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Abstract. We present a method that allows to improve activity
recognition using temporal and spatial context. We investigate how
incremental learning of long-term human activity patterns improves
the accuracy of activity classification over time. Two datasets col-
lected over several months containing hand-annotated activity in res-
idential and office environments were chosen to evaluate the ap-
proach. Several types of spatial and temporal models were evalu-
ated for each of these datasets and the efficiency of each method was
assessed by the way it improved activity classification. The results
indicate that incremental learning of daily routines allows to dramat-
ically improve activity classification. For example, a weak classifier
deployed in a single-inhabited apartment for a period of three weeks
was enhanced with a temporal model that increased its accuracy from
20% to 60%.

1 Introduction

Automated recognition human activities has recently become a hot
topic of research. It enables a wide range of applications such as se-
curity, retail or healthcare, but recently a huge focus has been given
to the recognition of the Activities of Daily Living (ADL) due to its
potential application in Ambient Assisted Living (AAL). This tech-
nology could help to overcome the predicted need of health work-
ers and improve the quality of life of the increasing elderly popula-
tion in the near future, by assisting people in their daily tasks and
identifying potential problems. Furthermore, it could be used also in
security applications to detect anomalous situations which could en-
danger people or property. The introduction of new technologies has
made this problem easier to address. In particular, RGB-D sensors to-
gether with the pose estimation software and the smart sensors for the
Internet of Things have enabled the possibility of acquiring data for
such applications, giving birth to many related datasets [3, 14, 34, 1].
The development of Activity Recognition is furthermore supported
by novel techniques to manage huge quantities of data (Big Data)
and the increased computational power of modern computers, en-
abling real-time implementations.

The main focus of the recognition models has been the recognition
of patterns derived from the data acquired from the sensors. The fea-
tures used for pattern recognition typically relate to the body move-
ment and the surrounding context, in the case of RGB-D sensors, or
by the sensor events in a smart environment. By contrast, in this work
we aim to exploit the long-term patterns of recurring activities to
improve the performances of activity classification. Prior work [16]
showed that the patterns of the spatio-temporal dynamics of the en-
vironment can be exploited to improve the indoor localization of a
mobile robot.
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Figure 1. Witham dataset - ceiling camera view.

In a similar way this work proposes an approach to calculate prior
probabilities of an activity happening at a certain time, which im-
proves the error rate of a given classification algorithm. We anal-
yse several possible techniques, including a novel approach based
on Adaptive Interval Based Models, which delivers continuous im-
provement to the recognition performance on-the-fly, by incremen-
tally performing naive Bayesian learning. We evaluate our meth-
ods on the Aruba Dataset [3], based on the ADL activities and the
Witham Dataset, manually annotated from camera recording (Figure
1) in an office environment.

There are two main contributions in this paper: (i) The introduc-
tion of a probabilistic formulation to incrementally model temporal
and spatial context to improve Activity Recognition performance of
a given classifier with a spatial or temporal model. (ii) The introduc-
tion of novel probabilistic models of temporal and spatial context.
(iii) Comparison of different temporal models in order to understand
which ones can better represent the temporal structure of daily activ-
ities.

The remainder of this paper is organized as follows. Section 2
will give an overview on the state-of-the-art for Activity Recognition
performed with smart sensors and RGB-D cameras and on the use
of temporal and spatial models for Activity Recognition. Section 3
will provide a formulation of the Activity Recognition problem. Sec-
tion 4 introduces the models we are based on. Section 5 explains our
method of evaluation for the temporal models. Section 6 will com-
ment the results of our experiment, and finally Section 7 presents the
conclusion and future work.

2 Related work
Human activity recognition aims to recognize the actions and goals
of human agents using a sequence of observations on the agents’ ac-
tions and the environmental conditions. Tracking and understanding



human behaviour through videos is a very important and challeng-
ing problem with various useful applications. Activity Recognition
has originally been performed on RGB video streams with a wide
spectra of solutions [13, 27].

The development of cheap RGB-D cameras has contributed to the
increased focus on this problem, since they allow to reduce the com-
putational requirement for estimating the pose of human body and
the contextual patterns in the scene in real-time. In [9, 10] a prob-
abilistic ensemble of classifiers called Dynamic Bayesian Mixture
Model (DBMM) is proposed to combine different posterior proba-
bilities from a set of classifiers for activity recognition. Wang et al.
[35] show a deep structured model built with layered convolutional
neural networks. A biologically inspired approach adopting an arti-
ficial neural network to combine pose and motion features for action
perception is proposed by [25]. In [5], a simple way to apply qualita-
tive trajectory calculus to model 3D movements of the tracked human
body using hidden Markov models (HMMs) is presented. Sung et al.
in [28] and [29] perform activity recognition in unstructured environ-
ments such as homes and offices with an RGBD camera. The move-
ment is modelled by transforming the rotation matrix of each joint to
the body torso and inferring the activities and sub-activities with a 2-
layered Maximum Entropy Markov Model (MEMM). A three-level
hierarchical discriminative approach is presented in [20]. The activi-
ties are decomposed into a lower level representing the pose data, an
intermediate level where the poses are combined into simple human
actions, and a high level where the actions are spatially and tem-
porally combined into complex human activities. The approach pre-
sented in [26] uses HMMs combined with Gaussian Mixture Models
(GMM) to model the combination of continuous joint positions over
time for activity recognition. In [33], the authors use random occu-
pancy patterns to model activities using context from depth data.

Smart environments allow to mine though the sensor events to
classify which activity has happened. [12] presents a dataset with
smart sensors for ADL recognition, where the classification is per-
formed using Support Vector Machines (SVM). A mining technique
to find the association rules between the activities and their frequent
patterns in smart environments is presented in [36]. In [8], the authors
use the Back-Propagation algorithm to train a feed-forward Neural
Network with features extracted from the motion sensor events. In
[7], a method for evaluating the confidence of classification is pre-
sented. It is performed with SVM for a certain activity to reduce false
positives so that samples with low confidence can be further inves-
tigated by a human operator. In [4] an activity discovery algorithm
is presented which identifies patterns in sensor data with a greedy
approach. It searches for a sequence pattern that best compresses the
input data; the data is scanned to create initial patterns of length one,
which are extended in every loop while minimizing the description
of the data.

In [24] analysis of human activities in an office environment is per-
formed using a Layered Hidden Markov Model (LHMM) architec-
ture based on real-time streams of evidence from video, acoustic, and
computer interactions. Similarly, a multi-level HMM is presented in
[37] for recognising office activities and tracking the users across
the rooms. In [23] a solution for office activity recognition is pro-
posed, which handles multiple-user, multiple-area situations, based
on an ontological approach, using low-cost, binary and wireless sen-
sors. The idea of exploiting long-term analysis has been presented
already by Van Laerhoven et al. [32], using wrist-worn sensors to
collect daily activity data to create rhythmic models of the activities.
These models are created off-line using a frequentist approach, accu-
mulating the amount of times an annotated activity starts and stops

witin a certain time interval, which is represented as a bin. In [21]
a long-term annotated dataset using many different sensors is intro-
duced. The classification is performed using a binary classifier for
each learned activity, collecting features from the sensor data in par-
ticular time windows. Daily routines are recognized in [2] from fea-
tures extracted with a sliding window approach. These are clustered
with k-means to calculate their occurrence statistics and store them
in a histogram which is classified using a Joint Boosting technique.
The authors in [30] introduce a wellness determination process to
help healthcare providers to assess the performance of the elderly
in their daily activities. It verifies the behaviour of elderly people at
three different stages (usage of appliances, activity recognition and
forecast levels) in a smart home monitoring environment integrating
the spatial and temporal information.

In [6] a model is introduced for long-term monitoring of activities
in a smart home. The classification is performed with a Probabilistic
Neural Network (PNN), and the daily schedules of activities are then
clustered with K-means. The clusters with highest inter-variation ae
considered as normal and the others as their deviations. [22] presents
a way of predicting future activity occurrences, with a recurrent pre-
dictor, based on the structure of the temporal sequence of the activi-
ties. Long-term modelling of indoor environments has been exploited
also in other cases. In [17], the authors argue that part of the environ-
ment variations exhibit periodicities and represent the environment
states by their frequency spectra. The concept of Frequency-based
Map Enhancement (FreMEn) was applied to occupancy grids in [19]
to achieve compression of the observed environment variations and
to landmark-based maps in order to increase robustness of mobile
robot localization [15]. In this paper, we proposed a method that can
be applied to existing classification algorithms for activity recogni-
tion, learning the temporal structure of the classified activities in or-
der to incrementally improve the classification results on-line. Fur-
thermore we investigate several possible models which can be used
to model the (prior) occurrence probability of the learned activities.

3 Problem formulation
We formulate the activity classification problem simply as a Bayesian
decision making problem. Let us assume that at time t, a person is
performing an (unknown) activity from the set of possible activities
A while being observed by a set of sensors. Let some algorithm C
process the sensory readings and classify that the activity being per-
formed is o ∈ A. Let us assume that we have experimentally estab-
lished the performance of C on some representative dataset and thus,
we know C’s confusion matrix, i.e. we can characterise the perfor-
mance of C as a conditional probability p(o|a). Thus, every time the
algorithm C provides us with an observation o, we can establish the
posterior distribution p(a|o, t) over the possible activities at time t
as:

p(a|o, t) = p(o|a) p(a, t)∑
b∈A p(o|b)p(b, t)

. (1)

In our case, we will use a separate spatial/temporal model per each
activity. To emphasize that the models are calculated separately, we
rewrite the Equation (1) for a single activity a as

pa(o, t) =
p(o|a) pa(t)

p(o|a)pa(t) + p(o|¬a)(1− pa(t))
, (2)

where pa(t) represents the probability of the activity a being per-
formed at time t, i.e. the temporal prior of a. The expression pa(t)
was chosen to emphasize that the temporal models are built indepen-
dently - it corresponds to p(a, t) in Equation (1).
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While most of the research in activity recognition is aimed at the
performance of the activity recognition algorithmC, which increases
the chance of correct activity classification by improving p(o|a) in
Equation (2), our work is not concerned with the actual method that
is used to determine the activity from the sensory readings. Instead,
we focus on the term pa(t) in (2, which effectively represents the
temporal context of a given activity. We hypothesize that since peo-
ple tend to perform certain activities on a regular basis, pa(t) is a
(pseudo-)periodic function that can be learned over time and that bet-
ter knowledge of pa(t) would positively impact the performance of
the classification system represented by Equation (2).

To learn pa(t), we apply Equation (2) iteratively. Initially, we start
with all pa(t) = 1/|A|, i.e. we assume that the activities occur with
the same probability regardless of the time. Whenever an activity is
classified by (2), we use the output of (2) to update pa(t) and use the
updated pa(t) in the following classification step.

The key questions that our paper addresses are:

1. Which model should be used to represent the temporal activity
context (or prior) pa(t) ?

2. How much does the temporal context impact the performance of
state-of-the-art classifiers ?

3. Can we learn the temporal context even with a weak classifier ?

To answer these questions, we tested three different temporal mod-
els on two datasets, which contain human activities labelled minute-
by-minute over several weeks.

4 Temporal models
In our work, a temporal model of activity a is a function pa(t), which
represents the probability of the activity a occurring at time t. We
consider four types of temporal models: Frequency Map Enhance-
ment (FreMEn), which represents cyclic processes by their frequency
spectra, Gaussian Mixtures, which are well established in several do-
mains, and naı̈ve and adaptive versions of interval-based models.

4.1 Frequency map enhancement
Frequency Map Enhancement (FreMEn) is an emerging technique
that improves the efficiency of mobile robots that operate au-
tonomously for long periods of time [15, 11]. The method assumes
that states of the robots’ operational environments are affected by
pseudo-periodic processes, whose influence and periodicity can be
obtained through the Fourier transform. Thus, the uncertainty of a
given state s(t) is represented as a probabilistic function of time that
is a combination of harmonic functions:

p(t) = α0 +

n∑
i=1

αicos(ωit+ ϕi), (3)

where the amplitude αi, phase shift ϕi and frequency ωi correspond
to the most prominent spectral components of the observations of the
original state s(t).

In our case, the state s(t) of the FreMEn model is a binary func-
tion of time oa(t) which indicates if the activity a was observed at
time t and pa(t) will be our probabilistic function p(t) . To build
the FreMEn model, we simply take the results of the past classifi-
cations and form a sequence oa(t) for each activity a ∈ A. Then,
we calculate the Fourier spectrum of each sequence oa(t), select n
of its most prominent (i.e. with highest amplitudes) spectral compo-
nents and use their amplitudes, periodicities and phase shifts as (αi,

ωi and ϕi) parameters of the predictive FreMEn model in Equation
(3), which is used as a prior for classification in Equation (2. Since
the performance of the FreMEn model is affected by the choice of
the model order n, we run our experiments with n ranging from 0 to
9 and chose the best performing setting, which was n = 3. To speed
up calculations, we used the version of FreMEn introduced in [18],
which allows for incremental updates.

The main advantage of the FreMEn is that it naturally represents
multiple periodicities that are inferred automatically from the data.
However, it poorly presents periodic, but short duration activities,
such as teeth brushing or tea making.

4.2 Gaussian Mixture Models

Gaussian Mixture Models, which approximate multi-dimensional
functions as weighted sums of Gaussian component densities, are
a well-established method that find their applications in numerous
fields from Psychology to Astrophysics [31]. A Gaussian Mixture
Model of a function f(t) is a weighted sum of m Gaussian func-
tions:

f(t) =
1√
2π

m∑
j=1

wj
σj
e
−

(t−µj)
2

2σ2
j . (4)

The parameters of the GMM components, i.e. the means µj , vari-
ances σj and weights wk, are typically calculated from the train-
ing data by an iterative Expectation Maximization (EM) or Maxi-
mum Aposteriori (MAP) algorithms. Since the classic GMMs are not
meant to represent periodic functions, we simply assume that people
perform most of their activities on a daily basis and limit the time
domain of GMM-based models to one day. While this assumption is
not entirely correct (as activities of weekdays differ from the week-
end ones), such a temporal model might still perform better than a
‘static’ one, where the probability of a given activity is constant in
time.

To build the GMM model of pa(t), we first create a temporal se-
quence of observations oa(t) for each activity in the same way as in
the FreMEn case. Then, we calculate an initial prior as follows:

p′a(t) =
k

τ

bk/τc∑
i=1

oa(t+ (i− 1)τ), (5)

where τ is the assumed period (in our case τ = 86400 s) and k
is the s(t) sequence length. After calculating p′a(t), we employ the
Expectation Maximization algorithm to find the means µi, standard
deviations σi and weightswi of its Gaussian Mixture approximation:

pa(t) =
1√
2π

n∑
i=1

wi
σi
e
− ((t mod τ)−µi)

2

2σ2
i , (6)

where τ is the apriori known period of the function pa(t) and mod
is a modulo operator.

The weaknesses of periodic GMMs (PerGaM) are complementary
to the advantages of the FreMEn. Periodic GMMs can approximate
short-duration activities, but they can represent only one period that
has to be known a priori. Similarly to FreMEn, the performance of
GMMs depends on the choice of n, which represents the number of
Gaussians used in the mixture model. Again, we run our experiments
with n ranging from 0 to 9 and chose the best performing setting,
which was n = 3.
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4.3 Interval-based Models
Another temporal model that has been considered partitions the time
in disjoint intervals, each with a different prior probability pa(t).
Similarly to the GMM-based models, the partitioning requires that
the periodicity τ and model order n (the number of intervals) are
chosen a priori. In our interval-based model, pa(t) is represented
by n values p′a(k) that denote prior probabilities of a given activity
occurring between τm+ τ k

n
and τm+ τ k+1

n
, where m ∈ N and

k ∈ {0, 1 . . . k − 1}. In the following text, we will refer to the time
interval τ/n as the “interval width”. To update or retrieve pa(t), one
has to simply determine the index k of the relevant interval:

pa(t) = p′a(k) = p′a(b(t mod τ)
n

τ
c), (7)

where bxc is a floor operator, that returns the integer part of x.
Unlike in FreMEn and GMM models, the interval-based model is

updated according to Bayes rule in Equation (2). Thus, when a clas-
sification is performed at time t, we first calculate k by Equation (7)
and then perform the model update as follows:

p′a(k)←
p(o|a) p′a(k)∑
a∈A p(o|a)p′a(k)

, (8)

Again, a crucial question here is model granularity (i.e. the interval
width that is determined by the number of the represented intervals
n). Models with wide intervals cannot represent short-duration activ-
ities, whereas models with short intervals require larger amounts of
data for training, therefore their learning rate is slow.

4.4 Adaptive Interval Models
To deal with the aforementioned problem, we can store the number
of updates performed for each interval u(k) and calculate pa(t) by
aggregating the probabilistic values of neighbouring intervals, so that
pa(t) is based at least on l updates. While the model update remains
the same as in the previous case (see Equation (8)) and the only dif-
ference it that the value of u(k) is increased by 1, calculating pa(t)
differs. To determine pa(t), we first calculate the index of the rele-
vant interval k as b(t mod τ)n

τ
c (see Equation (7)). We check if the

number of updates performed to calculate p′a(k) is at least l and if
not, we include the neighbouring intervals and calculate p(t) as the
weighted (by the number of updates) average. This is repeated until
the number of measurements used to determine pa(t) exceeds l. See
Algorithm 1 for more details.

Algorithm 1 Adaptive interval prior calculation
1: function CALCULATEPRIOR(t, τ, n,u,p′

a, l)
2: k ← b(t mod τ)n

τ
c . determine interval index

3: m← u(k) . initialize total number of measurements
4: p← mp′a(k) . initialize prior probability
5: while m < l do . num. of measurements must be at least l
6: p← p+ p′a(k + 1)u(k + 1) . add neighbour prior
7: p← p+ p′a(k − 1)u(k − 1) . add neighbour prior
8: m← m+ u(k + 1) + u(k − 1) . update meas.num.
9: end while

10: pa(t)← p/m . the resulting prior is a weighted average
11: end function

This “adaptive interval” method calculates pa(t) over several in-
tervals in case there is not enough data available, which is equivalent

to adjusting the interval width to the number of data gathered. How-
ever, one still has to choose the minimal interval width (we selected
60 s), the periodicity (we choose τ = 1 day) and l, which is the
minimal number of measurements required to calculate pa(t). The
optimal number of measurements l is subject to investigation in the
following sections.

4.5 Modelling the spatial context
We also evaluated the use of spatial context without temporal infor-
mation in activity recognition. The use of spatial context context is
motivated by the fact that certain activities are tied to certain loca-
tions, e.g. cooking typically occurs in a kitchen. Similarly to tempo-
ral models, we formalise a spatial model of activity a as a function
pa(l), which represents the probability of the activity a performed
by a person when at location l. The process of using and building a
spatial context model is similar to the interval temporal models:

pa(l)←
p(o|a) pa(l)∑
a∈A p(o|a)pa(l)

, (9)

The only difference is that the location l is not calculated based on
the time, but on the position of the person. Combination of spatial
and temporal context is considered for an extended version of this
paper.

4.6 Model overview and evaluation
Each of the aforementioned models has advantages and drawbacks.
A comparison of the PerGaM and FreMEn models applied to a “read-
ing” activity in an office is shown in Figure 2. We assume that the
interval-based models do not require an illustrative example. The
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Figure 2. PerGaM and FreMEn models examples comparison.

main aim of this work is to investigate how these models perform
when being used as priors for activity recognition. We abstract from
the actual algorithm that is used for classification - we simply as-
sume that the classifier can use the priors provided by our spatial and
temporal models to estimate which activity is being performed. We
assume that if the priors are not provided, the performance of a given
classifier depends on its confusion matrix, which represents the con-
ditional probability p(o|a). The primary metric to be investigated is
the overall activity recognition error, i.e. the probability that o 6= a.
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Table 1. Activities of the Aruba and Witham experiments.

Aruba dataset Witham dataset

Bed to Toilet Outside
Eating Reading
Enter Home Writing
Housekeeping Watching a video
Leave Home Cooking
Meal Preparation Talking
Relax Sleeping
Resperate Phonecall
Sleeping Go to toilett
Wash Dishes Other
Work

5 Experiments

To evaluate the usefulness of the individual models for activity recog-
nition, we performed their comparison on two datasets that cover
several weeks of human activity at home and at work.

The first, ‘Aruba’ dataset was collected by the Center for Ad-
vanced Studies in Adaptive Systems (CASAS) to support their re-
search concerning smart environments [3]. The Aruba dataset con-
tains ground-truthed activities (Table 1) of a home-bound person
in a small apartment for 16 weeks. The second ‘Witham’ dataset
was gathered at the Lincoln Centre for Autonomous System (L-
CAS) as part of the large-scale EU-funded STRANDS project, which
aims to enable long-term autonomous operation of intelligent robots
in human-populated environments. The Witham dataset, which was
gathered for four weeks, contains activities (Table 1) of one of the
L-CAS researchers.

5.1 Aruba dataset

The Aruba dataset [3] consists of measurements collected by 50 dif-
ferent sensors distributed over a 10× 12 m2, seven-room apartment
over a period of 16 weeks.

During data collection, the apartment was occupied by a single
person who was occasionally visited by other people. While the start-
ing and finishing times of activities are provided with the CASAS
dataset, the location of the person is not. Thus, we partitioned the
apartment into nine different locations, seven of which represent dif-
ferent rooms and two correspond to corridors, and estimated the per-
son location from the events of the apartment’s motion detectors.
Thus, the Aruba dataset contains a minute-by-minute timeline of 12
different activities performed at 9 different locations over the course
of 16 weeks.

5.2 Witham Wharf dataset

The Witham dataset was collected in an open-plan office of the Lin-
coln Centre for Autonomous Systems (L-CAS). The office consists
of a kitchenette, resting area, lounge and 20 working places that are
occupied by students and postdoctoral researchers. We installed a
ceiling camera that took a snapshot of the office every 10 seconds for
3 weeks, see Figure 1, and we hand-annotated activities and locations
of one of the researchers over time.

The ‘Witham’ dataset contains a minute-by-minute timeline of 10
different activities performed at 10 different locations over the course
of 3 weeks.

Figure 3. Aruba dataset - reconstructed layout of the apartment [3].

Figure 4. Aruba dataset - topological structure of the apartment.

5.3 Evaluation
As mentioned before, we abstract from the internal working of the
classifier itself and we simply assume that it can take into account
the priors that we provide by our spatial and temporal models. Thus,
we base our evaluation on the fact that we know the conditional prob-
abilities p(o|a) which are represented by the confusion matrix of the
evaluated classifier.

The evaluation starts with the prior models being invariant to time
(and location) and equal to each other, i.e.

pa(t) =
1

|A| , ∀a ∈ A, ∀t ∈ R. (10)

Then, we retrieve the activity performed at time t = 0 from the
given dataset and, using the priors initialised by Equation (10) and
known p(o|a), we calculate the posterior probabilities pa(t|o) with
the Bayes Equation (2). After that, we simulate the stochastic na-
ture of the activity classification process by running a Monte-Carlo
scheme over the probabilities pa(t|o) and we obtain the simulated

Figure 5. Witham dataset - topological structure of the apartment.

5



classification result o(t) ∈ A. Then, we update the binary sequences
oa(t) of each activity as follows:

oa(t) = 1 ⇐⇒ o(t) = a,
oa(t) = 0 ⇐⇒ o(t) 6= a.

(11)

These sequences are then processed by the models. Then, we in-
crement the time by 60 s and repeat the procedure again. After 1440
iterations, which represent the activity recognition results minute-
by-minute for a full day, we compare the ground truth to the results
of the simulated activity recognition o(t) and calculate the activity
classification error for that particular day. This error is calculated for
every day of the available datasets.

5.3.1 Classifiers considered

In our experiments, we evaluate the spatial and temporal models
with three different classifiers represented by different distributions
p(o|a). The first “weak” classifier has only a 20% probability of cor-
rect recognition, i.e. its confusion matrix has 0.2 on the diagonal and
the other elements are equal. This corresponds to a 80% classification
error (Figure 6a). The second “good” classifier has a 20% (Figure 6b)
classification error - its confusion matrix diagonal elements are equal
to 0.8 and the non-diagonal elements are identical.
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Figure 6. Confusion matrices of the “weak”(a) and the “good”(b)
classifiers which characterize their p(o|a) with the size of the Aruba dataset.

Finally, we consider a “real” classifier that was evaluated on the
Aruba dataset in [7]. Here, the authors evaluate the performance of
a classifier that can indicate lack of evidence to perform an actual
classification. This is represented by a special type of observation,
called “Irregular”, which constitute an additional column in their
classifier’s confusion matrix. To obtain a square confusion matrix
required by our method, the conditional probabilities represented by
this additional column are uniformly redistributed across the matrix.
The average value of the diagonal elements of the “real” classifier’s
confusion matrix is 85.14% (Figure 7a).

On the Witham dataset, instead, there are no classifiers existing
from previous works. To represent the p(o|a) of a “real” classifier
for the Witham dataset, we used a 10 × 10 submatrix of the “real”
classifier used with the Aruba dataset (Figure 7b).

6 Experimental results
Each of the models mentioned in Section 4 depend on a parameter
as summarised in Figure 8. Here we discuss the sensitivity of these
models to the parameter values and how well the models perform on
the aforementioned datasets.
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Figure 7. Confusion matrices which charaterize the p(o|a) of the ’real’
classifiers for the Aruba(a) and Witham(b) datasets.

Temporal model Parameter type Units Used value

GMM num. of Gaussians - 3
Fremen num. of periodics - 3
Interval-based interval width minutes 60
Adaptive interv. num. of samples - 1000

Figure 8. The list parameters for each temporal model which improve the
results the most on the datasets.

6.1 Model Parameters

The Fremen results seem to be very stable to the order of the model.
Increasing the order does actually increase the classification perfor-
mance but not significantly, as shown in Figures 9 and 10. The only
exception is the Static component in the Aruba dataset, since in case
of a weak base-classifier the performance increase does not reach the
same magnitude of the higher orders. This suggests that using a Fre-
MEn model of order 3 is sufficient to obtain a good reduction of the
error rate.

A similar result was observed using Gaussian Mixture Model
based priors. Indeed, as can be seen in Figures 11 and 12, the re-
sults are fairly stable with respect to the order of the model, although
a model of order 5 seems to overfit the data in case of a real classifier,
increasing the error rate accordingly.

For the Interval-based Models, the choice of the interval width
can be very crucial, as shown in Figures 13 and 14. In case of a weak
base classifier, a bin width of one hour produced the best results.
Furthermore, this choice is the only one improving the same classifier
on the Aruba dataset. In all the other cases the sensitivity of the error
rate is not very strong.

The Adaptive intervals adapt the interval width according to the
available quantity of evidence, so the smaller the number of sam-
ples the closer the behaviour will be to the atomic unit (1 minute in
our case). As shown in Figures 15 and 16, the adaptive interval with
a single sample has the same behaviour of the static interval with
1 minute width. In case of weak classifiers, the number of samples
for the adaptation of the intervals does not influence the classifica-
tion performance, and the same happens with a real base-classifier.
In case of a good classifier (20% error rate) instead, the increase of
the samples highly modify the performances of the model, lowering
the error rate.

According to our experiments, the models which are the least sen-
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Figure 9. Impact of the number of modelled periodical processes on the
FreMEn model - Aruba dataset.
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Figure 10. Impact of the number of modelled periodical processes on the
FreMEn model - Witham dataset.

sitive to the variation of classifier and to the parameter choice are the
Fremen and the GMM models.

Following these results, we will use the best performing cases to
compare the models. The parameters used are the ones shown in Ta-
ble 8.

6.2 Model Comparison
Our experiments showed that the use of incrementally learnt mod-
els for spatial and temporal context can actually improve the perfor-
mances of an Activity Recognition system. In Figure 17, it can be
seen that all the temporal models could improve the classification re-
sults, without much difference in the results reducing the error rate
to the half. It is interesting to notice how the Location-based model
on the Aruba dataset reduced them, while on the Witham dataset it
outperformed all the temporal models. This might depend on the fact
that the association activity-location has a higher correlation in an
office-like environment rather than in an home-like one, requiring
lower accuracy for the base classifier to learn the context of the ac-
tivities. Furthermore, we can observe that the Static component of
FreMEn is improving, but only slightly compared to the other mod-
els, showing the need of having higher frequencies in weak base-
classifiers. Figure 18 shows how the Interval Models tend to fail in
adapting to the temporal contest, especially without the adaptive in-
tervals, being unable to improve the results in this case. As in the
previous case, the Location-based model works only on the Witham
dataset. The remaining models are able to keep the error rate down to
the half again. Finally, Figure 19 shows how a realistic base-classifier
would benefit by the contextual prior probabilities learning. With
the only exception of the static Interval-based models, which only
worsen the performances in this case.

The results show that, using the right model and parameters, the
error rate can be halved in less than two weeks, as can be seen in
Figures 17, 18 and 19.

The models that produced the most reliable results were the GMM
and Fremen, which had similar performances in reduction of the er-
ror rates and stability to the choice of the parameter. The only real
difference lies in the fact that the GMM starts to reduce the errors
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Figure 11. Impact of the number of Gaussians included on the
performance of the Gaussian Mixtures - Aruba dataset.
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Figure 12. Impact of the number of Gaussians included on the
performance of the Gaussian Mixtures - Witham dataset.

right from the beginning, while Fremen tends to increase the errors,
creating pronounced spikes in the error rate during the early days of
execution. The Interval-based Models can actually perform an im-
provement comparable to the aforementioned models, in case of a
weak classifier (Figure 17), while they appear to worsen performance
if the classifier is a strong one (Figures 18, 19). This might be caused
by the lack of sufficient evidence during the estimation of the prob-
ability priors when the confidence of the classifier is high. The latter
can be demonstrated by the fact that the adaptation of the intervals
according to the actual evidence does actually benefit the model be-
haviour, reaching performances similar to the GMM and Fremen in
most cases.

The Location-Based probability priors had discordant results on
the two datasets. In the Aruba dataset, it had a worsening effect on
the error rate of the classification, although it improves when a strong
classifier is used. This could mean that the model requires high base
accuracy in complex indoor environments, in which the activities do
not have a direct association to the place where they happen. On the
Witham dataset instead, it did not only improve performance, but also
outperformed all the other temporal prior models. This depends di-
rectly on the high association of the activities performed with places
in office environments; for example, the activity of writing on the
keyboard will always be performed close to the workplace.

7 Conclusion
This paper presented a novel approach to activity recognition for in-
door environments based on incremental modelling of long-term spa-
tial and temporal context. The presented approach allows to integrate
several observations of the same environment in spatial and tempo-
ral models that captures the periodic behaviour of the activity occur-
rences and uses this knowledge to construct time and location depen-
dent probability priors to improve the recognition of the activities. In
other words, given the assumption of spatial and temporal structure
of the activities, we have tried to learn those patterns to improve the
performance of a base classifier with different models. Among those,
the novel Interval-based model with Adaptive intervals has been in-
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Figure 13. Impact of the interval width on the performance of the
Interval-based models - Aruba dataset.
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Figure 14. Impact of the interval width on the performance of the
Interval-based models - Witham dataset.

troduced, giving encouraging results. All of the models were bench-
marked on two datasets, representing home and office environments,
to show which models perform better in learning the temporal con-
text of the activities, reducing in the best cases the error rate in time
by half. Furthermore, an example of a location-based model has been
introduced. This achieved an improvement in performances, but only
in the office environment, due to the high correlation of typical office
activities with their location. All of the models have been shown to
be able to learn the recurrent patterns of the activities, even in cases
of very weak base classification systems. Possible future works will
include the merging of spatial and temporal models. A possibility
could be applying a different temporal model in each spatial element
of the environment. This could also require more data for a complete
modelling of the contextual information, which could be overcome
with an adaptive behaviour between the spatial units, like the one ap-
plied in the Adaptive intervals. The results are encouraging, although
they are still applied to data delivered densely every minute. Future
works will need to deal with data sparsity so that the model can be
built on a mobile robot, which is not able to collect the activity data
densely.
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