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FreMEn: Frequency Map Enhancement for Long-Term Mobile
Robot Autonomy in Changing Environments

Tomáš Krajnı́k, Jaime P. Fentanes, João M. Santos, Tom Duckett

Abstract—We present a new approach to long-term mobile
robot mapping in dynamic indoor environments. Unlike tradi-
tional world models that are tailored to represent static scenes,
our approach explicitly models environmental dynamics. We
assume that some of the hidden processes that influence the dy-
namic environment states are periodic and model the uncertainty
of the estimated state variables by their frequency spectra. The
spectral model can represent arbitrary timescales of environment
dynamics with low memory requirements. Transformation of the
spectral model to the time domain allows for the prediction of the
future environment states, which improves the robot’s long-term
performance in dynamic environments. Experiments performed
over time periods of months to years demonstrate that the
approach can efficiently represent large numbers of observations
and reliably predict future environment states. The experiments
indicate that the model’s predictive capabilities improve mobile
robot localisation and navigation in changing environments.

Index Terms—Mapping, Localization, Long-Term Autonomy

I. INTRODUCTION

Advances in the field of mobile robotics are gradually en-
abling long-term deployment of autonomous robots in human
environments. As these environments change over time, the
robots have to deal with the fact that their world knowledge
is incomplete and uncertain. Although probabilistic mapping
methods [1] have demonstrated the ability to represent in-
complete knowledge about the environment, they generally as-
sume that the corresponding uncertainty is caused by inherent
sensor noise rather than by natural processes that cause the
environment to change over time. Thus, traditional mapping
methods treat measurements of dynamic environment states
as outliers [2]. This undermines the ability of the mapping
methods to reflect the environment dynamics and provide sup-
port for long-term mobile robot autonomy. Recent works have
demonstrated that exploiting the outlying measurements allows
to characterize some environment changes, which improves
robot localisation in changing environments [3], [4], [5], [6].

In our approach, we assume that some of the mid- to long-
term processes that exhibit themselves through environment
changes are periodic. These processes can be both natural, e.g.
seasonal foliage changes, or artificial, e.g. human activities
characterized by regular routines. Regardless of the primary
cause of these processes, we hypothesize that the regularity of
the environment changes can be exploited by robots to build
more robust representations of their surroundings. We propose
to represent the probability of the elementary environment
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Fig. 1. Frequency-enhanced model of a single image feature visibility. The
observations of image feature visibility (red) are processed by the FreMEn
method that extracts the time-dependent probability of the feature being visible
(green). This allows to reconstruct and predict the feature’s visibility for a
given time (blue).

states by combination of harmonic functions whose amplitudes
and periodicities relate to the influences and frequencies of
the hidden processes that cause the environment variations.
This allows for efficient representation of the spatio-temporal
dynamics as well as prediction of future environment states. To
obtain the parameters of the harmonic functions, we propose
to treat the long-term observations of the environment states
as signals, which can be analysed in the frequency domain.

An advantage of our approach is its universal applicability –
it can introduce dynamics to any stationary environment
model that represents the world as a set of independent
components. Introduction of the dynamics is achieved simply
by representing the uncertainty of the elementary states as
probabilistic functions of time instead of constants that are
updated only when the given state is observed by a robot.
The approach, which was originally introduced in [7], was
successfully applied to landmark maps to improve localisa-
tion [4] and to topological maps to improve robotic search [8].
The application of the method to occupancy grids not only
reduces memory requirements [9], but also enables lifelong
spatio-temporal exploration [10] of changing environments. In
this paper, we summarize and extend the previous results by
a thorough examination of the method’s ability to efficiently
represent environment changes over long time periods, predict
the future environment states and use these predictions to
improve the robustness of robot localisation and navigation.
While the main aim of our method is to deal with periodic
changes, we also show that its combination with a persistence
model allows to learn and deal with nonperiodic dynamics as
well.

II. RELATED WORK

While mapping of stationary environments has been widely
studied [11] and generating large-scale stationary environment
models has been in the spotlight of robotics research for a long
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time, mapping methods that explicitly model the environment
dynamics gained importance only after robots attained the
ability of autonomously operating for longer time periods.

The first approaches to address the problem of dynamic
environments were object-centric. These methods identify
moving objects and remove them from the environment rep-
resentations [12], [13] or use them as moving landmarks [14],
[15] for self-localisation. But not all dynamic objects actually
move at the moment of mapping, which means that their
identification requires long-term observations. To tackle this
issue, [16] proposes to process several 3D point clouds of
the same environment obtained over a period of several
weeks to identify and separate movable objects and refine the
static environment structure at the same time. While object-
centric representations can handle some problems of dynamic
mapping, they still assume that most of the environment is
static, which makes them unsuitable for scenarios where the
environment varies significantly.

Considering this aspect, other authors propose approaches
that assume the map to never be complete and perform
mapping in a continuous manner, adding new features to the
map every time the robot observes its environment. In these
approaches, managing map size is crucial [17], [18], [19], [20].

Alternatively, some authors propose systems that learn a
fixed set of possible states for the dynamic objects, e.g.
corresponding to open and closed doors [21], [22], which can
limit the map size, but this approach is limited in the real
scenarios, where the number of states is unpredictable.

Other approaches do not attempt to explicitly identify
movable objects, but rely on less abstract environment rep-
resentations. For example, [17] and [23] represent the envi-
ronment dynamics by multiple temporal models with different
timescales where the best map for localisation is chosen by
its consistency with current readings. Dayoub et al. [24] and
Rosen et al. [25] each present a feature persistence system
based on temporal stability in sparse visual maps that can
identify environmental features which are more likely to be
stable. Yguel et al. [26] propose to model occupancy grid
maps in the wavelet space in order to optimize the amount of
information that has to be processed for path planning.

Churchill and Newman [3] propose to integrate similar
observations at the same spatial locations into ‘experiences’
which are then associated with a given place. They show
that associating each location with multiple ‘experiences’
improves autonomous vehicle localisation. Tipaldi et al. [5]
represent the states of the environment components (cells of
an occupancy grid) with a hidden Markov model and show that
their representation improves localisation robustness. Kucner
et al. [27] learn conditional probabilities of neighbouring cells
in an occupancy grid to model typical motion patterns in
dynamic environments. Another method can learn appearance
changes based on a cross-seasonal dataset and use the learned
model to predict the environment appearance [6] showing that
state prediction can be useful for long-term place recognition
in changing environments. Finally, Krajnik et al. [7] represent
the environment dynamics in the spectral domain and apply
this approach to image features to improve localisation [4] and
to occupancy grids to reduce memory requirements [9].

While most of the aforementioned methods are aimed
specifically at the problem of lifelong localisation, our ap-
proach was shown to be applicable in other scenarios as
well [28]. In this paper, we extend the results and experimental
analysis presented in [7], [4], [9]. The efficiency of spatio-
temporal representation, which was only briefly mentioned
in [9], is now thoroughly investigated on a FreMEn 4D
(3D+time) occupancy grid, which represents almost 2 million
observations of a small office over 112 days. Compared to the
work presented in [4], which provides only a coarse evaluation
compared to a naı̈ve localisation method, the experiments in
this paper demonstrate how the localisation robustness depends
on the number of predicted visual landmarks, compare its
performance to the experience-based approach [3] and present
additional evaluation on outdoor datasets. This paper also
demonstrates that integration of the method in the ROS navi-
gation stack improves both the accuracy of robot localisation
and efficiency of navigation.

III. SPECTRAL REPRESENTATION FOR SPATIO-TEMPORAL
ENVIRONMENT MODELS

Many environment models used in mobile robotics consist
of independent components that can be in two distinct states.
For example, cells of an occupancy grid are occupied or
free, edges of a topological map are traversable or not,
doors are open or closed, rooms are vacant or occupied,
landmarks are visible or occluded, etc. The states of the real
world cannot be observed directly, but through sensors that
are affected by noise. Thus, the state of each world model
component is uncertain, which is typically represented by the
probability of a particular component being in a given state,
e.g. the uncertainty of occupancy of the jth cell is typically
represented by pj = P (sj = occupied). This allows us
to counter the effect of noisy measurements by employing
statistical methods, such as Bayesian filtering [1]. However,
the mathematical foundations described in [1] assume a static
world, i.e. the probabilities of the world components are
assumed to be constant. While this still allows to update the
environment model if a change has been observed for long
enough, the old states are simply ‘forgotten’ over time and
the system does not learn from the change observed.

We propose to represent the uncertainty of the environment
states not as probabilities pj , but as probabilistic functions of
time pj(t). Assuming that the variations of the environment
are caused by a number of unknown processes, some of which
exhibit periodic patterns, the pj(t) can be represented by a
combination of harmonic functions that relate to these peri-
odic processes. To identify the parameters of these harmonic
functions, we propose to use spectral analysis methods, namely
the Fourier transform [29].

A. The Fourier Transform

The Fourier Transform is a well-established mathematical
tool widely used in the field of statistical signal processing.
In a typical case, it transforms a function of time f(t), into
a function of frequency F (ω) =

∫ +∞
−∞ f(t) e−jωtdt. The

function F (ω) is commonly referred to as the frequency
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spectrum of f(t). The Fourier transform is invertible, and
therefore, one can recover the function f(t) from its spectrum
F (ω), i.e. f(t) = F ′(F (ω)). If one wants to analyze or alter
the periodic properties of a process characterized by a function
f(t), it is reasonable to calculate its spectrum F (ω), perform
the analysis or alteration in the frequency domain, and then
transform the altered spectrum F ′(ω) back to the temporal
domain. Such a process is referred to as spectral analysis.

Typically, F (ω) is a complex-valued function, whose abso-
lute values and arguments correspond to the amplitudes and
phase shifts of the frequency components ω. Given that f(t)
is a real periodic discrete function, the spectrum F (ω) can be
represented by a finite set of complex numbers.

B. The proposed representation

Although the approach can be applied to most state-of-the-
art representations, we will explain it with an occupancy grid.
To keep this explanation simple, we assume that the occupancy
of the individual cells is independent of each other and explain
the approach on a single cell. So let us assume that at a given
time t, a single cell of an occupancy grid is either occupied
or free. Let us represent the state as a binary function of time
s(t) ∈ {0, 1}, where s(t) = 0 corresponds to the cell being
free at time t and vice versa.

The main idea behind the proposed model is to treat the
values of the function s(t) as real numbers and calculate
the Frequency spectrum of the sequence s(t) by means of
a (Discrete) Fourier transform as

S(ω) = F(s(t)). (1)

The resulting frequency spectrum S(ω) is a discrete complex
function whose absolute values |S(ω)| correspond to the
influences of periodic processes on s(t). In other words, each
local maximum of |S(ω)| indicates that the function s(t) might
be influenced by a hidden process whose period is T = 2π/ω.
Since we do not want to represent the state s(t) directly, but
as a combination of l periodic processes, we select the l most
prominent (i.e. of highest absolute value) coefficients of the
spectrum S(ω) and store them along with their frequencies ωi

in a set P(ω). The coefficients stored in the set P are then
used to recover a function p(t) by means of the Inverse Fourier
Transform

p(t) = ς(F−1(P (ω))), (2)

where ς denotes a function that ensures that p(t) ∈ [0, 1]. For
our purposes, we choose a simple saturation function ς(x) =
min(max(x, 0), 1), which achieved better results than other
normalisation schemes in our experiments.

Now, let us assume that

P (s(t) = 1) = p(t)
P (s(t) = 0) = 1 − p(t).

(3)

The ς function ensures that both 1− p(t) and p(t) are always
positive, i.e.

P (s(t)) ≥ 0 (4)

for all possible states s(t). The cell is always either free or
occupied, i.e. the state s(t) is always either 0 or 1, meaning

that
P ({s(t) = 0} ∪ {s(t) = 1}) = 1. (5)

Finally, the sum of all P (s(t)) for all s(t) ∈ {0, 1} is

P ({s(t) = 1}) + P ({s(t) = 0}) = 1− p(t) + p(t) = 1. (6)

Since P (s(t)) satisfies Equations (4,5,6), which are Kol-
mogorov’s axioms, we can assume that P (s(t)) is a proba-
bility. Thus, the function p(t) recovered from the frequency
spectrum of s(t) by Equation 2 represents the probability that
the cell is occupied at time t.

By thresholding the probability p(t), we can calculate an
estimate s′(t) of the original state s(t). However, the original
observation of s(t) can differ from the probabilistic estimate
s′(t). In the case that the given application has to preserve all
past observations correctly, the differences between s′(t) and
s(t) are stored in an outlier set O.

Thus, our model of the state consists of two finite sets
P and O. The set P consists of l triples abs(Pi), arg(Pi)
and ωi, which describe the amplitudes, phase shifts and
frequencies of the model spectrum. Each such triple is related
to the importance, time offset and periodicity of one particular
periodic process influencing the state s(t). We will refer to
the number of modeled processes l (i.e. to the number of
triples in P) as the ‘order’ of the spectral model. The set O
represents a set of k time intervals, during which the state s(t)
did not match the state s′(t) calculated from p(t). To achieve
low memory requirements, the set O is ∆-encoded, i.e. it is
implemented as a sequence of values, indicating the starts and
ends of time intervals when the predicted and observed state
did not match, i.e. s′(t) 6= s(t). Thus, each such interval
is represented by its limits [t2k, t2k+1). Figure 2 provides

Measured state − s(t)
Probability function − p(t)

Estimated state − s’(t)
Outlier set − O

Discarded coefficients
Model coefficients

 0  2  4  6  8  10

Time [s]

Time domain

−2 −1.5 −1 −0.5  0  0.5  1  1.5  2

Frequency [Hz]

Frequency domain

Parameters of the learned model

abs(P): { 196,   46,   23 }
arg(P): {  0,  1.57, 1.57 }
Frequencies: { 0, 0.2, 0.6 }
Outlier set O: { 3.7, 3.8 }

Fig. 2. An example of the measured state and its spectral model. The left
part shows the time series of the measured state s(t), probability estimate
p(t), predicted state s′(t) and outlier set O. The upper right part shows the
absolute values of the frequency spectrum of s(t) and indicates the spectral
coefficients, which are included in the model, i.e. in the set P . The spectrum is
symmetric and the spectral coefficient with frequency 0 corresponds to mean
probability of s(t) = 1. Thus, the model encodes two periodic nodes – its
order l is 2.

a graphic representation of the model building process and
a commented video is available at [30]. The process starts
with the measured state s(t) (red line, left box), which is
transformed into the frequency domain S(ω) (right top, red).
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The most relevant spectral components P(ω) (right top, green)
are then selected and transformed back to the time domain
as p(t) (green line, left box). The probability p(t) is then
thresholded to obtain s′(t) (left, blue line) and the difference
is stored in the outlier set O (left box, violet line).

To be able to build, maintain and use this representation,
we define four operations: reconstruction of the measured
state s(t), addition of a new measurement, model update and
prediction of the future state with a given confidence level.

1) Reconstruction of the measured state: The aforemen-
tioned representation allows us to retrieve the past cell state
s(t) as

s(t) = (F−1(P (ω)) ≥ 0.5)⊕ (t ∈ O), (7)

where ⊕ is an XOR operation. The idea behind this equation
is to reconstruct the probability p(t) from the spectrum P ,
set s′(t) to 1 if p(t) exceeds 0.5 and finally apply the XOR
operator to negate s′(t) if t belongs to the set of outliers O.

2) Addition of a new measurement: Whenever a real state
sm(t) is measured, we calculate s(t) by means of Equation (7)
and if it differs from sm(t), the current time t is added to the
representation of the set O:

sm(t) 6= ((F−1(P(ω)) ≥ 0.5)⊕ (t ∈ O))→ O = O∪ t. (8)

Since Equation 8 takes into account the current contents of the
outlier set O, the time t is added to O only when s′(t) starts
and stops matching s(t), which results in ∆-encoding of the
set O. Nevertheless, p(t) does not predict s(t) with perfect
accuracy and the set O is likely to grow as measurements are
added. After some time, the outlier set O itself might contain
information about dynamics that were previously unobserved
and is thus not included in the set P . To take into account the
new information, our method offers an efficient way to update
the entire spectral model.

3) Model update: To update the spectral model, we re-
construct s(t) including the newly added measurements by
Equation (7) and calculate its spectrum S(ω). Again, we select
the l coefficients with highest absolute values of the spectrum
S(ω), store them in P(ω) and reconstruct the outlier set O
using Equation (8). In a typical situation, the updated spectrum
P would reflect s(t) more accurately, causing reduction of the
set O. The spectral model order l can be changed prior to the
update step without any loss of information. Thus, we can
change the model order and recalculate it whenever required.
In our experiments, model update was typically performed on
a daily basis as discussed in Section IV-B.

4) Estimation and prediction of future states: Note, that
Equation (7) can calculate s(t) for any time t and that
the threshold value of 0.5 can be set arbitrarily. In fact, a
threshold c such that p(t) ≥ c represents a confidence level
of the grid cell being occupied at time t. Therefore, we can
use Equation (7) for future prediction of s(t) with a given
confidence level c. In the case of prediction, the outlier set O
is not included in the calculation and the predicted state might
not match the real future state, so we denote the prediction as
s′(t, c). To simplify notation, we also define s′(t) as s′(t, 0.5).
Therefore, s′(t, c) and s′(t) can be calculated as:

s′(t, c) = F−1(P(ω)) ≥ c. (9)

An example of the second-order spectral model which repre-
sents a quasi-periodic function is provided in Figure 2.

5) Estimation and prediction for a single time instant: In
many cases (such as in the scenarios described in Sections VII
and VIII), one does not need to recover or predict environment
states over a long time interval, but for a single time instant.
Here it is impractical to use Equation (9) or (2), because these
use the inverse Fourier transform, which generates an entire
sequence of probabilities. Instead, one can exploit the sparsity
of the spectral model P(ω) and calculate p(t) simply as

p(t) = α0 +

n∑
j=1

αjcos(ωjt+ ϕj), (10)

where ωj , ϕj and αi represent the frequencies, time shifts and
amplitudes of the spectral components stored in the set P(ω).
The parameter α0, which corresponds to ω0 = 0 is the mean
of s(t).

C. Non-uniform sampling scheme

Typically, the Fourier Transform is applied not to continuous
functions, but to discrete sequences of data measured on a
regular basis. The assumption of equally-spaced samples s(t)
allows to employ the Fast Fourier Transform (FFT) algorithm,
which calculates the frequency spectrum S(ω) in a very
efficient manner.

However, the FFT-based model update requires recovery of
the entire sequence of the observed states, which becomes
computationally expensive over time. Additionally, the FFT
relies on the assumption that the observations of the envi-
ronment states can be performed frequently and on a regular
basis, which is hard to satisfy even in experimental settings.
The requirement of regular observations also means that the
robot’s activity has to be separated into a learning phase, when
it frequently visits individual locations to build its dynamic
environment model, and a deployment phase when it uses its
model to perform the tasks requested. This division means
that while the robot can create a dynamic model which is
more suitable for long-term operation, it cannot be updated
and thus cannot adapt to variations that were not present
during the learning phase. Thus, the predictive capability of
the method will become less and less reliable over time, which
will negatively affect the efficiency of robot operation in long-
term scenarios. To allow the robot to cope with the changing
dynamics, we introduce a generalized method that can build
and update the spatio-temporal model from sporadic, irregular
observations in an incremental manner.

This version of the method maintains a sparse frequency
spectrum, which is a set C of complex numbers γk for each
modeled state. These correspond to the set Ω of modeled
periodicities ωk that might be present in the environment. Each
time a state s(t) is observed at time t, the aforementioned
representation is updated as:

γ0 ← 1
n+1 (nµ+ s(t) ),

γk ← 1
n+1 (nγk + s(t)e−jtωk ) ∀ωk ∈ Ω,

n ← n+ 1,

(11)
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where n represents the number of observations. The proposed
update step is analogous to incremental averaging – the
absolute values of |γk| correspond to the average influence
of a periodic process (with a frequency of ωk) on the values
of s(t). To perform predictions, we select the l components
with the highest absolute value of γk from the set C, store
them in the set P(ω), calculate αj = |γj |, ϕj = arg(γj) and
predict p(t) using Equation 10.

The choice of set Ω, which determines the periods of the
potential cyclic processes, depends on the memory size that
can be allocated for the model and the longest period that is
going to be modelled. In the indoor navigation experiment
described in Section VIII, Ω consisted of 168 components
covering periodicities from one week to one hour. In the
outdoor case VII-B, Ω consisted of 1000 components covering
periods from one year to eight hours. The discussion about the
optimal choice of set Ω along with other details of the non-
uniform sampling scheme is provided in [10]. In the case of
uniform sampling, the spectrums generated by Equation (11)
and FFT are identical. However, while the set of modeled
periodicities of the FFT-based method scales naturally with the
duration of the data collection, the set of periods Ω captured
by the non-uniform scheme is fixed.

D. Modeling persistence

The aforementioned representation is primarily aimed at
modelling the environment changes from a long-term perspec-
tive. Thus, the predictions of future states are based on the
observed periods of the changes in the past. While this is
useful for long-term forecasts, prediction of near future states
should take into account not only the states’ periodicity, but
also their persistence. For example, if a given visual feature
was observed 10 seconds ago, it is quite likely that it will be
still observable even though it is not usual to observe it at this
time of day or week. To enable the deployment of the proposed
method on continuously-operating mobile robots, the ability
to perform short-term predictions is also important. Thus,
we extended the FreMEn representation with a persistence
model, which acts as short-term memory that represents the
expectation that the given state did not change since the last
observation if the observation was performed recently. This is
achieved by extending the update scheme of Equation (11) by

τ−1 ← 1
n+1 (nτ−1 + |s(t)−s(tl)|

t−tl ),

s(tl) ← s(t),
tl ← t,

(12)

where s(tl) represents the last observation at time tl and τ
represents the modelled state persistence, i.e. the mean time
between the state’s changes. To predict the value of state s(t)
for a future time t, we calculate:

p′(t) = s(tl)e
tl−t
τ + p(t)(1− e

tl−t
τ ), (13)

where p(t) is calculated by means of Equation 10. Note that
for predictions which closely follow the last observation, i.e.
|t− tl| << τ , the expression e

tl−t
τ is close to 1, which means

that the expected occupancy would be the same as the one
recently observed. Using Equation (13) to predict the more

distant future, i.e. |t − tl| >> τ , causes the expression e
tl−t
τ

to be close to 0, which suppresses the effect of the latest
observation on p′(t) and emphasizes p(t), which represents the
behaviour of the predicted state from a long-term perspective.
The experiments presented in Section VIII show that the
addition of the persistence model to the FreMEn representation
allows to deal with non-periodic changes as well.

IV. PERFORMANCE EVALUATION

In the rest of this article, we examine the tractability of using
our approach, the Frequency Map Enhancement (FreMEn),
as a core component of spatio-temporal models for mobile
robotics. In particular, we investigate the following questions:
• How many parameters of the spectrum typically have to

be stored to represent and predict the environment state?
• How efficiently can it represent long-term observations?
• What is the accuracy of its predictions?
• How can the approach benefit long-term autonomy of

mobile robots?
To answer these questions, we analysed several types

of environment models gathered by a mobile robot which
was continuously operating for several months in a human-
populated indoor environment. To quantitatively evaluate the
performance of the FreMEn, we use three different criteria rel-
evant to mobile robot mapping. The prediction and estimation
errors εp and εe relate to the faithfulness of the FreMEn, i.e.
its ability to correctly estimate and predict the environment
states for a given time period. The compression ratio relates
to the memory efficiency of the FreMEn representation, i.e.
the memory needed to represent the long-term observations of
the environment. The update time relates to the computational
complexity of the FreMEn, i.e. how much memory is needed
to represent the evolution of the environment over time.

A. Prediction and estimation error
Knowing the coefficients Pi(ωi) of the spectrum P allows

us to calculate an estimate s′(t) of the original state s(t) by
Equation 9. A natural concern is the accuracy of reconstruction
of s′(t), because it will affect the prediction capabilities of the
spectral model and the size of the outlier set O. One can expect
that increasing the spectral model order (i.e. including more
coefficients in P) would enable more precise reconstruction of
s′(t) from the spectral model P alone. However, as the number
of parameters grows, the model becomes more adjusted to the
specific time series of the observations s(t), which decreases
its ability to predict the environment state in the future.

To evaluate the quality of the spectral model, we define the
estimation error ε(ta, tb) as the ratio of the correctly estimated
signal s′(t) on a given time interval t ∈ [ta, tb] to the length
of the entire interval:

ε(ta, tb) =
1

tb − ta

tb∫
ta

|s′(t)− s(t)|dt. (14)

The estimation error can be also calculated from the intersec-
tion of the intervals in the outlier set O and (ta, tb) as

ε(ta, tb) =
|(tb, ta) ∩ O|
|(tb, ta)|

. (15)
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Since the outlier set O is ∆-encoded, the calculation of
Equation 15 can be performed very efficiently.

Typically, the error would be calculated for the entire series
of observations, i.e. from time 0 to the time of the latest
observation τ . We call this error the estimation error of the
spectral model and denote it as εe = ε(0, τ).

Suppose that the sequence s(t) includes observations made
from 0 until τ and that the spectral model P(ω) had been
calculated using only observations made between 0 and τ ′,
where τ ′ < τ . Then, calculation of s′(t) for t ∈ (τ ′, τ ] by
Equation 9 is actually a prediction. Thus, the estimation error
ε(τ ′, τ) relates to the ability of the spectral model to predict
future states from past observations. We denote the error
ε(τ ′, τ) as the prediction error εp. Note that the aforementioned
situation happens every time the model is updated: the value of
τ ′ corresponds to the time of the last update, while the outlier
set already contains observations that have been obtained
after τ ′. Since calculation of εe and εp by Equation 15 is
computationally efficient, the proposed algorithm can use it
to decide whether a model update is needed as well as the
optimal order of the spectral model. This can be employed to
adapt the model order based on the observed dynamics rather
than using a fixed model order.

Although the calculation of both errors is similar, they
represent different properties of the FreMEn model. The
estimation error εe relates to the ability of the spectral model
to recover past observations and εp represents the ability to
predict future states. While εe decreases with the model order,
the dependence of εp on the model order is more complex.

Note also that Equation 14 relates only to the reconstruction
of the states s(t) from the spectral model P before the outlier
set is taken into account. The application of the outlier set O
allows to recover the sequence s(t) in an exact way.

B. Choosing the model order

As mentioned before, the dependence of the prediction error
εp on the model order l is not straightforward. Choosing too
low a value l causes over-generalisation, while choosing too
high a value of l causes overfitting of the FreMEn model.
To select the proper value of the model order l, we evaluate
the model’s predictive capability for different values of l,
choose the order l′ with the lowest prediction error εp and
then perform the model update with the value l′. In a typical
scenario of robot deployment in our project [31], updates
of the FreMEn models are performed at midnight every day
when the robot replenishes its batteries at its charging station.
Before updating, the performance of the FreMEn models with
different orders l is evaluated by comparing their predictions
to the observations gathered since the last update (i.e. since
midnight the previous day). Then, the models are updated
using the order which achieved the lowest prediction error.
A typical value for an optimal model order l′ is 2 or 3 and
the typical time to establish the optimal order and update the
spatio-temporal models used in our robot deployments is less
than a minute.

C. Compression ratio

The compression ratio indicates the efficiency of the model
in representing the spatio-temporal dynamics of the environ-
ment. Rather than evaluating the compression ratio from a
theoretical point of view, we adopt a more practical approach
and base our calculations on the actual size of the file that
contains the spectral model. Assuming that a file of size z[bits]
contains a FreMEn model of an environment with n states and
m observations, and that a traditional model would use one
bit per observation, the compression ratio is simply:

r =
mn

z
. (16)

In some scenarios, maintaining an entire outlier set O might be
infeasible due to memory constraints, and the past observations
s(t) are represented solely by the set P . While this results in
lossy compression with quality corresponding to the estimation
error εe, the memory size of this reduced representation is
independent of the number of measurements and is determined
by the number of modeled states n and the model order l,
which can be selected a priori.

D. Update time

The computational complexity of the proposed method
is given by the complexity of the Fast Fourier Transform
algorithm, which is O(m log m), where m is the length of the
processed sequence. This indicates that the time t needed to
build, update or reconstruct a spectral model with n states and
m observations by Equations (1) and (7) is t ∼ mn log(m).
Thus, the update time of the FFT-based model increases with
the number of past observations.

However, the computational complexity of the incremental
calculation scheme performed by Equation 11 depends only
on the number of new observations m′, the number of in-
dependent states n and the number of maintained spectral
components k, and therefore, does not depend on the number
of past observations. On the other hand, it requires to maintain
a larger number of spectral components and is less memory
efficient than the FFT-based model.

Since we are concerned with the practical applicability of
our approach rather than with theoretical bounds of compu-
tational complexity, we measured the real time required to
calculate and update the spectral models in our evaluations.

V. SINGLE-STATE DYNAMIC MODEL

To experimentally verify the feasibility of the proposed
approach, we first gathered a week-long dataset containing
a single state.

This dataset was gathered by a RGB-D camera monitoring
a small university office from a fixed location. Its range
measurements were used to establish the occupancy of a single
20×20×20 cm cell located in the middle of the room entrance.
This cell was occupied when the door was closed and when
people passed through the door, otherwise it was free. The
office had an ‘open door’ policy, i.e. the door remained open
whenever the office was occupied. Therefore, the measured
state s(t) corresponded strongly to the presence of people
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inside the office. Every time someone went through the door,
the monitored cell was briefly occupied and the room was
considered empty, which introduced noise on the measured
state s(t). The measurements were taken continuously for
one week (July 23-29 2013) at a rate of 30Hz, so the state
observation consists of 18 million values. For the purpose of
this evaluation, we subsampled the values by 15, which means
that the state s(t) is measured twice per second, so that s(t)
consists of more than a million values. After this week, two
additional single-day datasets (July 31 and August 5 2013)
were gathered.

To evaluate the proposed method’s capability to represent
the temporal dynamics of the observed state, we built several
spectral models of the training dataset. Figure 3 shows that the
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Fig. 3. Week-long state model of a single cell of an occupancy grid.
While the traditional static model simply assumes that the probability of the
cell occupancy is ∼25%, the Frequency-enhanced model captures the cell’s
dynamics. Note the model improvement as more spectral components are
included.

spectral model captures the state dynamics, which results in a
more faithful representation of the given state. The first row of
Figure 3 shows that the traditional probabilistic model would
simply assume that the door is open with 25% probability.
Modelling the state with FreMEn of order 1, i.e. considering
only one periodic process results in a model that suggests
that the door is likely to be open during the afternoon rather
than at night – see the second row of Figure 3. Adding three
other spectral components results in a model that captures
the weekly periodicities as well – the probability of the door
being open (see the last row of Figure 3) during weekends is
lower than during the working days. This result suggests that
the method’s ability to model the dynamics of the measured
state increases with the number of model parameters included.
The dependence of the estimation and prediction errors on
the number of components of the spectral model is shown in
Figure 5. To estimate the dependence of the model estimation
and prediction errors on the number of model parameters, we
built a spectral model of the one-week-long training dataset.
The accuracy of estimation εe was calculated as the difference
between the original and reconstructed signal by Equation 14.
Moreover, we calculated the accuracies of prediction εp1 and
εp2 for two days of the following week, see Figure 4.

The results in Figure 4 indicate that the static model (i.e.
FreMEn order 0) achieves an estimation error of 25%-35%.
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Fig. 4. Comparison of state observations, established probabilistic model and
predicted values.
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Fig. 5. The influence of the number of spectral components (model order l)
on the model’s compression ratio and errors of estimation and prediction.

The results also indicate that while the estimation error εe
decreases monotonically with the model order, the prediction
error is not necessarily monotonic. Rather, the local minima
of the prediction errors suggest that for the purpose of predic-
tions, one should use spectral models of orders around 2 or 3
to prevent overfitting. The overfitting effect is more prominent
with the second testing set, which might be caused by the
longer prediction horizon.

The test indicates that the spectral model can represent
millions of measurements with only a few complex numbers.
Figure 5 shows that the spectral model without the outlier
set O achieves compression ratios in the order of 1 : 1000
while losing less than 5% of information. The size of the ∆-
encoded outlier set was about 360 values representing 180 time
intervals where the spectral model did not match the measured
sequence, which corresponds to a lossless compression ratio of
∼1:100. The time needed to build the spectral representation
on an i7 processor was 3.7 milliseconds, which illustrates
the efficiency of the chosen Fourier transform implementa-
tion [32].

Our method can be also used to detect anomalies, i.e.
situations where a local state of the world deviates significantly
from the spectral world model of the robot. Since our model
can predict the state s(t) with a given confidence value
by Equation 9, we can assume that a measurement sm(t)
is anomalous with confidence level c if sm(t) < s(t, c)
or if sm(t) > s(t, 1 − c). Figure 4 shows that FreMEn-
based anomaly detection with confidence level 99% correctly
detected a situation when the room was accessed by an
unexpected visitor shortly after midnight.
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VI. LARGE SPATIO-TEMPORAL REPRESENTATION

To evaluate the ability of the proposed method to represent
the long-term dynamics of three-dimensional environments,
we collected 2 million occupancy grids of a University of-
fice over the course of 112 days. Similarly to the previous
experiment, the dataset was collected by a stationary RGB-
D camera that captured and stored a depth image every five
seconds. These range measurements were integrated into a
FreMEn occupancy grid [9], where the occupancy of each
cell was modelled by the proposed method. Fine-grained
occupancy grids captured by the RGB-D camera are shown
in Figure 6 (for the purpose of visualization, the resolution
of the grids shown is higher than those in the dataset). Each

(a) Empty office 3D grid. (b) Occupied office 3D grid.

Fig. 6. Fine-grained 3D occupancy grids of the ‘Office’ dataset.

day, the spectral model of the entire grid was updated and
the resulting representations were saved in separate files. To
evaluate the efficiency of the resulting 4D representations,
we measured the compression ratios, estimation precisions
and times needed to calculate the update. The compression
ratios were calculated simply by comparing the size of the
saved files to the theoretical size of a traditional model by
Equation 16, where the number of modelled states n, i.e.
the number of cells in the grid was ∼213 000 and 17 200
observations per day were considered. This means that storing
all the observed states would require ∼500MB per day and a
naı̈ve representation of the entire dataset would require around
50 GB of storage space. The estimation error of the entire
model was calculated as an average of estimation errors of
the individual cells that changed at least once – calculating
the average estimation error for all cells would result in small
numbers, because most of the cells represent space that is
always empty. Finally, the update time was obtained by direct
measurement of the time needed to update the spectral models
of all the grid cells. These experiments were performed on an
i7-4500U processor with 16 GB of RAM.

Five types of spectral models were calculated. The first,
‘lossless’ model maintains not only the spectral representation,
but also an outlier set O of each cell, and can recover all the
measurements. The other, ‘lossy - order 1-5’ models did not
use the outlier set and maintained 1 to 5 spectral components
of the dynamic cells. The dependencies of the sizes of the
‘lossy’ models on the length of the dataset represented are
shown in Figure 7. One can see that after some initial growth,
the storage requirements of the models stabilize at the order of
megabytes. The growth of the ‘lossy’ models is caused by the
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Fig. 7. Computational and memory requirements of the FreMEn spatio-
temporal occupancy grids.

fact that longer data collection means that more cells change
their states at least once, which causes the method to extend
their temporal models.

Given that the naı̈ve representation of the dataset grows by
500 MB per day, the compression rates of the ‘lossy’ models
actually grow in time (see Figure 8) and are in orders of
10 000. The ‘lossless’ representation grows linearly with time
at a rate of 2 MB per day achieving compression rates of
1:250. Figure 7 also shows that the time needed to update the
model, which represents 4× 1011 cell observations is reason-
ably short – creation of a 16-week-long spatio-temporal model
takes less than one hour. Using the non-uniform, incremental
Fourier Transform results in an update time that exhibits a
similar trend to the ‘lossy’ model sizes. This is caused by
the fact that the number of cells for which the transform has
to be calculated increases over time, i.e. the same effect that
causes the growth of the ‘lossy’ models. Finally, the estimation
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Fig. 8. Estimation errors and compression ratios of the FreMEn spatio-
temporal occupancy grids.

errors of the spatio-temporal models with different orders
are presented in Figure 8, which shows that as the model
includes more spectral components, its estimation error and
compression rates drop. Compared to the ‘Static’ model, which
fails to correctly estimate approximately 6% of the states,
the ‘lossy’ FreMEn estimates fail in 3% to 4% cases. This
means that using the FreMEn method reduces the amount of
incorrectly estimated states by 30%-50%. Using the lossless
method results in faithful (0% error) state reconstruction at the
expense of a lower (1:250) compression rate.
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Fig. 9. Frequency-enhanced feature map [4] for visual localisation: The observations of image feature visibility (centre,red) are transferred to the spectral
domain (left). The most prominent components of the model (left,green) constitute an analytic expression (centre,bottom) that represents the probability of
the feature being visible at a given time (green). This is used to predict the feature visibility at a time when the robot performs self-localisation (blue)..

VII. FREMEN FOR MOBILE ROBOT LOCALISATION

The results of the previous experiments demonstrate that
through explicit modeling of the environment dynamics, our
method can efficiently represent the evolution of indoor envi-
ronments over time. Moreover, we have shown that the method
can predict future environment states. In this experiment, we
evaluate the usefulness of these predictions for mobile robot
localisation in indoor and outdoor environments. The consid-
ered scenario is vision-based localisation. Given a topological
map, where each node is associated with a set of image
features visible at that particular location, the robot has to
decide on its current location based on its camera image. The
difficulty is that the appearance of the locations (i.e. visibility
of the image features) varies over time. This problem has been
tackled by attempting to identify the most stable [24] or most
useful [33] features, or by remembering several appearance
models for the same location [3]. Other approaches [6], [25]
attempted to infer the environment appearance for the partic-
ular time(s) by modeling the persistence [25] or systematic
appearance change of visual features [6]. In this experiment,
we predict the visibility of the individual image features at a
given time by FreMEn.

A. Indoor localisation

The environment considered is a large, open-plan office
of the Lincoln Centre for Autonomous Systems, where an
autonomous robot captured RGB-D images of eight designated
areas every ten minutes. During a week-long data collection
session in November 2013, the robot visited each of the eight
locations 144 times per day, collecting a training dataset that
contains more than 8000 images. To document the appearance
change over one year, we provide images from the three testing
datasets in Figure 11. The three testing datasets were collected
one week (November 2013), three months (February 2014) and
one year (December 2014) after the training dataset collection.
Each of these datasets was gathered for 24 hours and contains
over 1000 images. Representative examples of the images of
the training dataset are shown in Figure 10. The gathered
images were processed by the BRIEF algorithm [34], which
was evaluated as one of the best performing image feature
extractors in outdoor scenarios of long-term localisation [35],

Fig. 10. Example images of the indoor training dataset. Shows the appearance
of six monitored locations on November 2013.

(a) November 2013 (b) February 2014 (c) December 2014

Fig. 11. Example images of the indoor testing datasets. Shows the evolution
of one of the monitored places over the course of one year.

[36], and our tests confirmed its good performance in in-
door scenarios as well. The features of the training dataset
belonging to the same locations were matched and thus we
obtained their visibility over time, which was then processed
by our method. To choose the order of the FreMEn models,
we adopted the scheme described in Section IV-B, i.e. to
select the correct order l, the FreMEn models were trained
initially on the first 6 days of the training data and their
predictive capability was evaluated on the last training day.
Next, the models were trained using the entire, 7-day-long
dataset. Thus, we obtained a dynamic appearance-based model
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of each topological location that can predict which features are
likely to be visible at a particular time, see Figure 1.
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Fig. 12. The localisation error rates for different indoor testing datasets,
methods and feature numbers. The first three graphs show the dependence
of the error on the number of features used for localisation. The fourth
graph compares the localisation errors of the different methods and datasets
assuming that the number of features used is 50.

To test if these predictions actually improve robot local-
isation, the following procedure was performed for each of
the ∼3000 images in the testing datasets. First, the method
established the time tc when the testing image was captured.
Then, the dynamic map created during training was used to
calculate the probability of each feature’s visibility at time
tc. Next, the n most likely visible features at each location
were selected, which resulted in eight sets denoted as Fi, each
containing n image features. Finally, the features of the testing
image were extracted and matched to the sets Fi. If the set
with the highest number of matches corresponded to the real
location of the robot, localisation was considered successful,
otherwise it was considered a failure.

To compare the proposed algorithm with other localisation
methods, we implemented a simple version of the experience-
based approach developed by the Churchill and Newman [3].
During training, this method attempts to determine the robot
location based on the camera input, and if it fails, the current
appearance (aka experience) is added to the set of ‘expe-
riences’ that are associated with the given location. Thus,
each location is associated with several experiences which are
matched to the currently perceived sensory data. While the
method introduces a certain computational overhead caused by
the fact that there are more experiences than actual locations,
this overhead is compensated by the method’s robustness to
significant appearance changes. This computational overhead
was reduced in [37] by inferring the most probable appear-
ances that the robot will experience around a given location.
Since we use a slightly different setup and scenario than
the one considered in [3], we had to introduce a slightly
different version of the experience-based localisation. In our
case, an experience consists of the robot position and image

coordinates and descriptors of the detected visual features, and
we did not use the optimisations introduced in [37].

We also attempted to reduce the aforementioned computa-
tional overhead by combining the experience-based approach
with FreMEn – the FreMEn was used to calculate the proba-
bility of a given experience for a given time, so we could use
only the relevant experiences for localisation. In the following
evaluation, this frequency-enhanced experience method will
be coined as ‘FreEx’. Processing of our training dataset by
the experience-based method generated over 170 different
experiences tied to 8 different locations.

The dependence of the average localisation error for each
indoor testing dataset on the number of features n used for
localisation is shown in Figure 12. The results indicate that
the localisation robustness of the FreMEn is only marginally
better compared to the experience-based method and they
both outperform the ‘static’ approach that relies on the most
stable image features. However, while the FreMEn approach
improves the robustness by predicting the appearance of the
8 locations, the experience-based method requires that the
current camera image is matched to all of the 170 experiences,
which is computationally more expensive. This is partially
mitigated by the FreEx approach, which typically localises
the robot based on 100 experiences, which are selected from
the 170 learned ones based on the current time.

While the results show that explicit representation of en-
vironment change improves the localisation robustness, the
improvement diminishes with map age. Since we can observe
the same effect for the FreMEn and experience-based methods,
the effect is probably not caused by change in the environment
dynamics. Rather, the environment is subject to unexpected
changes, which affect its appearance in a way that is not possi-
ble to predict by the approaches evaluated. This issue severely
affected the FreEx approach, which failed to correctly predict
the relevant experiences to be used for visual localisation. The
effect of map decay could possibly be mitigated by active re-
observation of locations that were not visited for a long time,
e.g. by means of lifelong exploration [10]. This problem also
leads to fascinating questions that regard forgetting of obsolete
observations and adaptation of the forgetting speed to the rate
of environmental change, although these questions are beyond
the scope of the work presented here.

B. Outdoor localisation

To evaluate the performance of the FreMEn for visual
localisation in outdoor environments, we performed the same
comparison on two datasets, which capture seasonal changes
of 10 different locations in two semi-urban environments.

The images of the first five locations were obtained from
the North Campus long-term vision and lidar dataset (NCLT)
which was collected at University of Michigan to support re-
search on image features for dynamic lighting conditions [38].
The original NCLT dataset [39] was gathered during 27 data-
collection sessions performed over 15 months and includes
LIDAR, GPS and odometry data. For our evaluation, we
selected 5 different locations from the NCLT dataset and
created the training dataset from 12 images captured at each



11

location at a different time. To create the testing dataset, we
randomly selected 3 images per location from the set of images
not used for training. Unlike the two aforementioned datasets,
the Michigan set was not gathered on a regular basis and thus,
we used the non-uniform version of FreMEn introduced in
Section III-C.

(a) Winter 2012 (b) Summer 2012

Fig. 13. Seasonal variations at location I of the Michigan dataset.

The second set of outdoor images was obtained from the
Stromovka dataset [40] that was collected in one of Prague’s
arboretums to support research on long-term teach-and-repeat
navigation [41]. The Stromovka dataset contains images that
were captured by a mobile robot every month from September
2009 until the end of 2010, and three additional image sets
that were collected during 2011 and 2012. Compared to the
Michigan dataset, the Stromovka one spans a longer time pe-
riod and contains more foliage and fewer buildings. Moreover,
seasonal weather variations in Prague are more extreme than
in Ann Arbor, see Figures 13 and 14. Thus, the appearance
variations of the Stromovka dataset images are greater than
the Michigan ones.

(a) Winter 2010 (b) Summer 2010

Fig. 14. Seasonal variations at location I of the Stromovka dataset.

To perform the evaluation, we trained both methods using
the datasets gathered during the first 12 months. Then we
calculated the localisation error rates on the testing sets, which
were collected during the following months and years. The
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Fig. 15. The localisation error rates for the Stromovka and Michigan outdoor
datasets. Shows the dependence of the error rates on the methods and feature
numbers used.

dependence of the localisation error for both outdoor datasets

on the number of features n is shown in Figure 15. Similarly
to the indoor case, the localisation error rates of the FreMEn
and experience-based methods were much lower compared to
the ‘static’ method, which neglects the appearance change and
takes into account only the most stable features. However,
the FreMEn localisation was computationally more efficient,
because it had to match the current camera image to 5
predicted maps, while the experience-based approach used 15
and 21 different experiences in the Stromovka and Michigan
cases, respectively. For the case of outdoor datasets, we did
not have enough data to properly estimate the best-performing
model order l, so we set l to a conservative value of 1.

The aforementioned localisation experiments were per-
formed with a relatively low number of image features per
image, because the number of locations to distinguish is low.
In such cases, extracting a large number of image features will
cause the evaluated methods to exhibit a similar performance.
To demonstrate the advantages of our approach while utilising
the full power of the feature extractors available would require
long-term data collection in much larger environments.

C. Predictive capability

To evaluate the predictive capability of the FreMEn ap-
proach, we calculated the average probability that a predicted
feature will actually be visible in the testing images and
compared this with a static approach. First, we calculated the
10 most stable features across the training sets and calculated
how often these are matched to the features extracted from
the testing images of the same location. This corresponds to
the Static method described in the previous sections. Then,
we repeated the procedure with the 10 features, which were
predicted by FreMEn to be most likely visible at the given
time. The results, summarized in Table I, indicate that the im-

TABLE I
PROBABILITY OF FEATURE RE-OBSERVATION [%]

Method
Indoor Outdoor

Nov’13 Feb’13 Dec’14 Strom Mich

Static 39.5 25.7 24.3 38.1 30.8
FreMEn 55.2 31.2 26.8 47.5 40.8

age features predicted by the FreMEn method for a particular
time are more likely to be visible compared to the features
that were most frequently re-observed in the training sets.

VIII. FREMEN FOR MOBILE ROBOT NAVIGATION

The experiments presented previously were conducted in an
offline manner on pre-recorded data. To use FreMEn on-line as
an integral component of a long-running autonomous system,
we developed a FreMEn occupancy grid which was integrated
in the ROS navigation stack [42]. This spatio-temporal grid
uses the non-uniform version of FreMEn with the recency
model proposed in Section III-D. During autonomous naviga-
tion, our robots build temporally local maps and integrate them
into the global spatio-temporal grid. Through re-observation
of the same spatial locations, the spatio-temporal grid obtains
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information about long-term environment dynamics and gains
the ability to predict the future environment states. This pre-
dictive ability enables the generation of time-specific 2D maps
which can be used by the robot’s localisation and planning
modules. The integration of this predictive spatio-temporal
model in the system and a visualisation of the map building
process is shown in Figure 16. In this scenario, we evaluated

Fig. 16. Navigation system overview. Proposed navigation stack on the left
and predicted and observed 2D grids on the right.

the impact of the proposed spatio-temporal representation on
localisation accuracy and efficiency of path planning. To do
this we deployed a mobile robot for several days at the Lincoln
Centre for Autonomous Systems, having it regularly patrolling
the office in a predetermined path several times per hour, using
the proposed modification of the ROS navigation stack. The
patrolled area contained a 1.5 metre wide corridor. On its sides,
there are storage cupboards that are used by research staff and
closed at the end of their working day. When a cupboard door
is left open, the corridor appears to be wider and its center
may be perceived as displaced to one side.

To evaluate the accuracy of robot self-localisation, we
installed an independent localisation infrastructure over the
monitored corridor. To estimate the impact of the environment
change and sensor range on the localisation precision, we
processed laser, odometry and ground truth data from 20
different passes of the robot and trimmed the laser data at
different lengths. We then performed standard ROS-based
AMCL localisation on the ‘static’, ‘averaged’ and ‘predicted’
2d maps and compared the robot positions to the ground truth
obtained by the independent localisation infrastructure.
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Fig. 17. Localisation error for different ranges of the laser scanner and
different types of the maps. Predicting a map for a particular time improves
localisation accuracy, although the improvement is only marginal for long-
range sensors.

The results shown in Figure 17 indicate that use of the time-
specific, predicted maps improves the localisation precision

in a significant way if the range of the laser rangefinder is
lower than the overall map size. However, a small difference
in localisation precision can have a significant impact on
the efficiency of the robot navigation and quality of the
constructed maps.

To evaluate the navigation efficiency, we processed navi-
gation statistics of 180 different patrol runs. The data from
each patrol run contains the robot’s average speed and the
number of events where normal navigation behaviour failed
and the robot had to perform custom recovery behaviours
in order to proceed with its patrol. The gathered navigation
statistics were divided into three groups of 60 patrols each.
The first group contained patrols where the system was using
a static map when no environment changes were happening.
The second group contained patrols where the robot was
using an ‘averaged’ map, which slowly adapts to the observed
change. And the third group contained patrols where the robot
was using a ‘predicted’, time-specific map that took into
account not only the periodicity, but also the persistence of
the observed changes.

TABLE II
NAVIGATION STATISTICS

Environment Static Changing
Map Static Average Predicted

Average speed [m
s

] 0.21 0.15 0.18
Recovery events [-] 1 21 12

Table II indicates that in a static environment, the robot
could navigate efficiently even when using a static map, but
as soon as the environment began to change, the navigation
efficiency was affected in a negative way. However, the
negative effect of the changes was slightly lowered through
the use of the proposed dynamic map, which represents the
environment changes in an explicit way.

IX. CONCLUSION

We have presented a novel approach for spatio-temporal
environment modelling in the context of mobile robotics. The
approach is based on an assumption that from mid- to long-
term perspectives, the environment is influenced by various
processes, some of these being periodical. We hypothesize
that certain regularities in the environment dynamics can be
represented by the periodicity, amplitude and time shift of
these underlying processes, and propose to identify these
parameters though spectral analysis based on the Fourier
Transform.

Knowledge of these processes allows us to represent the
elementary states of the environment models by probabilistic
functions of time, which enables efficient representation of ar-
bitrary timescales, anomaly detection and prediction of future
states. To evaluate the performance of the proposed method
in real, long-term scenarios, we applied it to data gathered
by mobile robots over extended time periods of months and
years.
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The results indicate that the proposed method can represent
arbitrary timescales with constant (and low) memory require-
ments, achieving compression rates between 103 and 105 while
predicting the future states with error rates of less than 10%.
We have also demonstrated that our method’s prediction of the
environment appearance improved vision-based localisation
in changing environments. Moreover, we demonstrated that
integrating the method in the ROS navigation stack improves
the efficiency of robot navigation.

In the future, we would like to extend the approach so
that it can take into account sensor noise and represent
not only binary, but also higher-dimensional states, such as
object positions. While the method itself does not exceed the
performance of other approaches for persistent localisation
in changing environments, such as [3], [5], [6], [43], its
simplicity enables its application to other scenarios related
to long-term autonomy and life-long learning. To provide an
overview of the method’s applications and to allow its use by
other researchers, we have released the method’s source code,
examples of use and datasets at http://fremen.uk.
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