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Abstract— The efficiency of autonomous robots depends on
how well they understand their operational environment. While
most of the traditional environment models focus on the spatial
representation, long-term mobile robot operation in human
populated environments requires that the robots have a basic
understanding of human behaviour.

We present a framework that allows us to retrieve and
represent aggregate human behaviour in large populated en-
vironments on extended temporal scales. Our approach, based
on combination of time-varying Poisson process models and
spectral analysis, efficiently retrieves long-term re-occurring
patterns of human activity from robot-gathered observations
and uses these patterns to predict human activity and classify
locations.

The application of our framework on real-world data gath-
ered by a mobile robot operating in an indoor environment for
one month indicates that its predictive capabilities outperform
traditional temporal modelling methods while being computa-
tionally more efficient. The experiment also demonstrates that
spectral signatures act as features that allow us to classify room
types which semantically match with humans’ expectations.

I. INTRODUCTION

Modelling human activities is necessary to succeed in
human robot interaction and robot planning of interactions.
As a key goal of robots is interaction with human beings,
activity models should serve not only to characterize and
identify ongoing activities, it should also account for when
and where those activities are normally performed. Much
robotics research has focused heavily on how to identify ac-
tivities, leaving the ”"when” and “where” (i.e. spatio-temporal
context) of those activities to the experts. In this paper, we
instead focus on the problem of predicting when and where
an activity is likely to take place, and to characterise places
according to their activity patterns. This knowledge can be
used to drive robot interaction with humans.

One insight is that human activities rhythmic spatio-
temporal patterns. In particular, some of the activities are
periodic on a number of scales (daily, weekly, etc). For
example, the rhythm of making coffee is different from
one person to another. Some might want a cup of coffee
once a day, others may want more. Some might want it in
the morning, others might want it after lunch. In particular
rhythms of aggregated behaviours of a population have
strong periodicities. These kinds of rhythms create aggre-
gated behaviours of the population. These rhythms can be
detected by the fluctuating number of humans at the location
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Fig. 1: Map of the robot environment and example spectral
signatures of the selected rooms. The global map consists
of two open plan areas {1,3}, a corridor {12}, a kitchen
{5}, three single occupancy offices {2, 10, 11}, three regular
offices {4, 8, 9}, and two meeting rooms {6, 7}. Similarity
of room 8 and 9 signatures indicates that these rooms have
a similar type.

where the particular activity is performed. An example is the
level of human activities in an office: it is high during office
hours and decreases at the end of the day. The pattern repeats
for five consecutive days, and stops during weekends creating
a repeating daily/weekly routine. Similar periodic patterns
are observable in many types of data such as traffic on a
motorway [1], activities in a school, and trading on a stock
exchange.

In this paper, we present a method that learns the periodic
pattern of aggregated human activities within a space by
means of Poisson processes combined with a frequency
analysis. We focus on time-series count data where time
is discrete and N(¢;,t;) is a measurement of the number
of individuals or objects detected over the time interval
[ti,t;), e.g counts of the number of people who enter a
building every 10 minutes. As this type of data measures the
aggregate behaviour of many individuals, it typically exhibits
temporal periodicities. We show how to learn such models
from data to both characterise regular periodic patterns and
detect irregular ones within a time interval. We adopt a
Bayesian approach to learning those models.

We use the proposed temporal model for two purposes.
First, the model can predict the level of human activity in a
particular space at a particular time. Second, parameters of
the model can act as spatio temporal signatures that allow
us to classify the types of individual locations. To evaluate



the performance of our model in terms of their predictive
capabilities, we compare the accuracy of its prediction with
the state-of-the-art principled probabilistic model. To verify
the ability to classify location types, we perform hierarchical
clustering of the temporal signature and compare the result-
ing clusters to the real room types.

II. RELATED WORK

There has been recent interest in predicting regular pat-
terns and finding irregular ones in time series data. Several
general methods are designed to deal with time series with
periodicities from models such as AutoRegressive Moving
Average (ARMA) to kernel-based nonparametric models
such as Gaussian processes (GPs). Ihler et al. [1], [2]
described a modified Markov-modulated Poisson processes
for detecting unusual data points or segments in time-series.
The Poisson processes are used as probabilistic models for
counting regular patterns and behaviour whereas the Markov
chain is used to track the occurrence of anomalous events.

Ghassemi and Deisenroth [3] proposed periodic Gaussian
processes by re-parametrising the periodic kernel in combi-
nation with a double approximation to allow analytic long
term forecasting of periodic patterns. Duvenaud et al. [4], [5]
introduced a fully automated Bayesian framework based on
Gaussian processes with self structured kernel choices which
are built compositionally by adding and multiplying a small
number of base kernels. The framework can automatically
model any combination of high-level characteristic of time
series data such as smoothness, periodicity and linear trends.

Our framework is derived from the Frequency Map En-
hancement (FreMEn) technique proposed by Krajnik et al.
[6] for spatio-temporal environment representations in long-
term scenarios. The FreMEn technique is based on Fourier
analysis in combination with a Bernoulli distribution to
represent the binary state of data. It has been used in many
applications such as in occupancy grids to compress long-
term observations [7], in topological maps to improve robotic
search [8], and in path planning [9]. The technique can be
applied to all models that represent the world as a set of
independent components with binary states [10]. We extend
the technique by employing both Poisson processes as the
counting model to replace the binary states of FreMEn
and a new way of selecting the most prominent frequency
components of the Fourier spectrum.

III. DATA SET

Our dataset is a collection of human trajectories resulting
from a long term deployment of the mobile robot. The data
are from a one-month deployment in a building, using a
Metralabs Scitos A5 mobile robot equipped with a robust
human tracking algorithm which can detect humans passing
within range of its sensors [11]. Similar to other datasets
with long term observations, it has a large amount of stored
data. However, as these observations are made by a mobile
robot, most of the stored data are incomplete. Many of the
detected human trajectories represent only a small fraction
of a person’s motion.

The partial information collected by a mobile robot is
unavoidable because there is a limitation on how much
information a robot can perceive. A mobile robot is not an
omnipresent being; it can not sense the full environment. It
can only perceive partial data at a particular time and place.
Moreover, the robot’s own movement, sensor limitations, and
changes in the environment also affect what information a
robot can perceive. As a result, our dataset is a collection of
chronologically clipped histories about what the robot saw
during its observation. Hence, any kind of inference from
our dataset is a challenge.

The tracking algorithm we used in our robot produced
many false positives including table legs and chairs. In the
attempt to remove false positives from our dataset, a simple
filtering method was used. This filtering is based on the
displacement pose ratio, which means the distance between
the first pose and the last pose of the trajectory over the
number of poses in the trajectory. We did not simply remove
all short trajectories, having length less than 1m, because
information regarding where the persons usually were might
be lost. We rather chose to take the best ten percent of
trajectories, based on the displacement pose ratio, as our
dataset. With this filtering, false positives still appear, but
the number of them is significantly reduced.

Since the building where our robot was deployed is a
large area, we segmented the office into semantic regions
such as offices, open plans, a kitchen and corridors. The
segmentation represents the actual imaginary segments of
the office. From this process, we obtained 12 datasets, one
dataset for each semantic region, over a four-week period.
The segmented regions can be seen in the global map in
Figure 1.

All collected and filtered human trajectories will be used
as inputs for the Poisson model. Using Bayesian estimation,
we calculate arrival rates for Poisson processes over a month
period resulting in a time series of arrival rates. The time
series is then analysed via Fourier analysis to extract its
temporal periodic structure. This periodic structure is then
used to both predict the frequency of human activity in a
particular space at a particular time and to classify types of
places forming sensible clusters.

IV. PROBABILISTIC COUNTING MODEL AND SPECTRAL
REPRESENTATION

Poisson Models

The appropriate probabilistic model for count data is the
Poisson distribution. The probability mass function of the
Poisson distribution is:
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where the parameter A\ represents the rate, or average

number of occurrences in a fixed time interval, and N is

the number of occurrences.
Here we refer to A/ (¢;,¢;) as a measurement of the number
of individuals or objects detected over the time interval

[ti,t;) for 4,5 € {1,...,T}. We thus transform our A to

P(N;)\) = N=0,1,2,... (1)
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Fig. 2: The )\ time series of the corridor updated over 4 week
period.

be a function of time, i.e. )\(ti,tj). Hence, (1) becomes a
non-homogeneous Poisson distribution, in which the degree
of heterogeneity depends on the function A(¢;,t;). As we
use a fixed time interval at any point in time, we define
Atistivs) forie {1,...,T} and § € N.

Working with datasets with much missing data means we
need confidence estimate for the A. This can be achieved via
Bayesian estimation to fully calculate the posterior distribu-
tion. We chose conjugate prior distributions for learning the
A variable to ensure that the inference computations have a
simple closed form:

A~T(Xa,p) 2

The posterior distribution of A(t;,t;) given z1,...,z,
data is calculated as

n
P(>\|£L’1,,.’En):F()\7OZ+Z.’E“B+n) (3)
i=1

where «, 8 are the shape and the inverse scale parameter
of the Gamma distribution [12].

To fit the Poisson processes and provide the model with
good confidence estimate for the A, we impose one pe-
riodicity by splitting the monthly dataset into a weekly
period. For each weekly dataset, we calculate the number
of trajectories appearing every specified time interval, i.e.,
every 10 minutes. We then update our Poisson distribution
at each time interval. As we use conjugate prior distributions,
the rate A for each time interval is updated by updating the
Gamma distribution. The Maximum a posteriori (MAP) is
chosen to be the point estimate for each updated A. The point
estimate for each A throughout an entire week creates the A
time series. This is what we refer by the Poisson processes
model. Figure 2 shows an example of how the A time series
over a week looks after being updated by four-week dataset.

Spectral Representation in Fourier Transform

The Fourier transform is a reversible, linear transformation
that decomposes a function of time f(¢) into the frequencies
that make it up F(w). The function F(w) is commonly
referred to as the frequency spectrum of f(t).
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Fig. 3: A comparison between the [ best amplitude model
and the original data points.

The spectral model - We have shown how we model the
occurrence rate A as a function of time, i.e. A(¢;,¢;). Since
we have multiple regions having their own A time series, we
assume that each region is independent to each other. Hence,
we can explain the use of Fourier transform on A time series
of each region.

The Fourier transform is proposed to mine periodic pat-
terns of A\ by calculating the frequency spectrum of J, i.e.
F(w) = FT()\). In [6], | coefficients with the highest abso-
lute value along with their frequencies wy, are selected. For
later reference, we call this technique [ best amplitude model
(BAM). The coefficients are then used to reconstruct the
smoothed signal by means of the inverse Fourier transform
N =IFT(F'(w)).

Selecting the [ best coefficients is a way to filter other
frequencies which are prone to noise to have a smoother
reconstruction signal. However, this technique can not com-
pletely capture the magnitude of the original signal whenever
the sampling rate is significantly higher than the highest
frequency that you would like to observe. In other words,
the higher the ratio between total data points and the highest
observed frequency, the smaller the value of the [ coefficient
with the highest absolute value. Figure 3 shows a signal
formed of 30 different periodic signals and stretched over
10000 data points and its reconstruction of | BAM. The
highest predefined signal repeats itself 109 times over the
data points. It gives the ratio between data points and the
highest signal 92.5 against 1. As a result the reconstruction
of | BAM technique has somewhat smaller magnitude than
the original signal even though it captures all the predefined
frequencies.

We modified the way to obtain [ coefficients in [6] to
tackle the aforementioned problem by mining multi-periodic
patterns. To obtain a Fourier spectrum of the raw data, we
find a frequency wy with the highest absolute value, then
subtract it from the data and transform it again. Whenever
we obtain a frequency we have encountered, the absolute
value is added to the absolute value of the frequency that
we have encountered. We iterate this multiple times until we
obtain [ desired coefficients. We adopted this technique from
[13] applied to get multiperiodic pulsation from observed



stars. For later reference, we call this technique ! addition
amplitude model (AAM). The results are stored as a set of
S consisting of [ triples abs(wy), arg(wy), and wy which
describe the amplitudes, the phase shifts and frequencies of
the spectral model. The detailed procedure of [ AAM can be
seen in Algorithm 1.

Algorithm 1 [ addition amplitude model (AAM)

Input: z;,...,z,: input signal,

total: maximum total frequency
Output: S: a collection of (abs(wy), arg(wg),wk)
Procedure:

1. Init. k = 1

/I Get the frequency zero (w1 = 0)

2. w = FT(x1,...,2,)[0]

3. § = [[abs(wg), arg(wy), wi]]

4. Repeat until k > total

ek=k+1
/I Get the frequency with the highest amplitude
o wi = FT(x1,...,2,)[1]

/I Update S with wy
o if wy, € S, then abs(wy)+ = abs(wy) and
arg(wr) = avg(arg(wy))
else S =S + [[abs(wg), arg(wi), wi]]
/I Create a cosine signal from wy,

o ...,z = abs(wy) * cos(2m * wy, + arg(wy))
// Subtract current x4, ..., x, with the cosine signal
® Ly, ... Ly =T1,..., Ty —Th,. .. 2

Model purposes - The [ addition amplitude model serves
for two purposes: reconstruction of the original A time series,
i.e., the Poisson processes, and representing spatio-temporal
signatures for each region. Reconstructing A time series is
done via inverse Fourier transform, \' = I FT(S), resulting
A" whose the magnitude is smaller than the original one.
Having a smaller magnitude in \" acts to further reduce noise
which is unfiltered during the data preprocessing producing
cleaner rates with smooth transitions.

Examining the Poisson processes associated with each
region, it can be seen that different regions have similar
patterns. As each set S represents the periodic patterns
occurring in each region, this enables us to characterize
regions according to the similarity of their set S. Hence,
the set S for each region can be seen as a spatio-temporal
signature for that region.

There are several feature sets which can be constructed
from the set S. Here, all frequencies wy from each region
are put together in the descending order based on the number
of their appearance in all regions. This means the frequency
which appears in most of the regions will likely be put in
the very beginning. m most common frequencies are then
selected. These frequencies wi,...,w,, are then treated as
bins where the value of these bins come from abs(wy), or
arg(wy), or a combination of both with k& € {1,...,m}.
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TABLE I: Comparison of the predictive accuracy of root
mean squared error (RMSE) of Poisson model, Poisson
spectral model, and automatic statistician using synthetic
datasets.

Method .RMSE .
no-noise | noise
Poisson processes 101.14 167.98
[ Addition amplitude model (AAM) 101.13 161.48
[ Best amplitude model (BAM) 109.11 165.53
Automatic statistician (AS - 5 kernels) 101.57 170.31

V. ALGORITHM PERFORMANCE

To know the quality of our model, we analyse the per-
formance and compare it with the automatic statistician
framework of [4], which employs Gaussian processes as well
as with the original BAM model of [6]. For later reference,
we call the automatic statistician framework automatic statis-
tician (AS). We compare the algorithms on their ability to
predict the level of human activity across time and space.
Following this, we study the ability of the best method to
classify rooms or regions according to their spatio-temporal
signature. Two different clustering algorithms are presented
to show as a comparison.

Validation on Synthetic Data

First we validated the ability of different models to recover
periodic patterns on a set of synthetic data. The synthetic
dataset was created from 30 different periodic patterns.
We then added i.i.d Gaussian noise to each point in the
synthetic data. Figure 4 shows the Poisson processes of our
synthetic dataset with two reconstruction models, the BAM
reconstruction following the technique presented in [6] and
our AAM reconstruction. The original model shown in the
figure is purely the Poisson processes of the synthetic dataset.
Figure 4 shows that at each point AAM has smaller distance
with the Poisson processes than what BAM has. This shows
that AAM captures the magnitude of the Poisson processes
better than BAM does.

As the synthetic dataset follows the format of our real
dataset, we performed cross-validation (CV) on the synthetic
dataset where each CV-fold is a different week. We compared
four models including the Poisson processes, AAM, BAM,



TABLE II: Comparison of the predictive accuracy according to a root mean squared error (RMSE) measure Poisson model.
We compare the Poisson spectral model, and automatic statistician using real-world dataset.

RMSE for each region

Method Average
1 2 3 4 5 6 7 8 9 10 11 12

Poisson model 2.63 9.50 7.32 2.65 585 292 440 4.13 191 154 493 502 4.40

I AAM 249 899 6.61 265 566 245 420 404 187 140 483 4.67 4.15

| BAM 257 9.02 693 265 569 245 420 404 187 140 482 4095 422

AS (5 kernels) 249 8.67 671 266 576 340 434 4.02 197 147 503 479 4.27

TABLE III: Comparison of the learning time of the Poisson spectral model and automatic statistician using real-world
datasets. Note that the automated statistitian times are in hours, while the AAM and BAM in seconds.

Learning time for each region

Method Average
1 2 3 4 5 6 7 8 9 10 11 12

| AAM 1.1s 1.0s 135 08s 0.8s 0.6s 0.8s 1.0s  0.8s 1.0s 1.2s 1.4s 0.9s

| BAM 0.1s 0.2s 0.1s 0.1s 0.2s 0.1s 0.1s 0.2s 0.1s 0.3s 0.2s 0.1s 0.2s

AS (5 kernels) 34h 1.8h 40h 19h 25h 24h 14h 20h 20h 1.2h 29h 1.5h 2.3h

and AS. We record the root mean squared error (RMSE) of
the reconstructions in Table I.

Table I clearly shows that AAM outperformed others. With
the absence of noise, AAM is 7.9% more accurate than BAM.
On the other hand, the AS model produced a competitive
prediction even though we limited the maximum number
of kernel compositions to five. Adding more kernels to the
AS model makes the time to construct and calculate the
coefficient matrix infeasibly long. In the presence of noise,
AAM and BAM outperformed the Poisson processes. They
also outperformed the AS which performed the worst in the
presence of noise. Furthermore, Table I shows that AAM is
5.5% more accurate than the AS.

One should note that we used strong uniform priors for
our Poisson processes which are suitable for our real world
datasets. Our priors are based on the assumption that people
appear in any time of a day is unlikely to happen. In other
words, the arrival rate A at any time interval is close to zero.
We did not try to find suitable priors to match our synthetic
dataset. As a result, the Poisson processes did not perform
really well with our synthetic dataset with the average error
around 100 points for synthetic dataset without noise, and
167 points for synthetic dataset with noise. Nonetheless, this
does not affect the relative performance of our reconstruction
model which is slightly better than AS reconstruction model
since both of the reconstructions are based on the Poisson
processes.

Performance on Real World Datasets

We also compared the four models described in the
previous section in terms of their predictive accuracy. We
performed four fold cross-validation in a weekly manner on
the collected datasets as described in Section III.

Results are presented in Table II. In general, the AAM
outperformed AS in almost every test except for Region 8§,
which is a regular office, and Region 2, which is a single
occupancy office. Table II also shows the average predictive
performance among regions. From the average result, AAM,

BAM, and the AS model improved the predictive accuracy of
the Poisson processes by 6%, 4.3%, and 3.1% respectively.
One should note that for the purpose of comparison, we
shrink the A time series to one fifth resulting fewer number
of data points to fit our dataset to the automatic statistician.
This is because of computational limitations which could not
handle the size of the covariance matrix needed for Gaussian
learning process.

We also present the time needed for each learner (Table
III). Our finding here is based on our reduced dataset
explained earlier in this section. In terms of speed, BAM
outran other models at least by a factor of 5. The AAM is
still fast (1 second on average). This leaves the AS model by
far the slowest one with at least one hour needed to construct
a model.

A. Clustering Capability

To test the hypothesis that different regions have similar
patterns, we consider a clustering approach. We require a
clustering process that makes weak prior assumptions about
the number of room classes and which will produce a
hierarchical structure capturing the room similarities. For
this we employ Dirichlet Process (DP)-means clustering[14].
This algorithm combines Dirichlet process mixture models
and classical clustering algorithm to have scalable algorithms
that retain the main benefit of Bayesian nonparametrics,
which is the ability to model infinite mixtures. Using this
clustering algorithm, we range over the penalty parameter
rather than explicitly deciding the number of clusters prior
to the learning process. We compared this to the standard
K-Means algorithm.

Using AAM model, each clustering process constructs a
tree which expresses the similarities between room types
on a hierarchical fashion. For the DP-means clustering, the
dendogram was produced by varying the penalty parameter,
whereas for the K-Means, the dendogram was produced by
varying the number of clusters we would like to have. Figure
5 shows the dendograms produced by DP-Means clustering



[1,2,3,4,5,6,7,8,9, 10, 11, 12]

1
, 4,5,6,7,8,9, 10,11

[1,2,3,4,5,6,7,8,9, 10, 11, 12|

[1,2,3,4,5,6,78,9 10 11|

|2456789,10,11|

%i

L3 [2,4,5,6,7,8,09, 10, 11|

67891011|

i
6, 7,89, 10, 11

—
w

B

]

|4,5,6,7 8 9,10, 11

1
51011||46789|

[oh-{]-

i
[4,5.6,7,8,9, 10, 11]

GE

cHREHREHE-

PH/

1
[4,6,7,8,9, 10, 11]

ﬁﬁﬁ-ﬁ%\}-ﬁ : i ﬁ éﬁ
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Fig. 5: Dendograms of region clustering.

(5a) and K-Means clustering (5b).

From Figure 5, it is easy to verify that clusters produced
by two clustering algorithms are sensible. Those clusters
can be used to represent the general function/type of rooms.
Moreover, the clustering hierarchy of the algorithms matches
with semantic room type hierarchy that humans expect. One
should note that a single occupancy office {2} is a special
case of those offices. This room belongs to a person with the
highest position in the office there.

VI. CONCLUSIONS

We have presented an approach for building a probabilistic
model of time-varying counting processes. We have shown
that this can find regular (periodic) patterns in human be-
haviour. The approach is based on an assumption that aggre-
gate statistics of human activities have periodicities which
can be observed from the fluctuating number of humans
around. These periodic patterns can be described by means
of frequency, amplitude, and phase, modelled using the
Fourier and inverse Fourier transforms. By taking the most
significant spectrum components of the Fourier transform, we
indirectly obtain the most significant periodic patterns that
are influenced by the underlying human activities. As each
region might have a unique frequency spectrum, the spectrum
components can be further used as features for region-type
clustering.

We then evaluated the performance of the proposed frame-
work on several time-series of counts representing tracked
people which were collected by an autonomous mobile
robot in an indoor environment over a month. The results
indicate that the proposed framework is able to produce the
model up to 1000 times faster than the automatic statistician
framework with a competitive predictive measure. Moreover,
we demonstrated that the spectral representation of the model
serves a dual purpose by allowing us to cluster regions by
their spatio-temporal signatures. The clusters produced by
our framework show an intuitive result at which the clusters
match with humans’ expectation of room-type clustering.

In this paper, we have performed the temporal analysis
independently for each room. An interesting extension would
be to automatically understand the relationship between the
time series for all different rooms.
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