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Abstract— In this paper we propose a multi-modal object
recognition system that uses a two-step hypothesis verification
approach to improve runtime efficiency. The system uses
local and global appearance and shape features, generating
many possibly competing hypotheses, which are then verified
such that the scene can be optimally explained in terms
of recognized object models. The introduced modification in
this time consuming step reduces runtime considerably, while
maintaining recognition performance. We evaluate recognition
performance for various feature extraction modalities on the
publicly available Willow Garage RGB-D dataset and show
runtime improvements of a factor 2 to 10.

I. INTRODUCTION

Recognition of object instances together with pose recov-
ery is a key step in various robotics and computer vision
applications such as manipulation, surveillance or augmented
reality. Some recent approaches showed significant perfor-
mance improvements when using multi-modal cues [1], [2],
[3] which often comes at the cost of increased computa-
tional load. In this work we propose a multi-modal object
recognition approach that reduces computational complexity
in the most time consuming step of globally verifying object
hypotheses, thus reducing runtime while maintaining recog-
nition performance. Similar to [4], we use multiple parallel
recognition pipelines which can be categorized into two
types: a pipeline matching features extracted locally to detect
objects in presence of clutter and occlusion, and a pipeline
with a richer global description for clear objects which are
easy to segment from their immediate environment.

The main contributions of this work are
• A novel two step approach for hypotheses verification

that reduces the computational complexity of a global
only approach such as in [1].

• integration of 6DoF pose recovery from global descrip-
tion by Ensemble of Shape and CNN based features

• addition of a pose clustering stage for improved com-
putational efficiency

• an evaluation of the different recognition pipelines in
terms of computation time and recognition rate under
various occlusion levels on the Willow RGB-D dataset

• a publicly available recognition framework1- optimized
for memory efficiency and multi-core computers.

II. RELATED WORK

There is a vast literature on 3D object recognition [5] but
only few are able to cope with clutter and multiple object

1All authors are with the Vision4Robotics group, Automation and Control
Institute, Vienna University of Technology, Austria faeulhammer,
zillich, prankl, vincze@acin.tuwien.ac.at

1https://github.com/strands-project/v4r

instances present in the scene.
Tang et al. [6] describes each object by a hue histogram

and a set of SIFT features with corresponding 3D keypoint
locations extracted from rendered views of the object. At
test time, the input point cloud gets segmented by finding
Euclidean clusters above a table plane. Each segment gen-
erates multiple object hypotheses by a Naive Bayes Nearest
Neighbor approach with respect to its hue histogram and bag-
of-sift features. To estimate the object’s pose, a RANSAC
based approach tries to minimize the re-projection error of
SIFT correspondences. This however adds other challenges
such as clustering feature correspondences to multiple object
instances present in the scene which we solve by ensur-
ing geometric consistency for these correspondences [1].
Another major difference is the hypotheses verification.
While [6] verifies object hypotheses individually by checking
the amount of explained keypoints, we project the trained 3D
object model in the scene and perform multi-modal (i.e. color
and 3D distance) checks for each visible point.

Xie et al. [2] showed that dense SIFT matching improved
the recognition results significantly compared to sparse
keypoint extraction. They propose a multimodal blending
approach for hypothesis verification using SIFT, shape and
color models. While they achieved excellent results for the
Willow dataset, their approach assumes textured objects and
test objects standing on a tabletop and being easily to
segment. We propose a more general solution to get rid of
these assumptions.

Using simulated 2.5 views from 3D object models,
Bonde et al. trains a soft-label random forest with features
encoding depth edge orientations, occlusion and pose of
the object. Depth discontinuities in the range image are re-
projected into a voxel grid and accumulated into a histogram
to find dominant edge orientations. Occlusion is simulated
by placing occluders between the simulated camera and the
voxelized object. The object pose is encoded by quantizing
the simulated pose into 16 pose classes. Using a margin-
maximization training scheme on around 50000 simulated
training views for each object, this learning approach jointly
classifies location and pose of an object instance even in
presence of occlusion and clutter.

Papazov et al. [7] proposed a RANSAC based object
recognition approach which verifies object hypotheses by
an acceptance function. Object hypotheses are generated by
sampling scene point pairs at a certain Euclidean distance
to each other, encoding their relative position and surface
orientation and finding corresponding model point pairs
efficiently by the use of a hash table. The acceptance function
is computed on all model points projected into the scene with



the estimated transformation and consists of a support and a
penalty term. The support and penalty terms are proportional
to the number of model points which are close to or occlude
any scene point, respectively. A final filtering step checks for
conflicting hypotheses by creating an octree containing all
visible model points in it. If a leaf node is occupied by points
from more than one object hypothesis there is a penalty.
Apart from the significant difference in the generation of
object hypotheses, our method also differs in the verification
stage. The main differences are that we also check for color
similarity and compute conflicts based on the overlap of the
rendered images of hypotheses.

Our object recognition framework is based on the work
of Aldoma et al. [1]. It uses multiple pipelines; each
pipeline extracting a different type of feature description
either providing local feature correspondences or matches
of segmented clusters to object models in certain poses by
using a global OurCVFH [8] description. After merging the
generated hypotheses, a global verification approach finds
the subset of object models that best explain the scene in
terms of shape, color and clutter.

III. METHOD

The task is to detect pre-trained objects in a scene and
estimate their 6 degree of freedom (DoF) pose with respect
to the camera. The scene S is sensed by an RGB-D camera
which provides for each pixel of the image both color and
depth information.

A. Training object models

We train objects in a controlled setup (turntable) where we
record a number of RGB-D training views with associated
camera pose. The camera pose is tracked using the method
of Prankl et al. [9]. From each training view, we extract
a set of feature descriptors from the segmented object. As
in [1], a multi-pipeline, shown in Fig. 1 extracts local as
well as global features. In our work, we decided to use
SIFT [10] and SHOT [11] for local, and ESF [12] and a
CNN based approach [13] for global description. Keypoints
for SIFT are sampled by DoG on the 2D image of each
training view and stored together with the corresponding
depth value. Keypoints for SHOT are sampled uniformly
across each training view. While SIFT proved to be reliable
for textured objects, the descriptiveness of SHOT deteriorates
with noise [14] (e.g. distant objects sensed by a Kinect sen-
sor). To reduce the amount of noisy and indistinct features,
we skip SHOT feature descriptions from keypoints further
away than a distance ztSHOT from the camera, and also for
keypoints at planar patches (i.e. where the surface curvature
is smaller than a threshold).

Additionally, we compute 3D models M of each object.
These 3D models are used in the final verification stage to
synthetically generate a scene from recognized objects and
find the subset that best fits the recorded scene. The 3D
models are created by merging the segmented point clouds
in each training view into a common coordinate system. To
take into account the camera noise model [15] and reduce the

memory footprint, points close to depth discontinuities are
removed and the remaining points put in an octree (resolution
set to 1mm). Within each node of the octree, only the points
with the lowest noise level are kept to form M. The output
of the training stage is a set of object models

B. Generating object hypotheses

To generate object hypotheses, we follow a similar ap-
proach as Aldoma et al. [1].

a) Local pipeline: Given an RGB-D image of the
scene, we extract the same set of features as described
in Section III-A. Using fast approximate nearest neighbor
search [16], each feature is matched to its k nearest features
fromM with respect to their L2 distance. To detect a single
object instance in a scene, a RANSAC based transformation
estimation would directly generate an object hypothesis.
However, to allow detecting multiple instances of the same
object in a scene, [1] stores keypoints associated to the
features in a graph. Each node in the graph represents a
keypoint match and gets connected to other nodes if they
belong to the same object model and the associated keypoints
are geometrically consistent. Two keypoint correspondences
are geometrically consistent if Euclidean distance as well as
the relative surface normals of scene and model keypoints
conform. Aldoma et al. [1] search this undirected graph
for maximal cliques using the depth-first search algorithm
in [17]. For cliques with a clique number (amount of
geometrically consistent keypoint correspondences) ≥ ct, an
object hypothesis is generated with a pose T estimated using
RANSAC.2

b) Global pipeline: To find objects using global de-
scriptors, we first segment S into a set of point cloud
clusters. As the performance of the global pipeline strongly
depends on the outcome of the segmentation method, it is
important to choose a segmentation method that suits the task
at hand. In our method, we search for a dominant plane using
RANSAC and segment points on top by Euclidean clustering.
Each cluster Ci ∈ S is then described with respect to its
shape (ESF) and visual appearance. The visual appearance is
encoded by feeding the segmented and cropped RGB image
into the Convolutional Neural Network (CNN) proposed
in [13] and pre-trained on the ILSVRC-2012 competition
with 10 million images of 10.000+ different categories [18].
Rather than fine-tuning this network on our set of objects, we
decided to use the 4096 dimensional feature vector extracted
from the last layer of the network and train a multi-class
linear SVM [19] with all our segmented training views.
While ESF features are matched using nearest neighbor
search to its kESF closest training views, we use the kCNN
most likely objects returned by the SVM.

As both of these feature descriptors do not encode the
scale of the object, we add an additional size constraint. In
particular, we reject clusters if their dimensions along the
two prominent Eigenvectors is τc,max larger or τc,min smaller
than the ones measured on the 3D point cloud model of

2At least 3 keypoint correspondences are required to estimate a 6dof pose.
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Fig. 1: Workflow of the proposed recognition system. The scene S is described by multiple local and global features
accounting for shape and visual appearance properties. The extracted features are matched to pre-trained features of the
object models to generate object hypotheses H. The hypotheses are clustered and verified with respect to geometry and
color in a two-step approach; a fast individual and a global verification step. The output is the set of recognized objects
Hglobal.

the matched object. To recover the 6DoF object pose, we
align the centroid of the object with the centroid of Ci

downprojected onto the dominant table plane.3 Next, we
align the z axis of the object with the normal vector of the
dominant plane and span the x-y axes arbitrary onto the
table plane (i.e. orthonormal to z). The remaining degree of
freedom, i.e. the orientation around z, is sampled uniformly
with a step size of δγ [◦]. Each of these

⌈
360
δγ [◦]

⌉
kESF/CNN

possible object poses is afterwards refined using ICP. Note
that we decided to keep all refined object poses (and not
only the one with the best ICP fitness score) to cope with
geometrically symmetric objects.

C. Pose clustering

The output of previous stage is a set of object hypotheses

Hall = {mi, Ti : mi ∈M, Ti ∈ R4×4} , (1)

where each hypothesis contains the matched object model
m and its estimated object pose T = [R|t]. The object pose
hereby represents the rigid body transformation aligning the
object to the camera coordinate system by a rotation R
and translation t. As the hypotheses set potentially contains
redundant elements leading to increased computational com-
plexity, we cluster nearby hypotheses based on their position
and orientation. In particular, starting with a random seed
object hypothesis hj ∈ Hall we iteratively cluster hypotheses
hi ∈ Hall iff

mj = mi and ‖tj − ti‖ < δt and

rj→i(α), rj→i(β), rj→i(γ) < δr,
(2)

where Rj→i = RjRiT gives the relative orientation of the
two hypotheses and r(α), r(β) and r(γ) are yaw, pitch and
roll angles of rotation matrix R. The threshold parameters
δt and δr define the maximum allowed relative distance
and orientation for two object hypotheses to be clustered

3Note that [9] aligns the object models s.t. the centroid defines the origin
of the model coordinate system and the z axis is parallel to the normal plane
of the turntable. Our pose recovery method of the global pipeline implicitly
assumes that these object models are observed in the same upright position.

together; they influence computation time and accuracy. The
clustering is repeated till all hypotheses are assigned to a
cluster of size ≥ 1. The output is a reduced set of hypotheses
H.

D. Hypotheses verification

The goal of the verification stage is to reject falsely
generated object hypotheses by comparing them with respect
to the given input cloud. We use a two-step approach for
rejection of object hypotheses. First, we reject potentially
wrong hypothesis individually by occlusion reasoning and
computing a model fitness for each h ∈ H. Second, we
globally optimize a cost function to decide which of the
remaining hypotheses best explain the scene.

1) Individual Verification: The goal of the individual ver-
ification step is to reject hypotheses which either contradict
with the observed scene S by occluding parts of it or weakly
explaining it in terms of geometry and/or color. Rejection
of these hypotheses allows us to reduce the computational
complexity in the following global verification stage.

a) Occlusion Reasoning: We first check which part of
the 3D object model is visible from the current viewpoint. To
infer the visible model points Mvis ⊂M, we compute self-
occlusion and the occlusion from observed scene points by
projecting each object hypotheses into the camera coordinate
system using the estimated object pose T . Using the camera
intrinsics and doing depth buffering onto the image plane,
we define a visibility ratio v for each hypothesis hi by vi =
|Mi,vis|
|Mi| .

b) Model / Scene Fitness: Using the visible model
cloudMvis, we check how well it fits S in terms of geometry
and color. Given a point pm ∈ Mvis, we search for nearby
scene points N (pm) = {ps ∈ S : ‖pm − ps‖ < ρ} and
define a model fitness term

mf (pm) = min
ps∈N (pm)

exp (−d(pm,ps)) (3)



with

d(p, q) =
‖p− q‖2

σ2
3D

+
‖cL(p)− cL(q)‖2

σ2
L

+ (4)

‖cAB(p)− cAB(q)‖2

σ2
AB

+
arccos

(
n(p)Tn(q)

)
σn

,

where cL(p) are the L and cAB(p) the A and B components
of the point color of p in the CIELAB color space. The
vector n(p) represents the surface normal at p. The variables
σ3D, σL, σAB and σn are the corresponding scale factors
and influence the importance of each term. The fitness term
ranges between 1 for a perfect fit and 0 for model points that
can not be explained by any points in S . The average model
fitness for a hypothesis is defined by

mf =

∑
p∈Mvis

mf (p)

|Mvis|
. (5)

and defines together with a threshold parameter mt
f if the

hypothesis gets rejected. Instead of using a hard threshold,
we scale mt

f linearly with the occlusion ratio (1 − v).
Intuitively, the less we see from an object, the more difficult it
is to judge if the hypothesis is correct. Therefore, we require
a better fit to reduce the influence of noisy measurements.

c) Smooth segmentation: As shown by our experi-
ments, in many cases local shape features within our model
database erroneously fit parts of the scene potentially gener-
ating wrong hypotheses. As our optimization strategy aims
to maximize the number of explained scene points, these
hypotheses would be accepted if the model fit is sufficiently
large (e.g. flat objects like books locally have the same
shape distribution as the edge of a table). To penalize these
circumstances, we extract smooth surface patches from S
and reject objects whose visible model points only partially
fit a patch. The surface patches are extracted by selecting
random seed points in S and iteratively clustering nearby
points with similar surface normals and curvatures.

2) Global Verification: The output of the individual verifi-
cation is a set Hind. ⊂ H containing all hypotheses for which
mf > mt

f . As a final step in our pipeline, we globally search
for the best fitting set of hypotheses Hglobal. As we already
removed weak hypotheses in the previous stage, the final
step penalizes conflicting hypotheses. To penalize conflicting
hypotheses, each hypothesis is back-projected onto the image
plane and for each pair hi, hj ∈ Hind. we compute an
intersection penalty Φ(hi, hj) as the ratio of overlapping to
total number of occupied pixels. The goal of the optimization
function is then to minimize the overall intersection penalty
while at the same time maximizing model and scene fitness.
The scene fitness sf (s) for a point s ∈ S is hereby defined
by the best matching visible model point

sf (s) = min
p∈Mvis

(mf (p) : s ∈ N (p)). (6)

As in [1], we define the problem as a combinato-
rial problem where we optimize over a boolean vector
x ∈ {0, 1}|Hind.|. Each element in xi ∈ x represents a
hypothesis hi ∈ Hind. and is set to 0 or 1 depending on

rejection or acceptance, respectively. To get the final set of
hypotheses, we solve following optimization problem

x? = arg max
x∈X

λm

|Hind.|
∑

hi∈Hind.

mf (hi)xi +
λs

|S|
∑
p∈S

sf (p)

− λΦ

∑
hi∈Hind.

∑
hj∈Hind.

Φ (hi, hj)xixj (7)

s.t. x = {0, 1} ∈ X ,

with regularization parameters λm, λs and λΦ.
The cost function in Eq. 7 is optimized using METSlib

[20] from an initial solution with all hypotheses disabled
and using local search over all neighboring solutions with
a Hamming distance not greater than 2. The output of an
example test scene is shown in Fig 2.

IV. RESULTS

To evaluate the performance of our system, we test it
on the Willow RGB-D dataset used for the ICRA per-
ception challenge 2011(goo.gl/qXkBOU). The training
set of these datasets consist of 33 rigid textured object
models, each object recorded from 37 different training views
(corresponding to a 10 degree viewpoint change). The test set
consists of 24 sequences of recorded table top scenes from
different viewpoints with multiple objects present in each
scene. There is a total of 353 test views with 3257 object
occurrences. The ground-truth of each object occurrence is
represented as the 6 DoF pose aligning the object model with
the scene and an occlusion value which is equal to the ratio of
model points visible in the respective test view. We measure
f-score f = 2·precision·recall

precision+recall for various feature selections and
compare it to the results in [1], [6] and [2]. Additionally, we
evaluate how well objects are detected under different levels
of occlusion. The parameters for the following evaluation
were validated empirically on 10% of the test set. As we were
mainly interested in the relative performance of our tested
pipelines to each other, we spared extensive fine-tuning of
the parameters and kept them at the same values over all
evaluations. The chosen values are listed in Table I.

A. Feature Evaluation

In this test, we enabled subsets of pipelines shown in
Figure 1 and measured their performance. As shown in
Table II, we achieve baseline performance for all tested
combinations using SIFT descriptors. The best trade-off
between f-score and computation time was achieved by
the local pipeline combination SIFT + SHOT. Comparing
recall, it shows that considerably fewer objects are missed
by using multiple pipelines describing multiple modalities
over both local and global regions. The decreased preci-
sion for recognition pipelines using ESF can be explained
by the fact that some objects in the Willow dataset are
geometrically very similar (e.g. cereal box, bottles) and so
generate many false hypotheses that need to be rejected by
the verification stage. Hypotheses of similar shaped objects
can however only be distinguished by the color term in
Eq. 3 in our approach. Even though using the CIELAB color



Test scene S top: Local pipeline with uniformly (green) and filtered non-planar(red) keypoints (left); merged
local feature correspondences for an object (middle); and geometric consistent hypotheses (right) hypotheses

bottom: global pipeline with segmentation output (left), generated hypotheses by centroid alignment
and sampling uniformly around the z axis (middle); and filtered hypotheses by scale check (right)

smooth seg. model scene overlay model fitness (green) scene fitness (green) intersection verified hypotheses
Individual verification for an object hypotheses in wrong (top) and correct (bottom) pose Φ Hglobal

Fig. 2: Example output of various components within the proposed recognition system. Best viewed in color.

space, we experienced a considerable change of the point
color under different lighting conditions and so decided to
use conservative weight factors. Other than increasing these
weight factors, another remedy to reject these hypotheses
could be that the verification stage also takes into account the
probability distributions from the feature matching output.

We also evaluated how well objects are recognized at
different degrees of occlusion by various types of feature
extractors in our system. As shown in Figure 3 SIFT accounts
for most of the recognition performance; especially under
heavy occlusion where global pipelines either fail to segment
the object or suffer from the few points being visible for
a meaningful global feature description. However, for less
occluded object, using multiple of the proposed recognition
pipelines increases recognition rate by up to about 20%.

B. Computation time
We ran our evaluations on an Intel 4-core i7 CPU with

32GB RAM. While the computation time for [4] has been
measured on the same machine, the computation times for [6]
and [2] have been taken from the respective papers both
of which using a comparable system. Although there is no
computation time given for [1], we expect it to be close
to [4] due to the similarities of these systems. Table II shows
the approximately 2×speed-up we gain from using pose
clustering and our proposed combination of individual and
global verification compared to the fastest tested state-of-the-
art approach when disabling global pipelines. The runtime

increases significantly when enabling any global pipelines.
This can be explained by the large number of object hypothe-
ses that need to be verified which depends on the number of
clusters being extracted by the segmentation algorithm and
the amount of object hypotheses being generated, i.e. the
sampling ratio of the angle around the z-axis. This highlights
the importance of our proposed scale check filter and pose
clustering stage.

V. CONCLUSIONS

We have presented a recognition framework extracting
multiple modalities from local and global parts of the objects
and fusing them into a compact set of object hypotheses. Our
generic pipeline allows us to use various types of descriptors
and matching techniques which in combination showed an
increased recognition rate compared to the systems being de-
ployed in isolation. To deal with the increased complexity, we
proposed a two-step verification approach that significantly
reduced computation time compared to previous systems. All
our code is publicly available.

Potential future work includes clustering of feature de-
scriptors into codebooks to obtain prior probabilities of each
descriptor, computing mesh models and rendered views of
each object model to generate training views from a larger
set of camera poses, data augmentation for the CNN pipeline,
and using a hierarchical segmentation approach to take into
account over- and undersegmentation. Also we are interested
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Fig. 3: Feature Evaluation on the Willow Dataset.

precision recall fscore time [s]
Aldoma et al. [1] 0.973 0.856 0.911
Xie et al. [2] 0.983 0.878 0.927 38.1
Aldoma et al. [4] 0.943 0.709 0.809 5.2
Tang et al. [6] 0.888 0.648 0.749 20.0
Ours (SIFT only) 0.966 0.656 0.740 2.5
Ours (SHOT only) 0.830 0.284 0.367 2.4
Ours (CNN only) 0.716 0.546 0.489 20.4
Ours (ESF only) 0.678 0.347 0.358 13.4
Ours (SIFT+SHOT) 0.956 0.703 0.770 2.7
Ours (SIFT+ESF) 0.819 0.749 0.738 14.1
Ours (SIFT+CNN) 0.799 0.830 0.761 17.3
Ours (SHOT+ESF) 0.670 0.460 0.475 13.9
Ours (SHOT+CNN) 0.727 0.675 0.617 13.9
Ours (ESF+CNN) 0.745 0.592 0.529 32.5
Ours (SIFT+CNN) 0.799 0.830 0.761 20.0
Ours (SIFT+SHOT+ESF) 0.804 0.774 0.743 14.8
Ours (SIFT+SHOT+CNN) 0.791 0.871 0.781 21.6
Ours (SIFT+ESF+CNN) 0.835 0.753 0.736 27.5
Ours (SHOT+ESF+CNN) 0.685 0.486 0.505 24.8
Ours (SIFT+SHOT+ESF+CNN) 0.755 0.861 0.750 34.3

TABLE II: Recognition results on the Willow Dataset.

in the performance of the proposed method for partial object
models as proposed in [21].

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement No. 600623,
STRANDS and No. 610532, SQUIRREL.

REFERENCES

[1] A. Aldoma, F. Tombari, L. Di Stefano, and M. Vincze, “A global
hypothesis verification framework for 3d object recognition in clutter,”
PAMI, 2015.

[2] Z. Xie, A. Singh, J. Uang, K. S. Narayan, and P. Abbeel, “Multimodal
blending for high-accuracy instance recognition,” in IROS. IEEE,
2013.

[3] J. Glover and S. Popovic, “Bingham procrustean alignment for object
detection in clutter,” in IROS. IEEE, 2013, pp. 2158–2165.

[4] A. Aldoma, F. Tombari, J. Prankl, A. Richtsfeld, L. Di Stefano,
and M. Vincze, “Multimodal cue integration through Hypotheses
Verification for RGB-D object recognition and 6DoF pose estimation,”
in ICRA. IEEE, 2013, pp. 2104–2111.

[5] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, “3d object
recognition in cluttered scenes with local surface features: A survey,”
PAMI, vol. 36, no. 11, pp. 2270–2287, 2014.

[6] J. Tang, S. Miller, A. Singh, and P. Abbeel, “A textured object
recognition pipeline for color and depth image data,” in ICRA. IEEE,
2012.

[7] C. Papazov, S. Haddadin, S. Parusel, K. Krieger, and D. Burschka,
“Rigid 3d geometry matching for grasping of known objects in
cluttered scenes,” IJRR, 2012.

[8] A. Aldoma, F. Tombari, R. Rusu, and M. Vincze, “Our-cvfh: Oriented,
unique and repeatable clustered viewpoint feature histogram for object
recognition and 6dof pose estimation,” in Joint DAGM-OAGM Pattern
Recognition Symposium, 2012.

[9] J. Prankl, A. Aldoma, A. Svedja, and M. Vincze, “Rgb-d object
modelling for object recognition and tracking,” in IROS. IEEE, 2015.

[10] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” IJCV, vol. 60, no. 2, pp. 91–110, Nov. 2004.

[11] F. Tombari, S. Salti, and L. Di Stefano, “A combined texture-shape
descriptor for enhanced 3d feature matching,” in ICIP, 2011, pp. 809–
812.

[12] W. Wohlkinger and M. Vincze, “Ensemble of shape functions for 3d
object classification,” in ROBIO. IEEE, 2011, pp. 2987–2992.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1097–
1105.

[14] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, J. Wan, and N. M. Kwok, “A
comprehensive performance evaluation of 3d local feature descriptors,”
IJCV, vol. 116, no. 1, pp. 66–89, 2016.

[15] C. V. Nguyen, S. Izadi, and D. Lovell, “Modeling kinect sensor noise
for improved 3d reconstruction and tracking.” in 3DIMPVT. IEEE,
2012, pp. 524–530.

[16] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” in VISAPP. INSTICC Press,
2009.

[17] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time
complexity for generating all maximal cliques and computational
experiments,” Theoretical Computer Science, vol. 363, no. 1, pp. 28
– 42, 2006.

[18] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
IJCV, vol. 115, no. 3, pp. 211–252, 2015.

[19] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM TIST, vol. 2, pp. 27:1–27:27, 2011, software available
at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[20] M. Maischberger, “COIN-OR METSlib, a metaheuris-
tics framework in modern c++,” http://www.coin-
or.org/metslib/docs/releases/0.5.2/metslib-tr.pdf, April 2011.
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