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Abstract— We present a life-long mapping and localisation
system that enables long-term autonomous operation of mobile
robots in changing environments. The core of the system is
a spatio-temporal occupancy grid which explicitly represents
persistence and periodicity of the individual cells and can
predict the probability of their occupation in the future. During
autonomous navigation, our robot builds temporally local
maps and integrates then into the global spatio-temporal grid.
Through re-observation of the same spatial locations, the spatio-
temporal grid obtains information about long-term environment
dynamics and gains the ability to predict the future environment
states. This predictive ability allows to generate time-specific 2d
maps which are used by the robot’s localisation and planning
modules. By analysing data from a long-term deployment of
the robot in a human-populated environment, we show that the
proposed spatio-temporal representation improves localisation
accuracy and the efficiency of path planning. To allow the use
of the method by other roboticists, we show how to integrate
it in the ROS navigation stack, which is a de-facto standard in
mobile robotics.

Index Terms— mobile robotics, long-term autonomy

I. INTRODUCTION

One of the many challenges that robots have yet to
achieve is the ability of long-term autonomous operation in
changing environments. This is particularly difficult because
the efficiency of mobile robot operation depends heavily on
the quality of the available knowledge about the environment.

Many tasks performed by mobile robots take place in
environments where humans perform their usual activities,
which causes the environments to change constantly. For
example, doors are open and shut, chairs are pushed in and
out of tables and furniture is occasionally rearranged.

This means in long-term scenarios, having an environment
model that assumes a static world will inevitably lead to
robot navigation failures as the knowledge base becomes
obsolete over time. Having an obsolete map will lead to
many different types of failure such as mislocalisations, nav-
igating to areas that are not accessible anymore or ignoring
alternative, shorter paths.

Many authors have tried to deal with changing environ-
ments by proposing representations that suppress the effect
of the changes [1], [2], keep track of different environment
states and choose the one closest to the current state [3], [4],
or perform constant remapping, keeping up with the latest
environment state [5], [6]. Nevertheless these approaches are
usually tailored to specific knowledge representation models
and system architectures. We propose an architecture for
life-long mapping and persistent localization that is easily
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Fig. 1: Predicted and created 2D grids with patrol locations.

Environment change example (cubdoard doors open/closed)

Fig. 2: Example of the regular changes and corresponding
map sections predicted for early morning (left) and late
afternoon (right).

integrated within the ROS framework [7]. Through extension
of the ROS navigation stack by an additional ROS gmapping
module, we obtain a system that can create an up-to-date,
independent environment map on-the-fly. To enforce the
compatibility of the new map with the previous environment
models, we propose to use the position estimates of the ROS
AMCL module as virtual odometry for the gmapping node.

The up-to-date maps are integrated into a spatio-temporal
occupancy grid where each cell contains a frequency-
spectrum of its past states [8] and allows the prediction of
the cell’s future states at particular times. Previous work
has shown that the predictive capabilities of the spectral
models improve visual-based mobile robot localisation [9],
topological navigation [10] and task planning [11]. However,
the previous works were aimed at proof-of-concept verifica-
tion of the Frequency Map Enhancement (FreMEn) methods
using custom modules that were not fully integrated in the
ROS navigation framework. In this work, we show that once
the ROS navigation stack is extended so that it allows the
creation of new maps, integration of the Frequency Map
Enhancement is straightforward, as it simply replaces the
mapserver ROS module.

To validate the proposed method, we set up our robot
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to routinely patrol a human populated office environment,
which was subject to frequent changes due to the people’s
activity. During each patrol run, which would start and end
at the robot’s charging station, a new map was created and
integrated into the FreMEn spatio-temporal models. At the
start of each patrol run, the spatio-temporal model predicted
a time-specific map that was used by the robot’s planning and
localization methods. As the model accumulated enough data
to infer the long-term environment dynamics, the predicted
maps started to differ according to the time of the patrols.
For example, the spatio-temporal model predicted that on
weekday afternoons, doors of certain cupboards are more
likely to be open than during nights, see Figure 2.

To evaluate how the predictive capability of our life-
long navigation method affects the efficiency of the robot
operation, we provide statistics about the accuracy of the
robot localization, navigation performance, planning failures
and map quality.

Since the idea of Frequency Map Enhancement [8], which
allows to introduce the notion of dynamics into most robotic
environment models, was introduced before, the contribution
of this work lies in different aspects. In particular, we show
that the Frequency Map Enhancement can be easily extended
to model not only cyclic-periodic changes, but also their
persistence. We propose an architectural modification of the
ROS navigation stack that allows for straightforward update
of the environment models, which enables ROS integration of
the proposed method in an elegant and straightforward way.
Last, but not least, we demonstrate that the introduction of
the method improves the efficiency of the robot operation in
long-term scenarios.

II. RELATED WORK

Long-term robot navigation is highly dependant on the
precision of the world model, since the robot requires such a
model to localise itself, plan its trajectory and find obstacle
free paths. Traditionally this model of the environment is
called a map and creating it for static environments is a
problem that has been widely studied for a long time [12].
However, dynamic scenarios, where the world is constantly
changing and uncertainty grows with time, still represent
a big problem that is subject to research by the robotics
community.

Some authors try to handle these dynamics by finding
the most static landmarks and filtering out of the model
those that change over time [2]. Another approach involves
tracking these “moving” landmarks and labelling them as
dynamic [13] In general, these approaches can handle some
problems of navigating in a dynamic environment, but they
cannot deal with long-term changes to the structure of the
environment, which translates into a less robust long-term
behaviour.

Other approaches never assume the map to be complete
and perform continuous mapping, adding new features to
the map with every observation [5], [6], [14]. In these ap-
proaches, the key problem is managing map size, especially

in long term scenarios where the robot might be making new
observations for several weeks or months.

To tackle the long-term challenges of robust navigation
in dynamic scenarios, some approaches gather and maintain
different temporal representations simultaneously and choose
the best one according to its consistency with the current
perception of the world (e.g. [3], [4]). However, these ap-
proaches are costly in terms of memory and computational
efficiency.

Considering this computational cost, many authors have
tried taking these approaches to a discrete, topological,
level where computational requirements are lower. At this
level, most representations use visual appearance for place
recognition [15], [16], having shown that visual features
can be used for robust place identification. However, these
approaches present a decrease in robustness when facing
long-term changes [17], as again they are prone to error when
features appear and disappear over time. In [9], [10] dynamic
models of the topological space that explicitly represent the
environment changes and try to identify patterns by means
of the Fourier transform are presented, for both localisation
(node level) and navigation (transitions between nodes). This
ability of pattern identification allows for state prediction,
which as shown in [10] can improve navigation performance.
However, these approaches are still at the topological level
and there is no model that can be used for low-level naviga-
tion on node transitions, and the proposed model is limited
to higher level planning tasks.

Other authors have looked into metric level representations
with state prediction abilities. In [18] the authors propose a
new representation that models occupancy grid maps in the
wavelet space in order to optimize the amount of information
that has to be processed for path planning, and [19] presents
a representation of the environment which models transitions
of dynamic objects in the environment, by learning motion
patterns from the temporal signal of occupancy in a cell.

The approach presented in this paper presents an occu-
pancy grid map where each cell in the map is enhanced
with a spectral model [20] that allows for the prediction of
the cell’s state at specific times. We show how localisation
and navigation are improved using such a representation
compared to a static occupancy grid map, which is still the
most common approach.

III. SYSTEM DESCRIPTION

A major drawback of the previously proposed dynamic
mapping techniques is the fact that they are tailored to
particular representations that only work for specific system
architectures. Unlike these methods, the objective of this
work was to develop an environment representation that is
general enough to allow its use with most of the environment
models used in robotics. Moreover, we wanted the system
to be easy to use by other researchers, and therefore, it
was implemented as a module that is compatible with the
navigation stack [21] of the Robot Operating System (ROS),
which is considered a standard in robotics nowadays. The

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Received March 1, 2016.



software we use is freely available asa component of the
STRANDS system [22].

In principle, the framework allows to keep several spatio-
temporal models that can be used for localisation simultan-
neously as proposed by [3], [4]. Building a separate map
of the current environment layout allows to postpone the
decision on which of the global spatio-temporal models
will be updated similarly to the experience-based approach
proposed by [4]. This would not have been possible with a
classic continuous SLAM approach. In this work, we use
only one global spatio-temporal representation and if the
curretly build map is detected as anomalous it is simply
rejected.

A. Continuous Mapping with the ROS navigation stack

The traditional configuration of the navigation stack has
four main components, see left part of Figure 3: the robot,
which apart from being the component that interacts with
the world, also provides all the necessary sensory input and
coordinate system transformations; the map server provides
the map that will be used by the localisation and planning
systems, where this map is usually created in a previous
stage; the AMCL localisation system, which provides position
estimates in the map coordinate frame using the sensory input
from the robot; and a move base motion planner that uses
the map, position estimate and sensor information to plan
the robot’s motion.

Fig. 3: Classic and proposed navigation stack.

One of the key requirements of long-term operation is the
ability to keep the environment models up-to-date. This does
not necessarily mean that the robot has to be able to make
long-term predictions, but that it should be able to update its
map whenever a change occurs. In our architecture, a tradi-
tional SLAM-based method is used to create a completely
new map every time the robot performs a patrol run and
integrate this single map into the proposed spatio-temporal
representation.

The ability to update the environment map is achieved
through a minor modification of the ROS navigation stack,
see right part of Figure 3. The main changes are the
continuous mapping component and the spatio-temporal rep-
resentation, called the FreMEn map, which provides time-
specific maps to the other system modules. Continuous
mapping is achieved by setting up the gmapping module
to work in parallel with the rest of the navigation stack
during robot operation and creating a new ‘patrol’ map, see

Figure 3. However, the SLAM-based gmapping implemen-
tation is subject to a slight localisation drift and running it
as a completely separate process would cause its map to
diverge from the global ‘FreMEn’ one, which would make
its integration into the FreMEn map impossible. To prevent
this drift, we simply inject the output of the AMCL position
estimation in the odometry input of the gmapping module.
This position injection ensures that the individual cells of
the ‘patrol’ and FreMEn maps correspond closely to each
other and that the cell differences are caused by environment
changes and not by localisation drift. This makes integration
of the ‘patrol’ map into the global one a straightforward
process.

B. FreMEn 2D Grid

The idea of the FreMEn map is based on the observa-
tion that most of the environment states are not changing
chaotically and the nature of their dynamics can be learned
from their repeated observations. Thus, the FreMEn map is
a 2d occupancy grid that does not represent the uncertainty
of the individual cells by a constant probability, but as a
function of time, which is estimated from re-observations
of the cell occupancy over long time periods. The FreMEn
map can integrate local 2d grids created at different times
(‘patrol maps’) into a global spatio-temporal representation
that captures not only the spatial environment layout, but
also persistence and cyclic behaviour of its changing states.

From an architectural point of view the FreMEn map
components provides the 2d environment maps in the same
way as the original ROS map server. However, unlike the
map server, which can load, save and transmit static maps
only, the FreMEn map generates time-dependent maps that
reflect the expected environment state at the time of robot
operation.

Although the model update step can be performed at any
time, but the mapping process should be long enough to
filter out fluctuations in the environment, and the map update
should only happen when the robot is not moving to avoid
anomalous maps.

C. Anomaly detection

However, continuous mapping is exposed to two signifi-
cant threats. First, the gmapping method can fail and produce
an incorrect map, which, when integrated into the FreMEn
map, might corrupt the entire spatio-temporal representation.
The second threat is more subtle: due to the environment
changes, sensor noise and localisation inaccuracies, exact
registration of the recently-gathered ‘patrol’ maps with the
FreMEn grid is not absolutely precise. This introduces a
certain amount of noise every time a new map is integrated
into the global one. As the noise accumulates, the global
map might become less and less accurate over time, which
might lead to its destruction.

Both effects exhibit themselves at the moment when a new
map is being integrated into the FreMEn grid. Therefore,
the FreMEn map checks how probable is the new map,
i.e. how much it conforms to the predicted maps for that
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particular time. This allows to identify maps that differ
significantly from the predicted representations. We assume
that the number of changes in our environment is low and
reject these maps as outliers. However, the maps could also
be kept as alternative representations of the environment as
mentioned at the start of this section.

IV. FREQUENCY MAP ENHANCED OCCUPANCY GRID

The spatio-temporal representation that forms the core of
our approach is a 2d occupancy grid that models the occu-
pancy of each cell by a probabilistic function of time. This
probabilistic function consists of two distinct components:
persistency and periodicity. The persistency component acts
as a short-term memory that represents the expectation that
the cell state did not change since the last observation
if the observation was performed recently. The periodicity
component is related to the fact that from a long-term
perspective (days to months), some of the environment states
might be influenced by hidden processes that could exhibit
certain periodicities.

The idea of identifying periodic patterns of binary envi-
ronment states via the Fourier Transform and using them for
future predictions was originally presented in [20]. Later on,
the authors demonstrated that the predictive capability of the
proposed representation improves mobile robot localization,
planning and exploration [8].

In our version of FreMEn, we represent the periodic
behaviour of each cell by its sparse frequency spectrum,
which is a set A of complex numbers αk. These correspond
to the set Ω of modeled periodicities ωk that might be
present in the environment. The persistence of each state
is represented by the mean time between state transitions τ
and the time and value of the last observation tl and s(tl).
Moreover, we store each cell’s number of observations n and
the cell’s mean occupancy µ. Each time a cell occupancy s(t)
is observed at time t, the aforementioned representation is
updated as follows:

µ ← 1
n+1 (nµ+ s(t) ),

αk ← 1
n+1 (nαk + s(t)e−jtωk ) ∀ωk ∈ Ω,

τ ← 1
n+1 (nτ + |s(t)−s(tl)|

t−tl ),

s(tl) ← s(t),

tl ← t,

n ← n+ 1.

(1)

The proposed update step is analogous to incremental averag-
ing – the absolute values of |αk| actually correspond to the
average influence of a periodic process (with a frequency
of ωk) on the values of s(t). Note that the size of the
representation of the state (i.e. the number of elements in A)
is independent of the number of observations, which means
that the memory requirements of the proposed representation
do not grow over time.

To predict the value of state s(t) for a future time t, we
first sort the set A descendingly according to the absolute
values |αk|. Then, we extract the first m elements αl along

with their corresponding frequencies ωl and calculate the
state’s probability over time as

p(t) = s(tl)e
tl−t
τ + f(t)(1− e

tl−t
τ ), (2)

where

f(t) = ς(µ+

m∑
l=1

|αl|cos(ωkt+ arg(αl))), (3)

where ς(.) ensures that p(t) ∈ [0, 1]. Note that for
preditions which immediatelly follow the last observation,
i.e. |t− tl| << τ , the expression e

tl−t
τ is close to 1, which

means that the expected occupancy would be the same as
the one recently observed. If we use Equation 2 to predict
further into the future, i.e. |t−tl| >> τ , the expression e

tl−t
τ

is close to 0, which supresses the effect of the last observation
on p(t) and emphasizes f(t), which represents the behaviour
of the modelled cell from a long-term perspective.

Note that the choice of m, which determines how many
periodic processes are considered for prediction, and Ω,
which determines the periods of the potential cyclic pro-
cesses, are crucial for the prediction performance. Omitting
some periods from the set Ω would prevent the system
from capturing the processes with these periodicities, while
including too many elements in Ω would cause the model
to consume too much memory. Setting m too low results in
omitting some environment processes that actually influence
the state, while setting m too high includes components of
A that are caused by sensor noise. The discussion about the
optimal choice of m and Ω is beyond the scope of this paper.
In our case, m was set to 2 and the Ω was selected as in
the paper [23], where the choice of m and Ω is explained in
detail.

V. EXPERIMENTS

To evaluate the utility of the proposed dynamic map for
long-term deployment of mobile robots, we used data that
were gathered during several days of routine autonomous
operation of a mobile robot at the Lincoln Centre for
Autonomous Systems. The SCITOS-G5 mobile robot (see
Figure 4) regularly patrolled a large open-plan office every
ten minutes while recording data from its odometry, RGB-D
and laser range-finding sensors. Its autonomous navigation
was based on the ROS navigation stack, which used our
FreMEn 2D grid instead of the traditional map server. To
achieve autonomous operation, the robot uses a precise
visual servoing method for reliable docking to its charging
station [24]. Our evaluation was based on three criteria:
localization accuracy, navigation efficiency and map quality.
To evaluate the localization accuracy, we covered part of
the environment with an external localization system, which
provided us with a ground truth of the robot position with
millimetre precision. To quantify the efficiency of the robot
navigation, we measured the time it took to perform a patrol
where the robot had to visit five different locations. We also
measured the times it took for the robot to navigate through
a narrow area that exhibited regular changes. To assess the
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Fig. 4: Overview and 2D occupancy grid of the Witham
Wharf office.

quality of the built maps, we quantified the amount of noise
in the maps.

A. Localisation accuracy

To evaluate the accuracy of the robot self-localization,
we installed an independent localisation infrastructure at
the Witham Wharf office. The infrastructure consisted of
two ceiling-mounted fish eye Kodak PixPro SP360 cameras,
a large circular marker on top of the robot and another
set of markers close to the robot’s charging station. While
the marker on the robot’s top was used to determine its
x and y position, the markers positioned at the charging
station area allowed for precise, independent estimation of
the robot heading. Detection and position estimation of
the markers, localisation system calibration and coordinate
system setup was based on a freely-available, open-source
method presented in [24]. To ensure millimetre accuracy of
the localisation system, we had to use rather large markers
as suggested by the mathematical model of the system [24],
see Figure 5. We selected approximately 2000 images in 20
different image sequences captured by the overhead cameras
and established the positions of the robot. To avoid potential
accuracy drop-off caused by the use of the wide-angle lens
cameras, the selected images have the robot position close
to the center of the image.

The individual sequences captured the movement of the
robot through a 1.5 m wide corridor outlined by eight storage
cupboards. These cupboards are used by the research staff of
the office and some of the cupboard doors are typically open
during the day and closed at night. The cupboards are 0.5 m
deep, so when a cupboard door is left open, the corridor
appears to be 2 m instead of 1.5 m wide and its center appears
to be offset by 0.25 m aside. Thus, when moving through this
corridor, the discrepancy of the 2D map with the perceived

Fig. 5: Example image captured by the ceiling-mounted
camera of the external localisation system. The position of
the circular marker on top of the robot is used as a ground
truth to determine the accuracy of the robot’s localization
system.

environment state might negatively affect the accuracy of
robot self-localization.

In our case, the 20 m range of the robot laser rangefinder
ensures that it will almost always perceive areas that did not
change, which should keep the position estimate accurate.
However, if the range of the laser sensor was shorter, e.g.
when using a Hokyo URG04, then the localization accuracy
would be affected severely.

To estimate the impact of the environment change and sen-
sor range on the localization precision, we processed laser,
odometry and ground truth data from 20 different passes of
the robot through the monitored corridor. To emulate the
limited range of the laser rangefinder, we trimmed the laser
data at different lengths. Using the trimmed data from 20
different runs, we performed standard ROS-based AMCL
localisation on the ‘static’, ‘averaged’ and ‘predicted’ 2d
maps and compared the robot positions to the ground truth
obtained by the overhead cameras. The results shown in
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Fig. 6: Localization error for different ranges of the laser
scanner and different types of the maps. Predicting a map
for a particular time improves localization accuracy, although
the improvement is only marginal for long-range sensors.

Figure 6 indicate that use of the time-specific, predicted maps
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results improves the localization precision in a significant
way if the range of the laser rangefinder is lower than the
overall map size. If the rangefinder provides a complete
overview of the operational environment, the reduction of the
position estimation error is only marginal. However, a small
difference in localization precision can have a significant
impact on the efficiency of the robot navigation and quality
of the constructed maps.

B. Navigation efficiency

To evaluate the navigation efficiency, we processed naviga-
tion statistics of 60 different patrol runs. During each patrol,
the robot undocked from its charging station, visited several
different locations in the office (see Figure 2) and returned
back to recharge. The data from each patrol run contains
the robot’s average speed and the number of events where
standard navigation behaviour failed and the robot had to
perform custom recovery behaviours in order to proceed with
its patrol. The gathered navigation statistics were divided into
three groups of 20 patrols each. The first group contained
patrols that were happening during weekends, where the
amount of environment changes in the office is more likely to
be low. The second group contained patrols from weekday
afternoons, where the robot was using an ‘averaged’ map,
which slowly adapts to the observed change. The third group
contained patrols from weekday afternoons, where the robot
was using a ‘predicted’, time specific map. Table I indicates

TABLE I: Navigation statistics

Environment Static Changing
Map Static Static Predicted

Average speed [m
s

] 0.21 0.15 0.18
Recovery events [-] 1 21 12

that in a static environment, the robot could navigate effi-
ciently even when using a static map, but as soon as the
environment began to change, the navigation efficiency was
affected in a negative way. However, the negative effect of the
changes was slightly lowered through the use of the proposed
map, which represents the environment changes in an explicit
way.

C. Map quality

This experiment evaluates the effect of an anomalous map
detection mechanism. This mechanism verifies whether a
newly created map conforms with the representation that was
gathered so far, which allows to reject corrupt or otherwise
incorrect maps. To verify the utility of the anomaly detection
mechanism, we replayed laser and odometry data from 100
consecutive patrols with the anomaly detection component
being deactivated and compared the resulting spatio-temporal
representation with the one built while the anomaly detection
was used to rejectd potentially corrupted maps. Figure 7
shows the amount of changes detected in the consecutively
created maps. The figure shows that at a certain point (run
36), integration of an incorrect map corrupts the FreMEn

grid, which breaks the map update process. However, the
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Fig. 7: Effect of the anomalous map detection and rejection.
The peak in the graph indicates mapping system failure and
consequent discrepancy of the individual maps. The two
maps show the resulting models with and without anomaly
rejection.

anomalous map rejection mechanism prevents this situation
and the map update process continues to produce a faithful
2D environment model.

VI. CONCLUSION

We presented an approach for mobile robot life-long map-
ping and persistent localization in changing environments.
First, we show that the ability to update the environment
model does not require introduction of custom modules to
the ROS navigation stack. Instead, the navigation stack can
be augmented by the gmapping module that builds a new
map every time the robot navigates around its operational en-
vironment. To ensure that the new map is consistent with the
previously built model, we propose to use the AMCL module
position estimation as virtual odometry for gmapping. Sec-
ond, we demonstrate that maps of the individual navigation
runs can be integrated into a spatio-temporal model that
captures the persistency and periodicity of the environment
changes. This spatio-temporal environment representation,
which explicitly models the environment dynamics, is used
to predict time-specific maps, which serve our robot both for
localization, path-planning and navigation.

Our experimental evaluation, based on data gathered over
the course of several weeks, shows that using the model’s
predictive capabilities improves the accuracy of robot local-
ization and increases the efficiency of the robot navigation.
The tests indicate that the proposed environment model is
especially beneficial for mobile robots that do not have a
complete overview of their environment, e.g. due to the
limited sensor range such as when operating outdoors or in
large warehouses.

While encouraging, the experiments were too short to
demonstrate that the proposed method enables life-long
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autonomous operation in changing environments. Therefore,
as part of our project goals [22], we plan the deployment
of the method on a mobile robot that will operate at a large
care home for a period of four months.

Moreover, we plan to extend the anomaly detection mech-
anism so that an anomalous map would not be rejected, but
stored as an alternative map. This alternative map would
represent a hypothesis that that the map change was caused
by an actual environment change rather than mapping mal-
function. This could result in additional robustness of the
system to significant environment changes.
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for long-term autonomy,” in International Conference on Advanced
Robotics (ICAR), 2013.
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T. Duckett, and M. Mejail, “A practical multirobot localization sys-
tem,” Journal of Intelligent & Robotic Systems, vol. 76, no. 3-4, pp.
539–562, 2014.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Received March 1, 2016.


