
standing of the surroundings in which a car is moving. Se-
mantic image segmentation [49, 38, 21, 53, 33], the task of
assigning a set of predefined class labels to image pixels, is
an important tool for modeling the complex relationships of
the semantic entities usually found in street scenes, such as
cars, pedestrians, road, or sidewalks. In automotive scenar-
ios it is used in various ways, e.g. as a pre-processing step to
discard image regions that are unlikely to contain objects of
interest [42, 15], to improve object detection [4, 23, 24, 58],
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Figure 1. Example output and the abstract structure of our full-
resolution residual network. The network has two processing
streams. The residual stream (blue) stays at the full image reso-
lution, the pooling stream (red) undergoes a sequence of pooling
and unpooling operations. The two processing streams are coupled
using full-resolution residual units (FRRUs).

or in combination with 3D scene geometry [32, 17, 35].
Many of those applications require precise region bound-
aries [20]. In this work, we therefore pursue the goal of
achieving high-quality semantic segmentation with precise
boundary adherence.

Current state-of-the-art approaches for image segmenta-
tion all employ some form of fully convolutional network
(FCNs) [38] that takes the image as input and outputs a
probability map for each class. Many papers rely on net-
work architectures that have already been proven success-
ful for image classification such as variants of the ResNet
[25] or the VGG architecture [50]. Starting from pre-trained
nets, where a large number of weights for the target task can
be pre-set by an auxiliary classification task, reduces train-
ing time and often yields superior performance compared to
training a network from scratch using the (possibly limited
amount of) data of the target application. However, a main
limitation of using such pre-trained networks is that they
severely restrict the design space of novel approaches, since
new network elements such as batch normalization [27] or
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new activation functions often cannot be added into an ex-
isting architecture.

When performing semantic segmentation using FCNs, a
common strategy is to successively reduce the spatial size
of the feature maps using pooling operations or strided con-
volutions. This is done for two reasons: First, it signifi-
cantly increases the size of the receptive field and second, it
makes the network robust against small translations in the
image. While pooling operations are highly desirable for
recognizing objects in images, they significantly deteriorate
localization performance of the networks when applied to
semantic image segmentation. Several approaches exist to
overcome this problem and obtain pixel-accurate segmenta-
tions. Noh et al. [41] learn a mirrored VGG network as a
decoder, Yu and Koltun [55] introduce dilated convolutions
to reduce the pooling factor of their pre-trained network.
Ghiasi et al. [20] use multi-scale predictions to successively
improve their boundary adherence. An alternative approach
used by several methods is to apply post-processing steps
such as CRF-smoothing [30].

In this paper, we propose a novel network architecture
that achieves state-of-the-art segmentation performance
without the need for additional post-processing steps and
without the limitations imposed by pre-trained architec-
tures. Our proposed ResNet-like architecture unites strong
recognition performance with precise localization capabil-
ities by combining two distinct processing streams. One
stream undergoes a sequence of pooling operations and is
responsible for understanding large-scale relationships of
image elements; the other stream carries feature maps at
the full image resolution, resulting in precise boundary ad-
herence. This idea is visualized in Figure 1, where the two
processing streams are shown in blue and red. The blue
residual lane reflects the high-resolution stream. It can be
combined with classical residual units (left and right), as
well as with our new full-resolution residual units (FRRU).
The FRRUs from the red pooling lane act as residual units
for the blue stream, but also undergo pooling operations and
carry high-level information through the network. This re-
sults in a network that successively combines and computes
features at two resolutions.

This paper makes the following contributions: (i) We
propose a novel network architecture geared towards pre-
cise semantic segmentation in street scenes which is not
limited to pre-trained architectures and achieves state-of-
the-art results. (ii) We propose to use two processing
streams to realize strong recognition and strong localization
performance: One stream undergoes a sequence of pool-
ing operations while the other stream stays at the full im-
age resolution. (iii) In order to foster further research in
this area, we publish our code and the trained models in
Theano/Lasagne [1, 14]1.

1https://github.com/TobyPDE/FRRN

2. Related Work

The dramatic performance improvements from using
CNNs for semantic segmentation have brought about an in-
creasing demand for such algorithms in the context of au-
tonomous driving scenarios. As a large amount of anno-
tated data is crucial in order to train such deep networks,
multiple new datasets have been released to encourage fur-
ther research in this area, including Synthia [45], Virtual
KITTI [18], and Cityscapes [11]. In this work, we fo-
cus on Cityscapes, a recent large-scale dataset consisting
of real-world imagery with well-curated annotations. Given
their success, we will constrain our literature review to deep
learning based semantic segmentation approaches and deep
learning network architectures.

Semantic Segmentation Approaches. Over the last years,
the most successful semantic segmentation approaches have
been based on convolutional neural networks (CNNs).
Early approaches constrained their output to a bottom-up
segmentation followed by a CNN based region classifica-
tion [54]. Rather than classifying entire regions in the first
place, the approach by Farabet et al. performs pixel-wise
classification using CNN features originating from multiple
scales, followed by aggregation of these noisy pixel predic-
tions over superpixel regions [16].

The introduction of so-called fully convolutional net-
works (FCNs) for semantic image segmentation by Long
et al. [38] opened a wide range of semantic segmentation
research using end-to-end training [13]. Long et al. fur-
ther reformulated the popular VGG architecture [50] as a
fully convolutional network (FCN), enabling the use of pre-
trained models for this architecture. To improve segmen-
tation performance at object boundaries, skip connections
were added which allow information to propagate directly
from early, high-resolution layers to deeper layers.

Pooling layers in FCNs fulfill a crucial role in order to
increase the receptive field size of later units and with it the
classification performance. However, they have the down-
side that the resulting network outputs are at a lower reso-
lution. To overcome this, various strategies have been pro-
posed. Some approaches extract features from intermedi-
ate layers via some sort of skip connections [38, 8, 36, 7].
Noh et al. propose an encoder/decoder network [41]. The
encoder computes low-dimensional feature representations
via a sequence of pooling and convolution operations. The
decoder, which is stacked on top of the encoder, then learns
an upscaling of these low-dimensional features via subse-
quent unpooling and deconvolution operations [56]. Simi-
larly, Badrinarayanan et al. [2, 3] use convolutions instead
of deconvolutions in the decoder network. In contrast, our
approach preserves high-resolution information throughout
the entire network by keeping a separate high-resolution
processing stream.
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Many approaches apply smoothing operations to the out-
put of a CNN in order to obtain more consistent predic-
tions. Most commonly, conditional random fields (CRFs)
[30] are applied on the network output [9, 8, 12, 34, 6].
More recently, some papers approximate the mean-field in-
ference of CRFs using specialized network architectures
[57, 48, 37]. Other approaches to smoothing the net-
work predictions include domain transform [8, 19] and
superpixel-based smoothing [16, 39]. Our approach is able
to swiftly combine high- and low-resolution information,
resulting in already smooth output predictions. Experiments
with additional CRF smoothing therefore did not result in
significant performance improvements.

Network architectures. Since the success of the AlexNet
architecture [31] in the ImageNet Large-Scale Visual Clas-
sification Challenge (ILSVRC) [47], the vision community
has seen several milestones with respect to CNN architec-
tures. The network depth has been constantly increased,
first with the popular VGG net [50], then by using batch nor-
malization with GoogleNet [51]. Lately, many computer vi-
sion applications have adopted the ResNet architecture [25],
which often leads to signification performance boosts com-
pared to earlier network architectures. All of these develop-
ments show how important a proper architecture is. How-
ever, so far most of these networks have been specifically
tailored towards the task of classification, in many cases in-
cluding a pre-training step on ILSVRC. As a result, some
of their design choices may contribute to a suboptimal per-
formance when performing pixel-to-pixel tasks such as se-
mantic segmentation. In contrast, our proposed architecture
has been specifically designed for segmentation tasks and
reaches competitive performance on the Cityscapes dataset
without requiring ILSVRC pre-training.

3. Network Architectures for Segmentation
Feed-Forward Networks. Until recently, the majority of
feedforward networks, such as the VGG-variants [50], were
composed of a linear sequence of layers. Each layer in such
a network computes a function F and the output xn of the
n-th layer is computed as

xn = F(xn−1;Wn) (1)

whereWn are the parameters of the layer (see 2a). We refer
to this class of network architectures as traditional feedfor-
ward networks.

Residual Networks (ResNets). He et al. observed that
deepening traditional feedforward networks often results in
an increased training loss [25]. In theory, however, the train-
ing loss of a shallow network should be an upper bound
on the training loss of a corresponding deep network. This
is due to the fact that increasing the depth by adding lay-
ers strictly increases the expressive power of the model.

A deep network can express all functions that the original
shallow network can express by using identity mappings for
the added layers. Hence a deep network should perform at
least as well as the shallower model on the training data.
The violation of this principle implied that current training
algorithms have difficulties optimizing very deep traditional
feedforward networks. He et al. proposed residual networks
(ResNets) that exhibit significantly improved training char-
acteristics, allowing network depths that were previously
unattainable.

A ResNet is composed of a sequence of residual units
(RUs). As depicted in Figure 2b, the output xn of the n-th
RU in a ResNet is computed as

xn = xn−1 + F(xn−1;Wn) (2)

where F(xn−1 ;Wn) is the residual, which is parametrized
byWn. Thus, instead of computing the output xn directly,
F only computes a residual that is added to the input xn−1.
One commonly refers to this design as skip connection, be-
cause there is a connection from the input xn−1 to the out-
put xn that skips the actual computation F .

It has been empirically observed that ResNets have su-
perior training properties over traditional feedforward net-
works. This can be explained by an improved gradient flow
within the network. In oder to understand this, consider the
n-th and m-th residual units in a ResNet where m > n
(i.e., the m-th unit is closer to the output layer of the net-
work). By applying the recursion (2) several times, He et
al. showed in [26] that the output of the m-th residual unit
admits a representation of the form

xm = xn +

m−1∑
i=n

F(xi;Wi+1). (3)

Furthermore, if l is the loss that is used to train the network,
we can use the chain rule of calculus and express the deriva-
tive of the loss l with respect to the output xn of the n-th RU
as

∂l

∂xn
=

∂l

∂xm

∂xm
∂xn

=
∂l

∂xm
+

∂l

∂xm

m−1∑
i=n

∂F(xi;Wi+1)

∂xn
.

(4)

Thus, we find

∂l

∂Wn
=

∂l

∂xn

∂xn
∂Wn

=
∂xn
∂Wn

(
∂l

∂xm
+

∂l

∂xm

m−1∑
i=n

∂F(xi;Wi+1)

∂xn

)
.

(5)

We see that the weight updates depend on two sources of
information, ∂l

∂xm
and ∂l

∂xm

∑m−1
i=n

∂F(xi;Wi+1)
∂xn

. While the
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amount of information that is contained in the latter may de-
pend crucially on the depth n, the former allows a gradient
flow that is independent of the depth. Hence, gradients can
flow unhindered from the deeper unit to the shallower unit.
This makes training even extremely deep ResNets possible.

Full-Resolution Residual Networks (FRRNs). In this pa-
per, we unify the two above-mentioned principles of net-
work design and propose full-resolution residual networks
(FRRNs) that exhibit the same superior training properties
as ResNets but have two processing streams. The features
on one stream, the residual stream, are computed by adding
successive residuals, while the features on the other stream,
the pooling stream, are the direct result of a sequence of
convolution and pooling operations applied to the input.

Our design is motivated by the need to have networks
that can jointly compute good high-level features for recog-
nition and good low-level features for localization. Regard-
less of the specific network design, obtaining good high-
level features requires a sequence of pooling operations.
The pooling operations reduce the size of the feature maps
and increase the network’s receptive field, as well as its ro-
bustness against small translations in the image. While this
is crucial to obtaining robust high-level features, networks
that employ a deep pooling hierarchy have difficulties track-
ing low-level features, such as edges and boundaries, in
deeper layers. This makes them good at recognizing the
elements in a scene but bad at localizing them to pixel ac-
curacy. On the other hand, a network that does not em-
ploy any pooling operations behaves the opposite way. It
is good at localizing object boundaries, but performs poorly
at recognizing the actual objects. By using the two pro-
cessing streams together, we are able to compute both kinds
of features simultaneously. While the residual stream of
an FRRN computes successive residuals at the full image
resolution, allowing low level features to propagate effort-
lessly through the network, the pooling stream undergoes a
sequence of pooling and unpooling operations resulting in
good high-level features. Figure 1 visualizes the concept of
having two distinct processing streams.

An FRRN is composed of a sequence of full-resolution
residual units (FRRUs). Each FRRU has two inputs and
two outputs, because it simultaneously operates on both
streams. Figure 2c shows the structure of an FRRU. Let
zn−1 be the residual input to the n-th FRRU and let yn−1
be its pooling input. Then the outputs are computed as

zn = zn−1 +H(yn−1, zn−1;Wn) (6)
yn = G(yn−1, zn−1;Wn), (7)

where Wn are the parameters of the functions G and H,
respectively.

If G ≡ 0, then an FRRU corresponds to an RU since it
disregards the pooling input yn, and the network effectively

(a) Layer in a traditional feedforward network

xn−1 F(xn−1;Wn) xn

(b) Residual Unit

xn−1 F(xn−1;Wn) + xn

(c) Full-Resolution Residual Unit (FRRU)

H(yn−1, zn−1;Wn)
G(yn−1, zn−1;Wn)

zn−1

yn−1

+ zn

yn

Figure 2. The figure compares the structures of different network
design elements. (a) shows a layer in a traditional feedforward net-
work; (b) shows a residual unit; (c) shows a full-resolution residual
unit.

becomes an ordinary ResNet. On the other hand, if H ≡ 0,
then the output of an FRRU only depends on its input via
the function G. Hence, no residuals are computed and we
obtain a traditional feedforward network. By carefully con-
structing G andH, we can combine the two network princi-
ples.

In order to show that FRRNs have similar training char-
acteristics as ResNets, we adapt the analysis presented in
[26] to our case. Using the same recursive argument as be-
fore, we find that for m > n, zm has the representation

zm = zn +

m−1∑
i=n

H(yi, zi;Wi+1). (8)

We can then express the derivative of the loss l with respect
to the weightsWn as

∂l

∂Wn
=
∂l

∂zn

∂zn
∂Wn

+
∂l

∂yn

∂yn
∂Wn

=
∂zn
∂Wn

(
∂l

∂zm
+

∂l

∂zm

m−1∑
i=n

∂H(yi, zi;Wi+1)

∂zn

)

+
∂l

∂yn

∂yn
∂Wn

. (9)

Hence, the weight updates depend on three sources of in-
formation. Analogous to the analysis of ResNets, the two
sources ∂l

∂yn

∂yn

∂Wn
and ∂l

∂zm

∑m−1
i=n

∂H(yi,zi;Wi+1)
∂zn

depend
crucially on the depth n, while the term ∂l

∂zm
is indepen-

dent of the depth. Thus, we achieve a depth-independent
gradient flow for all parameters that are used by the resid-
ual function H. If we use some of these weights in order to
compute the output of G, all weights of the unit benefit from
the improved gradient flow. This is most easily achieved by
reusing the output of G in order to compute H. However,
we note that other designs are possible.

Figure 3 shows our proposed FRRU design. The unit first
concatenates the two incoming streams by using a pooling

4



zn−1

yn−1

:

conv3×3 + BN + ReLU conv3×3 + BN + ReLU

conv1×1 + bias

:

+

yn

zn

G H

Figure 3. The figure shows our design of a full-resolution residual
unit (FRRU). The inner red box marks the parts of the unit that are
computed by the function G while the outer blue box indicates the
parts that are computed by the functionH.

layer in order to reduce the size of the residual stream. Then
the concatenated features are fed through two convolution
units. Each convolution unit consists of a 3 × 3 convolu-
tion layer followed by a batch normalization layer [27] and
a ReLU activation function. The result of the second con-
volution unit is used in two ways. First, it forms the pooling
stream input of the next FRRU in the network and second it
is the basis for the computed residual. To this end, we first
adjust the number of feature channels using a 1 × 1 con-
volution and then upscale the spatial dimensions using an
unpooling layer. Because the features might have to be up-
scaled significantly (e.g., by a factor of 16), we found that
simply upscaling by repeating the entries along the spatial
dimensions performed superior to bilinear interpolation.

In Figure 3, the inner red box corresponds to the function
G while the outer blue box corresponds to the function H.
We can see that the output of G is used in order to compute
H, because the red box is entirely contained within the blue
box. As shown above, this design choice results in superior
gradient flow properties for all weights of the unit.

Table 1 shows the two network architectures that we
used in order to assess our approach’s segmentation per-
formance. The proposed architectures are based on several
principles employed by other authors. We follow Noh et
al. [41] and use an encoder/decoder formulation. In the en-
coder, we reduce the size of the pooling stream using max
pooling operations. The pooled feature maps are then suc-
cessively upscaled using bilinear interpolation in the de-
coder. Furthermore, similar to Simonyan and Zisserman
[50], we define a number of base channels that we double
after each pooling operation (up to a certain upper limit).
Instead of choosing 64 base channels as in VGG net, we
use 48 channels in order to have a manageable number of
trainable parameters. Depending on the input image resolu-
tion, we use FRRN A or FRRN B to keep the relative size
of the receptive fields consistent.

4. Training Procedure
Following Wu et al., we train our network by minimizing

a bootstrapped cross-entropy loss [52]. Let c be the number
of classes, y1, ..., yN ∈ {1, ..., c} be the target class labels
for the pixels 1, ..., N , and let pi,j be the posterior class

Table 1. The table shows our two network designs. By convk×km

we denote a convolution layer having m kernels each of size k ×
k. The notations RUm and FRRUm refer to residual units and
full-resolution residual units whose convolutions havem channels,
respectively. The parameter c indicates the number of classes to
predict.

FRRN A

conv5×5
48 + BN + ReLU

3× RU48

pooling
stream

residual
stream

max pool conv1×1
32

3× FRRU96

max pool
4× FRRU192

max pool
2× FRRU384

max pool
2× FRRU384

unpool
2× FRRU192

unpool
2× FRRU192

unpool
2× FRRU96

unpool
pooling
stream

residual
stream

concatenate
3× RU48

conv1×1
c + Bias

Softmax

FRRN B

conv5×5
48 + BN + ReLU

3× RU48

pooling
stream

residual
stream

max pool conv1×1
32

3× FRRU96

max pool
4× FRRU192

max pool
2× FRRU384

max pool
2× FRRU384

max pool
2× FRRU384

unpool
2× FRRU192

unpool
2× FRRU192

unpool
2× FRRU192

unpool
2× FRRU96

unpool
pooling
stream

residual
stream

concatenate
3× RU48

conv1×1
c + Bias

Softmax

probability for class j and pixel i. Then, the bootstrapped
cross-entropy loss over K pixels is defined as

l = − 1

K

N∑
i=1

1[pi,yi < tK ] log pi,yi , (10)

where 1[x] = 1 iff x is true and tk ∈ R is chosen such that
|{i ∈ {1, ..., N} : pi,yi < tk}| = K. The threshold param-
eter tk can easily be determined by sorting the predicted log
probabilities and choosing the K + 1-th one as threshold.
Figure 4 visualizes the concept. Depending on the number
of pixels K that we consider, we select misclassified pix-
els or pixels where we predict the correct label with a small
probability. We minimize the loss using ADAM [28].

Because each FRRU processes features at the full im-
age resolution, training a full-resolution residual network is
very memory intensive. Recall that in order for the back-
propagation algorithm [46] to work, the entire forward pass
has to be stored in memory. If the memory required to store
the forward pass for a given network exceeds the available
GPU memory, we can no longer use the standard back-
propagation algorithm. In order to alleviate this problem,
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Image Ground Truth Predictions K = 512× 32 K = 512× 64 K = 512× 128

Void Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation

Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle

Figure 4. Pixels used by the bootstrapped cross-entropy loss for varying values of K. The images and ground truth annotations originate
from the twice-subsampled Cityscapes validation set [11]. Pixels that are labeled void are not considered for the bootstrapping process.

we partition the computation graph into several subsequent
blocks by manually placing cut points in the graph. We then
compute the derivatives for each block individually. To this
end, we perform one (partial) forward pass per block and
only store the feature maps for the block whose derivatives
are computed given the derivative of the subsequent block.
This simple scheme allows us to manually control a space-
time trade-off. The idea of recomputing some intermediate
results on demand is also used in [22] and [10]. Note that
these memory limitations only apply during training. Dur-
ing testing, there is no need to store results of each opera-
tion in the network and our architecture’s memory footprint
is comparable to that of a ResNet encoder/decoder architec-
ture. We will make code for the gradient computation for
arbitrary networks publicly available in Theano/Lasagne.

In order to reduce overfitting, we used two methods of
data augmentation: translation augmentation and gamma
augmentation. The former method randomly translates an
image and its annotations. In order to keep consistent im-
age dimensions, we have to pad the translated images and
annotations. To this end, we use reflection padding on the
image and constant padding with void labels on the annota-
tions. Our second method of data augmentation is gamma
augmentation. We use a slightly modified gamma augmen-
tation method detailed in Appendix A.

5. Experimental Evaluation
We evaluate our approach on the recently released

Cityscapes benchmark [11] containing images recorded in
50 different cities. This benchmark provides 5,000 images
with high-quality annotations split up into a training, vali-
dation, and test set (2,975, 500, and 1,525 images, respec-
tively). The dense pixel annotations span 30 classes fre-
quently occurring in urban street scenes, out of which 19
are used for actual training and evaluation. Annotations for
the test set remain private and comparison to other methods
is performed via a dedicated evaluation server.

We report the results of our FRRNs for two set-
tings: FRRN A trained on quarter-resolution (256 × 512)
Cityscapes images; and FRRN B trained on half-resolution

(512×1024) images. We then upsample our predictions us-
ing bilinear interpolation in order to report scores at the full
image resolution of 1024×2048 pixels. Directly training at
the full Cityscapes resolution turned out to be too memory
intensive with our current design. However, as our experi-
mental results will show, even when trained only on half-
resolution images, our FRRN B’s results are competitive
with the best published methods trained on full-resolution
data. Unless specified otherwise, the reported results are
based on the Cityscapes test set. Qualitative results are
shown in Figure 7, in Appendix C, and in our result video 2.

5.1. Residual Network Baseline

Our network architecture can be described as a
ResNet [25] encoder/decoder architecture, where the resid-
uals remain at the full input resolution throughout the net-
work. A natural baseline is thus a traditional ResNet en-
coder/decoder architecture with long-range skip connec-
tions [38, 41]. In fact, such an architecture resembles a
single deep hourglass module in the stacked hourglass net-
work architecture [40]. This baseline differs from our pro-
posed architecture in two important ways: While the feature
maps on our residual stream are processed by each FRRU,
the feature maps on the long-range skip connections are not
processed by intermediate layers. Furthermore, long-range
skip connections are scale dependent, meaning that features
at one scale travel over a different skip connection than fea-
tures at another scale. This is in contrast to our network de-
sign, where the residual stream can carry upscaled features
from several pooling stages simultaneously.

In order to illustrate the benefits of our approach over
the natural baseline, we converted the architecture FRRN
A (Table 1a) to a ResNet as follows: We first replaced all
FRRUs by RUs and then added skip connections that con-
nect the input of each pooling layer to the output of the
corresponding unpooling layer. The resulting ResNet has
slightly fewer parameters than the original FRRN (16.7 ×
106 vs. 17.7×106). This is due to the fact that RUs lack the
1 × 1 convolutions that connect the pooling to the residual

2https://www.youtube.com/watch?v=PNzQ4PNZSzc
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Table 2. IoU scores from the cityscapes test set. We highlight the best published baselines for the different sampling rates. (Additional
anonymous submissions exist as concurrent work.) Bold numbers represent the best, italic numbers the second best score for a class. We
also indicate the subsampling factor used on the input images, whether additional coarsely annotated data was used, and whether the model
was initialized with pre-trained weights.
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SegNet [2] ×4 X 57.0 96.4 73.2 84.0 28.5 29.0 35.7 39.8 45.2 87.0 63.8 91.8 62.8 42.8 89.3 38.1 43.1 44.2 35.8 51.9
FRRN A ×4 63.0 97.6 79.1 88.3 32.0 36.4 51.7 57.1 62.5 90.9 69.5 93.3 75.2 51.3 91.6 30.2 43.1 39.2 46.0 62.6
ENet [44] ×2 58.3 96.3 74.2 85.0 32.2 33.2 43.5 34.1 44.0 88.6 61.4 90.6 65.5 38.4 90.6 36.9 50.5 48.1 38.8 55.4
DeepLab [43] ×2 X X 64.8 97.4 78.3 88.1 47.5 44.2 29.5 44.4 55.4 89.4 67.3 92.8 71.0 49.3 91.4 55.9 66.6 56.7 48.1 58.1
FRRN B ×2 71.8 98.2 83.3 91.6 45.8 51.1 62.2 69.4 72.4 92.6 70.0 94.9 81.6 62.7 94.6 49.1 67.1 55.3 53.5 69.5
Dilation [55] ×1 X 67.1 97.6 79.2 89.9 37.3 47.6 53.2 58.6 65.2 91.8 69.4 93.7 78.9 55.0 93.3 45.5 53.4 47.7 52.2 66.0
Adelaide [34] ×1 X 71.6 98.0 82.6 90.6 44.0 50.7 51.1 65.0 71.7 92.0 72.0 94.1 81.5 61.1 94.3 61.1 65.1 53.8 61.6 70.6
LRR [20] ×1 X 69.7 97.7 79.9 90.7 44.4 48.6 58.6 68.2 72.0 92.5 69.3 94.7 81.6 60.0 94.0 43.6 56.8 47.2 54.8 69.7
LRR [20] ×1 X X 71.8 97.9 81.5 91.4 50.5 52.7 59.4 66.8 72.7 92.5 70.1 95.0 81.3 60.1 94.3 51.2 67.7 54.6 55.6 69.6

stream.
We train both networks on the quarter-resolution

Cityscapes dataset for 45,000 iterations at a batch size of
3. We use a learning rate of 10−3 for the first 35,000 iter-
ations and then reduce it to 10−4 for the following 10,000
iterations. Both networks converged within these iterations.
The FRRN A resulted in a validation set mean IoU score
of 65.7% while the ResNet baseline only achieved 62.8%,
showing a significant advantage of our FRRNs. Training
FRRN B is performed in a similar fashion. Detailed train-
ing curves are shown in Appendix B.

5.2. Quantitative Evaluation

Overview In Table 2 we compare our method to the
best (published) performers on the Cityscapes leader board,
namely LRR [20], Adelaide [23], and Dilation [55]. Note
that our network performs on par with the very complex and
well engineered system by Ghiasi et al. (LRR). Among the
top performers on Cityscapes, only ENet refrain from using
a pre-trained network. However, they design their network
for real time performance and thus do not obtain top scores.
To the best of our knowledge, we are the first to show that
it is possible to obtain state-of-the-art results even without
pre-training. This gives credibility to our claim that network
architectures can have a crucial effect on a system’s overall
performance.

Subsampling Factor. An interesting observation that we
made on the Cityscapes test set is a correlation between
the subsampling factor and the test performance. This
correlation can be seen in Figure 5 where we show the
scores of several approaches currently listed on the leader
board against their respective subsampling factors. Unsur-
prisingly, most of the best performers operate on the full-
resolution input images. Throughout our experiments, we
consistently outperformed other approaches who trained on
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Figure 5. Comparison of the mean IoU scores of all approaches on
the leader board of the Cityscapes segmentation benchmark based
on the subsampling factor of the images that they were trained on.

0 20 40 60 80

40

60

80

Trimap width r [pixels]

M
ea

n
Io

U
Sc

or
e

[%
]

Dilation [55] LRR [20]

FRRN B

Figure 6. The trimap evaluation on the validation set. The solid
lines show the mean IoU score of our approach and two top per-
forming methods that released their code. The dashed lines show
the mean IoU score when using the 7 Cityscapes category labels
for the same methods.

the same image resolutions. Even though we only train
on half-resolution images, Figure 5 clearly shows we can
match the current published state-of-the-art (LRR [20]). It
is to be expected that further improvements can be obtained
by switching to full-resolution training.
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Image Ground Truth Ours LRR [20] Dilation [55]

Void Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation

Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle

Figure 7. Qualitative comparison on the Cityscapes validation set. Interesting cases are the fence in the first row, the truck in the second
row, or the street light poles in the last row. An interesting failure case is shown in the third row: all methods struggle to find the correct
sidewalk boundary, however our network makes a clean and reasonable prediction.

5.3. Boundary Adherence
Due to several pooling operations (and subsequent up-

sampling) in many of today’s FCN architectures, bound-
aries are often overly smooth, resulting in lost details and
edge-bleeding. This leads to suboptimal scores, but it
also makes the output of a semantic segmentation approach
harder to use without further post-processing. Since in-
accurate boundaries are often not apparent from the stan-
dard evaluation metric scores, a typical approach is a trimap
evaluation in order to quantify detailed boundary adher-
ence [29, 30, 20]. During trimap evaluation, all predic-
tions are ignored if they do not fall within a certain radius
r of a ground truth label boundary. Figure 6 visualizes our
trimap evaluation performed on the validation set for vary-
ing trimap widths r between 1 and 80 pixels. We compare to
LRR [20] and Dilation [55], who made code and pre-trained
models available. We see that our approach outperforms
the competition consistently for all radii r. Furthermore, it
shall be noted that the method of [20] is based on an ar-
chitecture specifically designed for clean boundaries. Our
method achieves better boundary adherence, both numeri-
cally and qualitatively (see Figure 7), with a much simpler
architecture and without ImageNet pre-training.

Often one can boost both the numerical score and the
boundary adherence by using a fully connected CRF as

post-processing step. We tried to apply a fully connected
CRF with Gaussian kernel, as introduced by Krähenbühl
and Kolton [30]. We used the standard appearance and
smoothness kernels and tuned parameters on the valida-
tion set by running several thousand Hyperopt iterations [5].
Surprisingly the color standard deviation for the appearance
kernel tended towards very small values, while the weight
did not go to zero. This indicates that the appearance ker-
nel would only smooth labels across pixels with very sim-
ilar colors. Nevertheless, with the best parameters we only
obtained an IoU boost of ∼ 0.5% on the validation set.
Given the high computation time we decided against any
post-processing steps.

6. Conclusion
In this paper we propose a novel network architecture for

semantic segmentation in street scenes. Our architecture is
clean, does not require additional post-processing, can be
trained from scratch, shows superior boundary adherence,
and reaches state-of-the-art results on the Cityscapes bench-
mark. We will provide code and all trained models. Since
we do not incorporate design choices specifically tailored
towards semantic segmentation, we believe that our archi-
tecture will also be applicable to other tasks such as stereo
or optical flow where predictions are performed per pixel.
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Appendix
A. Gamma Augmentation

Gamma augmentation is an augmentation method that
varies the image contrast and brightness. Assume the inten-
sity values of an image are scaled to the unit interval [0, 1].
Then gamma augmentation applies the intensity transfor-
mation x 7→ xγ for a randomly sampled augmentation pa-
rameter γ > 0. However, sampling the augmentation pa-
rameter γ is not trivial. Naively drawing samples from a
uniform or truncated Gaussian distribution with a mean of
1 results in a noticeable bias (Figure 8a). In order to reduce
the bias, we deduce a novel sampling schema for γ.

Let U be a random variable that is implicitly defined as
the solution to the fixed-point problem

1− Uγ = U. (11)

Our goal is to find γ such that EU [U ] = 0.5. The key idea
to solving this problem is to look at the deviation of U from
0.5. Let Z be this deviation. Then (11) is equivalent to(

0.5− 1√
2
Z

)γ
= 0.5 +

1√
2
Z. (12)

Now EU [U ] = 0.5 implies EZ [Z] = 0 and solving (12) for
γ yields

γ =
log
(
0.5 + 2−0.5Z

)
log (0.5− 2−0.5Z)

. (13)

Hence, without solving for the implicitly defined variable
U explicitly, we found a transformation of a zero-mean ran-
dom variable Z such that γ has the desired properties. Be-
causeZ was defined to be the offset from 0.5 andU ∈ [0, 1],
it follows Z ∈ [−0.5, 0.5]. We are free to choose any dis-
tribution such that Z has zero mean and falls into the range
[−0.5, 0.5]. For simplicity reasons, we choose Z to be uni-
formly distributed over [−a, a] where a ∈ [0, 0.5] deter-
mines the strength of the augmentation. Figure 8b illustrates
the obvious bias reduction.
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Figure 8. Both plots show the function x 7→ xγ for 50 samples of
γ. In plot (a), γ is sampled uniformly at random from the interval
[0.25, 1.75]. In plot (b), we use Equation 13 where Z is sampled
uniformly from the interval [−0.35, 0.35]. Our new sampling re-
duces the bias.
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Figure 9. The plot shows the IoU score on the Cityscapes valida-
tion set as a function of the number of training iterations for the
baseline architecture and FRRN A. The solid lines show the best
IoU score up to iteration N .

B. Baseline Evaluation
In Section 5.2 of the main paper, we describe the set-

ting of our baseline method (Residual Network Baseline)
and compare it to our FRRN A network. To emphasize on a
proper training procedure of both baselines, Figure 9 shows
the mean IoU score on the validation set over time. We can
see that our model outperforms the baseline with a signifi-
cant margin and both methods are trained until convergence.

C. Qualitative Results
Figure 10 shows and compares addtional output label-

ings of our method. Please also consult our labeled video
sequence3 to gain a better sense of the quality of our
method. We all know Latex is a pain.

3https://www.youtube.com/watch?v=PNzQ4PNZSzc
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Image Ground Truth Ours LRR [20]

Void Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation

Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle

Figure 10. Additional qualitative results on the Cityscapes validation set. We omit the comparison to Dilation [55] in order to show bigger
images here.
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