
Partial Order Temporal Plan Merging
for Mobile Robot Tasks

Lenka Mudrova1 and Bruno Lacerda1 and Nick Hawes1

Abstract. For many mobile service robot applications, planning
problems are based on deciding how and when to navigate to certain
locations and execute certain tasks. Typically, many of these tasks
are independent from one another, and the main objective is to ob-
tain plans that efficiently take into account where these tasks can be
executed and when execution is allowed. In this paper, we present an
approach, based on merging of partial order plans with durative ac-
tions, that can quickly and effectively generate a plan for a set of in-
dependent goals. This plan exploits some of the synergies of the plans
for each single task, such as common locations where certain actions
should be executed. We evaluate our approach in benchmarking do-
mains, comparing it with state-of-the-art planners and showing how
it provides a good trade-off between a fast but imprecise approach of
sequencing the plans for each task, and a unified approach where a
planner is called for the large problem of achieving all goals.

1 INTRODUCTION
Consider a mobile service robot operating in an office building for a
long period of time, where it autonomously performs tasks to assist
the occupants in their everyday activities. One can imagine a wide
array of tasks for such a robot to execute, for example:

• “Bring me a cup of coffee.”
• “Check if there are people in office 123.”
• “Check if the emergency exits are clear.”

Note that this class of task have a common set of properties that
one can take advantage of:

1. They require the robot to navigate to certain locations to execute
certain actions, i.e., they include spatial constraints;

2. The actions associated with them can be executed concurrently.
For example, a sensing action is often fixed to a location, but pro-
cessing and reasoning about the sensed data can be done in parallel
with the robot’s movement;

3. Their goals are independent, in the sense that executing a certain
task ωi is not a precondition to successfully execute task ωj . This
means that they can be straightforwardly split into a set of different
planning problems.

Furthermore, even though the goals are independent, the existence
of spatial constraints means that there might be “synergies” between
the independent plans, e.g. the locations visited while executing task
ωi might also be of use for executing task ωj . Along with these spa-
tial constraints, there are also timing constraints related to navigating
between locations.
1 School of Computer Science, University of Birmingham, UK, email:
{lxm210, b.lacerda, n.a.hawes}@cs.bham.ac.uk

In this paper, we build on these insights to present an algorithm
that, given a set of plans for each task, efficiently merges them into
a global plan for all tasks that interleaves actions working towards
different goals.

Our merging algorithm is based on partial-order planning (POP),
a least-commitment search in the space of (partial order) plans. POP
presents clear benefits for our robot-oriented merging approach, in-
cluding:

1. The least-commitment approach of partial order planning yields
more “merging points” between plans, when compared to a totally
ordered plan;

2. POP presents a flexible approach to temporal planning with
durative concurrent actions, allowing parallel action execution
straightforwardly;

3. POP produces plans with more flexibility in execution as commit-
ments can be determined at execution time when temporal infor-
mation is more certain.

In summary, the main contributions of this paper are (i) the defini-
tion of a class of planning problems that are well-suited for the spec-
ification of execution routines for mobile service robots; and (ii) a
partial order plan merging algorithm that is able to generate plans for
a large amount of tasks, while taking advantage of possible synergies
between such tasks, thus improving the overall robot’s behaviour. For
the class of problems we tackle in this paper, our approach is compet-
itive with state-of-the-art forward chaining planners in benchmarking
domains. Furthermore, the use of POP allows us to easily tackle con-
current actions, which allows us to outperform the state-of-the-art
forward chaining planners in domains where reasoning about con-
current actions is required.

The structure of the paper is as follows. In Section 2, we provide an
in-depth overview of state-of-the-art planners, and their limitations
for our domain. In sections 3 and 4 we formalise the problem and
background we rely on. Finally sections 5 and 6 present our novel
algorithm and its evaluation.

2 RELATED WORK
2.1 Temporal planners
In order to compare our proposed algorithm with state-of-the-art
temporal planners, we focus on those that successfully participated
in the temporal track of the latest International Planning Competi-
tion (IPC) in 20141. The 6 following planners participated in the
competition: YAHSP3 [30] pre-computes relaxed plans for esti-
mated future states which are then exploit to speed-up the forward

1 https://helios.hud.ac.uk/scommv/IPC-14/index.html



state-space search. YAHSP3-MT [31] is a multi-thread extension of
YAHSP. The YASHP3 planner is also exploited by another contes-
tant, DAEY AHSP [3]. DAE uses a Divide-and-Evolve strategy in
order to split the initial problem into a set of sub-problems, and to
evolve the split based on the solutions found by its wrapped planner.
In general, DAEX can be used with any planner, with the version
we evaluate wrapping YAHSP. Two other participants extend well-
known approaches to the temporal domain. First, the temporal-FD
planner [9] expands the FD algorithm [12]. The search state is ex-
tended with a discrete timestamp component, and state expansion
can be performed either by inserting an action or by incrementing
the timestamp. Second, ITSAT [21] expands a satisfiability checking
(SAT) approach to the temporal domain. ITSAT is the only planner
from the aforementioned that is able to handle concurrent actions
properly.

2.2 Temporal partial order planners
Another important class of temporal planners are those that provide
a temporal partial order plan as a solution. Versatile Heuristic Partial
Order Planner (VHPOP) [24] is one of the pioneers in this field. It
builds on the classical backward plan-space search used by partial
order planners, adding to it a set of different heuristics that allow for
a more informed choice of which flaw to solve, or which plan to ex-
plore. The use of these heuristics yields big improvements in terms
of speed, when comparing to previous partial order planners. In con-
trast, the more recent OPTIC [1] planer combines advantages of par-
tial order planning with fast forward chaining techniques, which are
very popular in current planners, due to their speed and scalability.
Broadly speaking, OPTIC is a complete forward search algorithm
with backtracking.

2.3 Planning & Execution for Mobile Service
Robots

The CoBot service robots [29] operate in an office building perform-
ing several predefined tasks. A server based architecture [8] man-
ages incoming tasks from a web-based user interface, schedules tasks
across several robots [7], and keeps track of task execution. A similar
centralised system architecture is used by the mobile service robot
Tangy [16] which performs a sequence of predefined tasks when
schedules of users are taken into account. This problem is modelled
by mixed-integer programming and constraint programming tech-
niques [4]. Mixed-integer programming is also used for scheduling
in the integrated control framework presented in [18]. In this work,
a stochastic high-level navigation planner provides expectations on
travel times between different locations to the scheduling algorithm.
In contrast to the previous architectures, robots Rin and Rout use a
constraint network [22]. This network is continuously modified by
an executor, a monitor and a planner in order to create configura-
tion plans which specify causal, temporal, resources and information
dependencies between individual actions. All the above works are
based on scheduling approaches, which rely on a less fine grained
model of the environment, where tasks are seen as black-boxes, be-
ing pre-specified instead of planned for, and with the scheduler trying
to order them such that a set of timing constraints is satisfied. This
does not allow for direct reasoning over the possible synergies be-
tween different tasks, and the possibility to interleave actions from
different tasks in order to minimise execution time.

In recent years, there has also been work aiming at closing the loop
between task planning and real world execution on a robot platform.

The ROSPlan framework [5] is a general framework that allows for a
task planner to be embedded into the Robot Operating System (ROS),
a middleware widely used in the robotics community. As a proof of
concept, ROSPlan has integrated the POPF planner [6], an ancestor
of OPTIC. This integration with execution is also part of our future
work, and we plan to explore how our techniques can be integrated
in such an execution framework.

Additionally, some modelling languages have been developed
with the goal of having a closer integration between planning and
execution. Of particular interest are the NDDL [2] and the ANML
[25] modelling languages. These are based on the notion of time-
lines, i.e., sequences of tokens. A token is a timed predicate that
holds within a start and end time. The timeline representation was
developed by NASA and used in open-source project EUROPA [13]
in order to model and plan for real world problems and to allow a
close integration with the execution of such plans. This representa-
tion was also exploited in T-REX [17], a model-based architecture
for a robot control which used a tight integration of planning and ex-
ecution. Another system closely integrating planning and execution
is FAPE [20], built on the ANML language. Unfortunately, these sys-
tem based on timelines do not have scalability of the state-of-the-art
planning approaches we presented above.

To summarise, none of the reviewed systems is capable of exe-
cuting a great variety of tasks and of interleaving execution of these
tasks in order to minimise execution time.

2.4 Merging algorithms

There has also been a fair amount of research on the problem of plan
merging.

The first planning system using merging was probably NOAH
[23], as described in [10]. In NOAH, three criteria were introduced
to handle possible interactions between plans: eliminate redundant
preconditions, use existing operators, and optimise disjuncts. NON-
LIN [26] is also able to recognise if any goal is achievable by an
operator already in a plan. If such operator is detected, then ordering
constraints and variable bindings are used to change the such that the
found operator is used to fulfil the goal.

Temporal and conditional plan merging is done in [27] which ex-
tends work of Yang [34]. For two input plans, the algorithm provides
a new order of actions while detecting and removing useless actions,
by checking if their effects are already fulfilled by some preceding
action.

Related techniques to plan merging are plan repair and plan re-
finement. Refinement planning focuses on how to introduce a new
action to an existing plan, and was introduced in [15]. Work in [14]
uses a partial plan to save current refinements. The opposite case,
i.e., removing an action from the plan is handled in unrefinement
planning [28]. This addresses the plan repair problem of changing a
plan when it cannot be executed. Despite the fact that it was proved
that modifying an existing plan is no more efficient than a complete
replanning in the general case [19], plan repair might still be efficient
in certain domains. An example of recent plan refinement is plan-
ning for highly uncertain domains, such as underwater robotics [11].
In this case, one plan achieving a subset of tasks is produced. While
it is executed, the current state is observed in order to limit uncer-
tainties. If the robot has unexpected available resources, allowing it
to perform more tasks, a pre-computed plan achieving another task is
inserted into the global plan. Our proposed algorithm combines ideas
from aforementioned merging approaches in order to allow flexible
execution on a mobile robot.

2



3 PARTIAL ORDER PLANNING
We start by introducing the fundamental definitions and notation on
POP that will be used throughout the paper. For a thorough overview
of POP, we refer the reader to [33]. Furthermore, our merging algo-
rithm assumes that plans have already been generated, so all actions
we deal with are grounded. Thus, we omit details about lifted actions
and bindings when describing the planning problems.

We start by defining a task in our framework. A task domain is a
set D = {f1, .., fn} of atomic formulas (atoms) that will describe
a given state of the world. A state in this domain is represented by
F ⊆ D, where f is true in state F if f ∈ F . For a durative action
a ∈ A, we define its set of preconditions as the set of literals (atoms
or their negation) pre(a), its set of effects as the set of literals eff (a)
and its duration as d(a) ∈ R. Furthermore, we split a into its start
point a` and end point aa, and define the sets A` and Aa of action
start points and end points, respectively. Finally, a planning problem
is defined as P = (I,G) such that I ⊆ D is the initial state, and
G ⊆ D is the goal, where we say that a state F achieves the goal if
G ⊆ F . A task is then defined as ω = 〈D,A, P 〉.

A partial order plan (POP) is a tuple π = 〈A,L,O〉, where:

• A is a set of actions;
• L is a set of causal links. A causal link aj

l−→ ak represents that
literal l ∈ pre(ak) is fulfilled as an effect of action aj ;

• O is a set of ordering constraints defining a partial order on the set
A. An ordering constraint aj ≺ ak represents that action aj must
finish before action ak can start.

Given a POP π, an open condition l−→ aj means that literal
l ∈ pre(aj) has not yet been linked to the effect of any action. An

unsafe link (or a threat) is a causal link aj
l−→ ak such that there is

an action am ∈ A that could possibly be ordered between aj and ak
and threatens aj

l−→ ak by having ¬l ∈ eff (am). The set of flaws of
a POP π is given by the union of its open conditions and unsafe links.
A POP planner searches through the space of POPs trying to resolve
all flaws of π. To do that, the planner tries to close open conditions by
adding new actions toA and new causal links to L, and solve threats
by adding new orderings to O to make sure that the threatening ac-
tion am does not occur between the unsafe link aj

l−→ ak. This can be
done by, for example, demotion, i.e., adding the constraint ak ≺ am
to O, or demotion, i.e., adding am ≺ aj to O.

In this work, we use the VHPOP planner as described in Sec-
tion 2.2.

4 PROBLEM DEFINITION AND SOLUTION
APPROACHES

In this paper, we are interested in solving the problem of finding a
POP for a given set of input tasks. More specifically, given a set of
tasks Ω = {ω1, . . . , ωn}, where ωi = 〈Di, Ai, (Ii, Gi)〉 and the
initial states of each problem are mutually consistent (Ij is consistent
with Ik if for all f ∈ Dj ∩ Dk, f ∈ Ij if and only if f ∈ Ik), we
want to find a plan that achieves all goals G1, ..., Gn.

There are several ways of solving such a problem, in the remain-
der of this section, we present three different approaches – unifying,
sequencing and plan merging. We argue that the merging approach
provides a good trade-off between the plan quality of the unifying
approach and the efficiency of the sequencing approach, hence, in
the next section we will present a plan merging algorithm to solve
our problem.

4.1 Unifying planning algorithm
This approach relies of unifying the set of tasks into a single task, i.e.,
ω =

〈⋃
i∈{1...n}Di,

⋃
i∈{1...n}Ai, (

⋃
i∈{1...n} Ii,

⋃
i∈{1...n}Gi)

〉
Then, one can use an appropriate planning algorithm to find a solu-
tion for the single unified task. While this approach can more easily
take advantage of relations between goals in different tasks (e.g., two
tasks that should be executed in the same location), it can suffer from
scalability issues as finding a plan for the unified task can be much
harder than finding plans for each individual task by itself. This ap-
proach is used by most planners, such as VHPOP, OPTIC and all
presented planners from IPC 2014. Generally, the unified tasks are
modelled a priori and passed directly as an input to such systems.

4.2 Sequencing planning algorithm
This approach generates a set of independent plans Πω =
{π1, . . . , πn}, one for each task ωi, and then sequences them to cre-
ate a single final plan. For the resulting plan to be valid, one needs to
decide on an ordering of the tasks and then modify the initial states
of each task according to the final state of the plan for the preceding
task. The ordering of the tasks can be done using a scheduling algo-
rithm that can take into account extra timing constraints on the exe-
cution of tasks. This approach is common for mobile service robots,
e.g., [29, 18], due to its simplicity and efficiency. This is because
the planning problems to be solved when planning for the tasks in-
dependently will in general be much smaller than the single unified
one problem. However, simple sequencing comes at the price of plan
quality: this approach does not allow for the interleaving of actions
from plans for different tasks, taking advantage of synergies between
them.

4.3 Merging planning algorithm
This approach combines both aforementioned methods. It also plans
for tasks separately, obtaining Πω = {π1, . . . , πn} but then it rea-
sons over each plan, merging them together into a better plan than
the one obtained by simple sequencing. The final plan πf consists of
parts of the task plans in Πω and newly created plans Πjoin which
are used in order to connect these parts such that the final plan is
still free of flaws. Furthermore, while the merging procedure adds an
overhead at plan generation time when compared to the sequencing
approach, it allows us to inspect each individual plan, and find syn-
ergies between plans for different tasks that allows us to interleave
execution for different goals. A typical benefit of this approach in the
mobile robot domain is providing the possibility to execute actions
from different tasks when these actions share a common location.
The algorithm we present in the next section follows this approach.

5 PROPOSED ALGORITHM
In this section, we present our merging algorithm. Before we describe
it, we need to address an issue that can hinder the performance of the
merging algorithm, and present a solution for it.

5.1 Dependency Caused by External Constraints
5.1.1 Problem Illustration

As stated in the introduction, we assume independent tasks, i.e., tasks
where the goals can be partitioned and for which the execution of a
plan for task ωi is not a precondition to successfully execute task

3



ωj . However, these tasks can become dependent due to external con-
straints. In mobile robots domains, these are typically spatial con-
straints. We will illustrate this problem on the following example.

DeliveryBot A mobile robot delivers packages around a building.
A robot can move between locations (with duration 10), load pack-
ages (with duration 2), and unload packages (with duration 2). The
robot receives two tasks:

1. ω1: ”Deliver package1 to location s2.”
2. ω2: ”Deliver package2 to location s0.”

Initial states
I1 I2 Ifa

(at s0) (at s0) (at s0)
(pack1 s1) (pack2 s2) (pack1 s1)

(pack2 s2)
Planning states

π1a π2a πfa
(move s0 s1)[10] (move s0 s2)[10] (move s0 s1)[10]

(load pack1 s1)[2] (load pack2 s2)[2] (load pack1 s1)[2]
(move s1 s2)[10] (move s2 s0)[10] (move s1 s2)[10]

(unload pack1 s2)[2] (unload pack2 s0)[2] (unload pack1 s2)[2]
(load pack2 s2)[2]
(move s2 s0)[10]

(unload pack2 s0)[2]
Goal states

G1 G2 Gfa
(at s2) (at s0) (pack1 s2)

(pack1 s2) (pack2 s0) (pack2 s0)
(at s0)

Makespan
π1a π2a πfa
24 24 38

Table 1. Plans π1a and π2a are merged into a single plan πfa

Assume the initial state is I = {(at s0), (pack1 s1), (pack2 s2)},
and a partial order planner produces optimal plans π1a and π2a, as
depicted in Tab. 1. An example of a final merged plan, πfb, with
makespan 38 is also given in the rightmost column of Tab. 1. Notice
that action (move s0 s2) from plan π2 is not used as its effects are
satisfied by action (move s1 s2) from plan π1. However, if the initial
state is I = {(at s0), (pack1 s1), (pack2 s3)}, a partial order planner
produces the plan π2b which is again optimal, see Tab. 2. In this
case, action move(s0 s3) will need to merged as well as its effects
are not satisfied. Hence, the output plan has makespan 58. However,
an optimal plan will not contain (move s2 s0), (move s0 s3) and will
instead directly use action (move s2 s3). Thus, the optimal plan for
the two goals has makespan 48.

As the biggest contributor to cost of the plan is travel time in mo-
bile robot domains, we see external constraints, such as spatial in this
case, as a limiting factor for plan merging. Hence we argue that the
dependency caused by external constraints must be addressed.

5.1.2 Preprocessing External Constraints

We currently handle the dependency caused by the external con-
straints, such as task location in our domain, manually by adding
atoms related to the external constraints into the initial state. We will

Initial states
I1 I2 Ifb

(at s0) (at s0) (at s0)
(pack1 s1) (pack2 s3) (pack1 s1)

(pack2 s3)
Planning states

π1b π2b πfb
(move s0 s1)[10] (move s0 s3)[10] (move s0 s1)[10]

(load pack1 s1)[2] (load pack2 s3)[2] (load pack1 s1)[2]
(move s1 s2)[10] (move s3 s0)[10] (move s1 s2)[10]

(unload pack1 s2)[2] (unload pack2 s0)[2] (unload pack1 s2)[2]
(move s2 s0)[10]
(move s0 s3)[10]

(load pack2 s2)[2]
(move s2 s0)[10]

(unload pack2 s0)[2]
Goal states

G1 G2 Gfb
(at s2) (at s0) (pack1 s2)

(pack1 s2) (pack2 s0) (pack2 s0)
(at s0)

Makespan
π1a π2a πfa
24 24 58

Table 2. Plans π1b and π2b are merged into a single plan πfb

I: (at s0), 
(at s1), (at s2), (at s3)

(load pack2 s2)

(unload pack2 s3)

(load pack1 s1)

(unload pack1 s2)

G:(pack2 s3), (pack1 s2)

(a) Updated plan πF
I

1

I: (at s0)

(load pack2 s2)

(unload pack2 s3)

(load pack1 s1)

(unload pack1 s2)

G:(pack2 s3), (pack1 s2)

:(at s2) :(at s1)

(b) Extracted plan π×1

Figure 1. Preprocessing stages for task ω1 in the DeliveryBot domain.

research an automated approach for tackling external constraints in
our future work.

To illustrate the preprocessing in the DeliveryBot domain, the ini-
tial state for the task is updated with F I = {(at s1), (at s2), (at s3)}
and the new plans ΠfI

ω are obtained, see Fig. 1a. Finally, F I is ex-
tracted away from the plans and plans Π×ω are obtained, see Fig. 1b
when × signals that these plans are not any more valid. The red ar-
rows highlights which causal links are not satisfied now.

5.2 POMerX

After the above preprocessing, we tackle the following problem

πf = POMerX(Π×ext−ω, I,G}, (1)

where I,G are sets of the initial state and the goals for all the input
tasks, respectively and X stands for a POP algorithm which is used
to provide plans. Π×ext−ω is a set of extended partial plans π×ext−ω .
An extend partial plan πext = 〈A,L,O,Asat,Lsat,Osat〉 is a POP
plan π extended by subsets of actions Asat ⊆ A, links Lsat ⊆ L
and orderings Osat ⊆ O which are satisfied in a merging state. The

4



merging state is expressed as a tuple

S = 〈t, F, F+, F−, Q`, Qa,L,Πexp−join,Π
×
exp−ω, πs〉 (2)

where

• t is duration of the current plan πs;
• F is a set of atomic propositions that holds in the state;
• F+ is a set of achievers i.e.,
• F− is a set of deleters i.e.,
• Q` is a queue of starts of actions which can be merged into plan
πs;

• Qa is a queue of ends of actions. Each end (a, ts) of an action a
must be merged into the plan when t = ts + d(a) where ts is the
time of the state S when the start of the action was added to the
plan;

• L is a set of causal links that still need to be satisfied;
• Πext−join is a set of temporary extended POP plans satisfying

preconditions of Q` or conditions of L
• Π×ext−ω is the set of extended POP plans for each task;
• πs = 〈Aπs ,Lπs ,Oπs〉 is the POP plan that reaches the current

state.

POMerX algorithm is a greedy complete search algorithm which
searches over these states. The following operators are used to form
the algorithm. The complete algorithm is shown in Algorithm 1.

arePlansMerged: This boolean operator tests, for each input plan
π×ext−i ∈ Π×ext−ω , if all its actions, links and orderings are satis-
fied, i.e., A = Asat and L = Lsat and O = Osat. Moreover, if
all goals Gi of plan π×exp−i are such that Gi ∈ F . If this holds,
the places are successfully merged;

updateActionsStarts(Πexp): For each plan πexp ∈ Πexp the set of
the active actions is updated asQ` = Q`∪Aunsat whereAunsat
contains only those unsatisfied actions which do not have to be
placed after start of any other unsatisfied action, i.e., Aunsat ∩
Asat = ∅ and Aunsat ⊆ A\Asat. The placement requirement
is requested by some unsatisfied ordering or link. Of course, if an
action a is already presented in Q` it is not added again.

updateLinks(Πexp) : For each plan πexp ∈ Πexp the set of the ac-
tive links is updated as L = L ∪ L×unsat when L×unsat refers to
a set of unsatisfied broken causal links in plan πexp. An unsatis-
fied causal link aj

l−→ ak occurs when l has not yet been achieved
in the merged plan. This can happen in two different situations.
First, the achiever (or deleter, in the case of a negative literal) ac-
tion for l has not yet been merged to the final plan. This link will
become satisfied after the achiever/deleter action is merged, thus
it is not considered broken. In contrast, due to our preprocessing,
the input plans contains broken causal links L×, for which the
achiever/deleter action is not present in the relaxed plan. Hence,
unsatisfied broken causal links are those which are not satisfied
even though their achievers in the relaxed plan are merged.

updateTemporaryPlans(f ) : Πexp−join = Πexp−join∪
πexp−join−l when πexp−join−l is a plan to achieve unsatis-
fied literal l of an unsatisfied broken causal link. This plan is
obtained by creating a new temporary task ωl = (Dl, Al(F, Fl))
where Dl is the domain of literal l, the description of the current
search state F is the initial state, and the unsatisfied literal l is
the goal. The POP planner is then called to solve this simple
sub-problem. If a plan cannot be found, an empty plan with
infinite duration is added to set Πexp−join. If l is achieved in the
description of the current search state F , an empty plan with zero
duration is added for integrity of operation choosePlan.

choosePlan : This operator returns the plan πexp−min−dur ∈
Πexp−join with minimal duration. If more than one plan have
minimal duration, the plans created in order to achieve a precon-
dition of an action are chosen. If there is still more than one such
plan, one of them is randomly chosen

get : get an action asat such that F satisfies pre(asat);
canBeMerged(a) : This boolean operation checks if the action a is

not threatening any current causal link or violating any ordering
in the partially ordered plan πs.

backtrack(Πexp−join−old) : As none of the actions from Qa can
be merged, the algorithm backtracks to the previous state and
Πexp−join in this recovered state is replaced by Πexp−join−old
in order to propagate the plans. This safes not only runtime but
also it is how the merging algorithm will not try to add the same
failing plan again. If Πexp−join−old = ∅ then all options in the re-
covered state were tried but none of them expand the state. Hence,
the algorithm backtracks one more time.

Algorithm 1 POMerX (Π×exp−ω), I,G

1: S = 〈0, I, F+
0 , ∅, ∅, ∅, ∅, ∅, Π̌×ω , ∅〉

2: while !arePlansMerged() do
3: updateActionsStarts(Π×exp−ω)
4: updateLinks(Π×exp−ω)
5: if Πexp−join = ∅ then
6: for a ∈ Q` do
7: updateTemporaryPlans(pre(a))
8: end for
9: for l ∈ L do

10: updateTemporaryPlans(fl)
11: end for
12: end if
13: πexp−min−dur = choosePlan()
14: updateActionsStarts(πexp−min−dur)
15: updateLinks(πexp−min−dur)
16: repeat
17: asat = get()
18: until canBeMerged(asat ) or asat = ∅
19: if asat = ∅ then
20: Πexp−join = Πexp−join\πexp−min−dur
21: backtrack(Πexp−join)
22: else
23: mergeAction(asat)
24: end if
25: end while
26: return πs

mergeAction(a) : This operation merges a to the final plan, and up-
dates the current state. It consists of:

createActions() : Action a is added to set of actions of plan πs,
i.e., Aπs = Aπs ∪ a.

createLinks() : The preconditions of a are linked with their
achievers F+ creating new causal links in plan πs for each
l ∈ pre(a) add to Lπs F

+(l)
l−→ a if l is a positive literal,

or F−(l)
l−→ a if l is a negative literal.

createOrderings() : The orderings in plan πs first assume that
action a is concurrent to others already in the plan. If effects of
a are threatening any existing link in πs, the orderings of plan

5



I: (at s0)

(move s0 s2)

G: (at s2)

(a) πjoin−2

I

(move s0 s1)

(b) πs

Figure 2. Processing plans from POMerX algorithm during first iteration.

πs are updated in a way that a is promoted after the threaten
link. We only use promotion as the demotion will be against
the greedy decision of choosing actions based on their minimal
duration. This same idea is applied by OPTIC planner.

updateAtoms() : The set of atoms F and the set of achievers F+

and deleters F− is updated by the effects of the a.

updatePlans() : In the input plans Π×exp−ω , the newly satis-
fied actions, links and orderings are added to the subsets
Asat,Lsat,Osat, respectively.

deleteActionsStarts : From set Q` are deleted such actions
whose effects are in the new F as they were satisfied by merged
action a. Hence, not all actions from the input plans have to be
merged into the final plan.

deleteLinks: From set L are deleted such links whose conditions
are satisfied in the new F .

updateActionsEnds :Qa = Qa∪ (a, ts) when ts = t+d when
d is action’s duration and t the time valid in the current state.

Algorithm 2 mergeOption(activeOption, Θ)
1: createActions()
2: createLinks()
3: createOrderings()
4: updateAtoms()
5: updatePlans()
6: deleteActionsStarts()
7: deleteLinks()
8: if a ∈ Q` then
9: Qa = Qa ∪ (a, t)

10: end if
11: if a ∈ Qa then
12: t = Qa[a]
13: end if

The proposed algorithm using aforementioned operations is in
Alg. 1 and method mergeAction(a) is in Alg. 2. The functionality of
the algorithm using the DeliveryBot example is illustrated in Tab. 3.
To summarise the algorithm, the new state is generated by merg-
ing an action a from an input plan π×exp−i or from a joining plan
πexp−join−f . The minimal duration of plans is used as a criterion
how to choose only one action to merge. A joining plan is generated
using the wrapped planner X in order to satisfied preconditions of
actions in Q` or conditions of links in L. The algorithm is complete
as it backtracks in its decisions.

6 EVALUATION
We have developed a version of our algorithm POMerVHPOP which
embeds the VHPOP planner [24] for plan generation for individual
tasks2. In this section, we evaluate the POMerVHPOP algorithm and
compare it with other temporal planners based on plan quality, mea-
sured using the makespan of the found solution, and scalability. For
each found plan, we run VAL, the validator of PDDL plans 3 in order
to ensure that the plan is valid for domain and problem. The eval-
uated planners maximum memory usage was limited to 8 GB. All
evaluation was run on Lenovo ThinkPad E-540 with Intel i74702MQ
Processor (6MB Cache, 800 MHz).

6.1 Domains and problems
We evaluate using domains taken from IPC 2014. However, we gen-
erate our own planning problems in these domains, as our algorithm
is based on the assumptions that tasks, i.e., goals in problems, are in-
dependent. Moreover, we assume only a single agent performing the
actions. For the merging planning algorithm, we generate n problems
P corresponding to n tasks, each problem has only a single goal. For
the sequencing planning solution, we generate problems with single
goals as with merging approach, but we set the initial state of prob-
lem pi+1 to the final (goal) state of problem pi. This is done in order
to be able to sequence the output plans to a single plan. The ordering
of the problems is decided by a simple FIFO strategy. For the unify-
ing planning solution, we generate a single unified problem Pn with
n goals.

6.1.1 Drivelog domain

The Drivelog domain is the IPC 2014 domain closest to our main
focus of mobile service robots as it has spatial constraints. In order
to generate problems, we take the hardest problem from IPC 2014,
i.e., problem P21, and modify it so that it has a single agent, i. e., one
truck with the driver already boarded. Then, we split the 23 goals for
package placing into 23 single problems. The initial state of these
single problems is extended by adding all atoms related to the spatial
constraints, i.e., all (at ?loc) where ?loc stands for any location in the
problem.

6.1.2 TMS domain

This domain is another benchmarking domain for IPC 2014 which
requires concurrent actions, a type of problem for which POP prob-
lems are especially suited. Even though this domain is about produc-
ing ceramic pieces, we choose it in order to demonstrate the capa-
bility of POMerVHPOP to handle concurrent actions. In this domain,
a kiln represents the agent. Hence, our problems contain initial state
that a kiln is always ready. We again use the hardest problem from
IPC 2014 and we create 17 problems. The smallest problem contains
2 goals and the largest 50 goals.

6.2 POMerV HPOP in comparison to VHPOP
First, we analyse how our proposed algorithm improves over its
wrapped planner, in this case VHPOP. Thus we compare three al-
gorithms: POMerVHPOP , VHPOP used to solve the unified prob-
lem, and VHPOP used to solve the sequencing problem. All algo-
rithms were run on problems for Drivelog domain for 30 min and
2 Available at https://github.com/mudrole1/POMer
3 http://www.inf.kcl.ac.uk/research/groups/PLANNING/

6



Table 3. Changes to state S as the algorithm proceeds, where F+ and F− are omitted. The line refers to the number of line in Alg. 1

.

Line t F Q` Qa L Πext−join Π×ext−ω πs

1 0 (at s0) ∅ ∅ ∅ ∅ Fig. 1a ∅
(pack1 s1)
(pack2 s2)

3 0 (at s0) ∅ ∅ (at s1)[10] Fig. 2a Fig. 1a ∅
(pack1 s1) (at s2)[10]
(pack2 s2)

7 0 (at s0) (move so s1)`[10] ∅ (at s1)[X] Fig. 2a Fig. 1a ∅
(pack1 s1) (at s2)[?]
(pack2 s2)

12 0 (pack1 s1) ∅ ((go so s1),0)a (at s1)[X] ∅ Fig. 1a Fig. 2b
(pack2 s2) (at s2)[?]

(at s1)

could use 8 GB of memory. The makespans are depicted in Fig. 3a.
VHPOP-unifying is able to find a solution for only five problems
before it reaches the memory limit. We also report on time and mem-
ory consumed, see Fig. 3b and Fig. 3c, respectively. As expected,
VHPOP-unifying consumes the most memory for the most of the
case and in problem 4, and problems 6-23 it does not find a solution
before the limit of 8 GB is found. In contrast, the sequencing ap-
proach will be always the fastest and the most memory efficient how-
ever it always finds the worst makespan. For the largest problem, the
makespan found by the sequencing approach is double the one found
by POMerVHPOP . This means that if the makespan is expressed in
duration POMerVHPOP saves about 460 min in the biggest problem
comparing to the fast sequencing approach even though it takes up
to 7 min to provide a solution. To summarise, we can state that our
merging algorithm wrapped around VHPOP significantly improved
scalability of standalone VHPOP. As POMerVHPOP is not yet opti-
mised, it is the slowest approach.

6.3 POMerV HPOP in comparison to IPC planners

This evaluation is focused on comparing properties of our proposed
algorithm POMerVHPOP with the state of the art planners from IPC
2014, such as DAEY AHSP , YAHSP3-MT, TFD and Itsat, as de-
scribed in Section 2. Additionally, we also compare to the POP-based
OPTIC planner [1] and to VHPOP using the sequencing solution.

6.4 Drivelog domain

For each problem from the Drivelog domain, the aforementioned
planners were called with limited runtime to the time how long
POMerVHPOP has run, see Fig. 3b. In order to express a quality
of the found makespan, we introduce estimates of the best and the
worst makespan. As the worst estimate, we use makespan found by
VHPOP in sequencing approach and as the best estimate, we run
DAEY AHSP for 30 minutes. Fig. 4 shows the recorded makespan
for each problem. Even though the makespan is not a continuous
function, we visualise the worst and the best estimates as a line in
order to highlight these limits.

Note that DAEY AHSP struggles in problems 7 and 11 to provide
a good solution. In both cases, the found solution is even slightly
worse than the worst estimate. Hence, we exclude these problems
from our following analysis. Our algorithm is better than the best es-
timate in seven problems by total difference 53.75. This means that

an average difference per plan is 7.67 units in which makespan is
recorded. As all packages must be loaded and unloaded in both plans,
the POMerVHPOP has only two options how to find better plan -
place loading and unloading in concurrency and find better path be-
tween locations. In 14 cases, POMerVHPOP found worse solution
than the best estimate by total difference 442.75 or 31.63 average
difference. The most of these cases is for problems with more goals
which is expected as the greedy heuristics is driven to a local optima
which occurs more often in bigger problems.

Figure 4. Makespans for problems in Drivelog domain.

6.5 TMS domain
Even though, planners DAEY AHSP , YAHSP and TFD perform very
well in Drivelog domain, they are unable to find a valid solution in
TMS domain as they do not handle concurrent actions correctly. As
result, we are comparing POMerVHPOP with only OPTIC, ITSAT
and we add original VHPOP as well, as it is known that POP plan-
ners are able to handle concurrency naturally. However an interesting
phenomena occurs for our problems – all planners find almost the

7



(a) Makespan (b) Time (c) Memory

Figure 3. Comparision of POMerVHPOP , VHPOP-unifying and VHPOP-sequencing.

same makespans. The negligible difference in OPTIC is caused by a
fact that starts of two actions can never occur at the same time due
to forward chaining so one start is postponed by ∆t = 0.001 after
previous. This phenomena occurs due to a fact that a kiln used for
baking ceramic has no resource limits. Thus all the ceramic pieces
can be baked in parallel.

7 CONCLUSION
We presented an approach for merging of partial order plans espe-
cially suited for mobile service robots that need to execute tasks at
different locations in an environment. The approach is based on first
solving relaxed problems for each individual task, and then perform
search over the solutions for these relaxed problems, stitching them
together in a way that takes advantage of the synergies between the
different tasks. We provided an evaluation of our approach on two
benchmarking domains, showing that, for the class of problems we
are interested in, it is competitive with state-of-the-art temporal plan-
ners. Furthermore, it illustrated our approaches flexibility, as it can
perform well in the two domains we analysed, while the other ap-
proaches have issues in at least one of the domains.

Future work includes developing an automatic relaxation of the in-
dividual problems, and tackling issues related to the execution of the
plans we are generating in a mobile robot. This includes closing the
loop between plan generation and execution, for which we feel par-
tial order plans are better suited than totally ordered ones, and tackle
other common issues for service robotics, such as timing constraints
on task execution, the uncertainty inherent to execution in the real
world, or merging of plans for new tasks arriving during execution.

REFERENCES
[1] J. Benton, Amanda Jane Coles, and Andrew Coles, ‘Temporal plan-

ning with preferences and time-dependent continuous costs’, in Inter-
national Conference on Automated Planning and Scheduling (ICAPS).
AAAI, (2012).

[2] Sara Bernardini and David E. Smith, ‘Developing domain-independent
search control for europa2’, in ICAPS-07 Workshop on Heuristics for
Domain-independent Planning, (2007).

[3] Jacques Bibaı̈, Pierre Savéant, Marc Schoenauer, and Vincent Vi-
dal, ‘An evolutionary metaheuristic based on state decomposition
for domain-independent satisficing planning’, in Proceedings of the
20th International Conference on Automated Planning and Scheduling
(ICAPS-2010), pp. 18–25, Toronto, ON, Canada, (May 2010). AAAI
Press.

[4] K. E. C. Booth, T. T. Tran, G. Nejat, and J. C. Beck, ‘Mixed-integer and
constraint programming techniques for mobile robot task planning’,
IEEE Robotics and Automation Letters, 1(1), 500–507, (Jan 2016).

[5] Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni, Bram
Ridder, Arnau Carrera, Narcı́s Palomeras, Natàlia Hurtós, and Marc
Carreras, ‘Rosplan: Planning in the robot operating system’, in Pro-
ceedings of the Twenty-Fifth International Conference on Automated
Planning and Scheduling, ICAPS 2015, Jerusalem, Israel, June 7-11,
2015., pp. 333–341, (2015).

[6] A. J. Coles, A. I. Coles, M. Fox, and D. Long, ‘Forward-chaining
partial-order planning’, in The International Conference on Automated
Planning and Scheduling (ICAPS-10), (May 2010).

[7] Brian Coltin and Manuela M. Veloso, ‘Online pickup and delivery plan-
ning with transfers for mobile robots’, in Proc. of 2014 IEEE Int. Conf.
on Robotics and Automation (ICRA), (2014).

[8] Brian Coltin, Manuela M. Veloso, and Rodrigo Ventura, ‘Dynamic user
task scheduling for mobile robots.’, in Proc. of 2011 AAAI Workshop
on Automated Action Planning for Autonomous Mobile Robots, (2011).

[9] Patrick Eyerich, Robert Mattmüller, and Gabriele Röger, ‘Using the
context-enhanced additive heuristic for temporal and numeric plan-
ning’, in Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling, ICAPS 2009, Thessaloniki, Greece,
September 19-23, 2009, (2009).

[10] David E. Foulser, Ming Li, and Qiang Yang, ‘Theory and algorithms
for plan merging’, Artificial Intelligence, 57(23), 143 – 181, (1992).

[11] C. Harris and R. Dearden, ‘Contingency planning for long-duration
auv missions’, in 2012 IEEE/OES Autonomous Underwater Vehicles
(AUV), pp. 1–6, (Sept 2012).

[12] Malte Helmert, ‘The fast downward planning system’, Journal of Arti-
ficial Intelligence Research, 26, 191–246, (2006).

[13] M. Do J. Frank M. Iatauro T. Kichkaylo P. Morris J. Ong E. Remolina T.
Smith D. Smith J. Barreiro, M. Boyce, ‘Europa: A platform for ai plan-
ning, scheduling, constraint programming, and optimization’, in Proc.
of 4th International Competition on Knowledge Engineering for Plan-
ning and Scheduling (ICKEPS).

[14] Subbarao Kambhampati, ‘Refinement planning as a unifying frame-
work for plan synthesis’, Artificial Intelligence Magazine, 18(2), 67–
97, (1997).

[15] Subbarao Kambhampati, Craig A. Knoblock, and Qiang Yang, ‘Plan-
ning as refinement search: A unified framework for evaluating design
tradeoffs in partial-order planning’, Artificial Intelligence, 76, 167–238,
(1995).

[16] Wing-Yue Geoffrey Louie, Tiago Stegun Vaquero, Goldie Nejat, and
J. Christopher Beck, ‘An autonomous assistive robot for planning,
scheduling and facilitating multi-user activities’, in Proc. of 2014 IEEE
Int. Conf. on Robotics and Automation (ICRA), (2014).

[17] Conor McGann, Frederic Py, Kanna Rajan, Hans Thomas, Richard
Henthorn, and Rob McEwen, ‘T-rex: A model-based architecture for
auv control’, 3rd Workshop on Planning and Plan Execution for Real-
World Systems, 2007, (2007).

[18] Lenka Mudrova, Bruno Lacerda, and Nick Hawes, ‘An integrated con-
trol framework for long-term autonomy in mobile service robots’, in
2015 European Conference on Mobile Robots (ECMR). IEEE, (2015).

[19] Bernhard Nebel and Jana Koehler, ‘Plan reuse versus plan generation:
A theoretical and empirical analysis’, Artificial Intelligence, 76, 427–
454, (1995).

[20] Filip Dvořák, Arthur Bit-Monnot, Félix Ingrand, and Malik Ghallab, ‘A

8



flexible anml actor and planner in robotics’, in ICAPS PlanRob Work-
Shop, Portsmouth, USA, (June 2014).

[21] Masood Feyzbakhsh Rankooh and Gholamreza Ghassem-Sani, ‘New
encoding methods for sat-based temporal planning’, 110–117, (2013).

[22] Maurizio Di Rocco, Federico Pecora, and Alessandro Saffiotti, ‘When
robots are late: Configuration planning for multiple robots with dy-
namic goals.’, in Proc. of 2013 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), (2013).

[23] Earl D. Sacerdoti, ‘The nonlinear nature of plans’, in Proceedings of the
4th International Joint Conference on Artificial Intelligence - Volume 1,
IJCAI’75, pp. 206–214, (1975).

[24] Reid G. Simmons and Håkan L. S. Younes, ‘VHPOP: versatile heuristic
partial order planner’, CoRR, abs/1106.4868, (2011).

[25] D. E. Smith, J. Frank, and W. Cushing, ‘The anml language’, in ICAPS-
08 Workshop on Knowledge Engineering for Planning and Scheduling
(KEPS), (2008).

[26] A. Tate, ‘Generating project networks’, in Proceedings of the Fifth In-
ternational Joint Conference on Artificial Intelligence, IJCAI’77, pp.
888–893, (1977).

[27] Ioannis Tsamardinos, Martha E. Pollack, and John F. Horty, ‘Merg-
ing plans with quantitative temporal constraints, temporally extended
actions, and conditional branches’, in Proceedings of the Fifth Interna-
tional Conference on Artificial Intelligence Planning Systems, Brecken-
ridge, CO, USA, April 14-17, 2000, pp. 264–272, (2000).

[28] Roman Van Der Krogt and Mathijs De Weerdt, ‘Plan repair as an exten-
sion of planning’, in In Proceedings of the 15th International Confer-
ence on Automated Planning and Scheduling (ICAPS-05, pp. 161–170,
(2005).

[29] Manuela M. Veloso, Joydeep Biswas, Brian Coltin, Stephanie Rosen-
thal, Thomas Kollar, Cetin Mericli, Mehdi Samadi, Susana Brandao,
and Rodrigo Ventura, ‘Cobots: Collaborative robots servicing multi-
floor buildings.’, in Proc. of 2012 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), (2012).

[30] Vincent Vidal, ‘YAHSP2: Keep it simple, stupid’, in Proceedings of
the 7th International Planning Competition (IPC-2011), pp. 83–90,
Freiburg, Germany, (June 2011).

[31] Vincent Vidal, Lucas Bordeaux, and Youssef Hamadi, ‘Adaptive K-
parallel best-first search: A simple but efficient algorithm for multi-core
domain-independent planning’, in Proceedings of the 3rd Symposium
on Combinatorial Search (SOCS-2010), pp. 100–107, Stone Mountain,
GA, USA, (July 2010). AAAI Press.

[32] David Wang and Brian C. Williams, ‘tburton: A divide and conquer
temporal planner’, in Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA., pp. 3409–3417, (2015).

[33] Daniel S. Weld, ‘An introduction to least commitment planning’, AI
magazine, 15(4), 27, (1994).

[34] Qiang Yang, Intelligent Planning: A Decomposition and Abstraction
Based Approach, Springer-Verlag, London, UK, UK, 1997.

9


