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Abstract— Cheap RGB-D sensors are ubiquitous in robotics.
They typically contain a consumer-grade color camera that
suffers from significant optical nonlinearities, often referred
to as vignetting effects. For example, in Asus Xtion Live Pro
cameras the pixels in the corners are two times darker than
those in the center of the image. This deteriorates the visual
appearance of 3D maps built with such cameras. We propose
a simple calibration method that only requires a sheet of
white paper as a calibration object and allows to reliably
recover the vignetting response of a camera. We demonstrate
calibration results for multiple popular RGB-D sensors and
show that removal of vignetting effects using a nonparametric
response model results in improved color coherence of the
reconstructed maps. Furthermore, we show how to effectively
compensate color variations caused by automatic white balance
and exposure time control of the camera.

I. INTRODUCTION

Since the release of the Microsoft Kinect, RGB-D cameras
came to play a major role in robotic perception. They
combine a conventional color camera with a depth sensor and
capture both appearance and geometry of observed scenes.
The availability of this cheap and rich sensory input pushed
the limits of what is possible in many areas, including 3D
mapping.

State-of-the-art RGB-D SLAM systems demonstrate ever
improving trajectory estimation accuracy [1], surface re-
construction quality [2], and ability to handle large-scale
environments [3]. However, little progress has been reported
towards improving visual appearance of produced maps.

Most online reconstruction systems employ some form of
color averaging. Each surfel or voxel (depending on the map
representation) has an associated color value. These values
are averaged with new observations as they become available
over time. Averaging is usually weighted and additionally a
number of ad-hoc rules are introduced to discard unreliable
observations. Nevertheless, this approach often leads to vi-
sually poor results, as demonstrated in Figure 1 (top).

An implicit assumption behind averaging is that image
pixel intensities directly reflect apparent color of object
points. In reality, this does not hold due to the nonlinearities
involved in the image formation process. Most notably, vi-
gnetting effects are responsible for intensity fall-off towards
the edges of the image. For example, the corner pixels in
the Asus Xtion Live Pro camera are two times darker than
those in the center (see Figure 2). Therefore, the result of
averaging strongly depends on the image locations at which
observations were made.
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Fig. 1. Top: surfel-based 3D reconstruction obtained using ElasticFu-
sion [2]. Automatic white balance and exposure control were disabled; color
artifacts are purely due to vignetting effect. Bottom: reconstruction from the
same image sequence, but applying the proposed color correction method.

Vignetting effects are a combination of natural, pixel,
optical, and mechanical vignetting [4]. They are caused by
the design of the lens system and imaging sensor. Therefore,
vignetting effects are intrinsic for the camera and can be
calibrated and compensated. Importantly, such a correction
is completely orthogonal to other techniques that might be
employed to improve the appearance of 3D reconstructions.

We contribute a calibration method that allows to recover
the vignetting response of a color camera. It employs a
simple data collection procedure that only requires a sheet
of white paper as a calibration object and half a minute
of operator’s time. Collected data can be used to fit para-
metric models of vignetting response commonly adopted
in color correction literature. However, we advocate usage



Fig. 2. Vignetting effects in an image from the Asus Xtion Live Pro
camera. The scene consists of a wash basin and a flat wall. The upper and
lower parts of the wall are uniformly painted with two slightly different
shades of beige. The left side of the figure presents the original image.
Intensity at the corners of the image drops below 50% of the intensity in
the center. On the right side of the figure correction has been applied to
remove vignetting effects. The upper and lower parts of the wall appear to
have uniform colors, as in reality.

of a nonparametric model (a look-up-table with per-pixel
correction factors) derived directly from calibration data.
We demonstrate that it better captures optical nonuniformity,
without overfitting to the calibration data. After correcting
the vignetting effects, we show how the color variations
caused by automatic white balance and exposure time control
of the camera can be effectively compensated.

The software toolbox implementing proposed methods is
hosted at https://github.com/taketwo/radical.

The paper is structured as follows: Section II gives a brief
account of the radiometric image formation process, followed
by an overview of related work on color correction and high-
quality texturing in 3D reconstruction. Section III describes
our proposed data collection and model fitting approach.
Section IV explains how to apply the calibrated model to
correct vignetting effects and to compensate for variation
in exposure time. Experimental evaluation is presented in
Section V and the paper is concluded in Section VI.

II. PRELIMINARIES AND RELATED WORK

A. Radiometric Image Formation
Image formation in a camera is a complex process. Con-

ceptually, it can be decomposed into two phases. Firstly, the
energy emitted by the scene points in the direction of the
camera (radiance) passes through the lens system and falls on
the image plane. Secondly, the power received on the image
plane (irradiance) is converted into an electrical signal and
then to discrete pixel values (intensity).

The first phase can be mathematically stated as

Ex = V (x)LX, (1)

where LX is the radiance of a scene point X, Ex is the
irradiance at image location x (to which the scene point
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Fig. 3. Inverse radiometric response function of an Asus Xtion Live
Pro camera, recovered using the method of Debevec and Malik [5]. The
irradiance is recovered up to an unknown scale factor.

projects), and V (·) is a spatially varying optical response
of the lens system. Typically, this response has a form of
radial fall-off from the center of the image towards the
edges. It is a combination of natural, pixel, optical, and
mechanical vignetting, which are often collectively referred
to as “vignetting” effect [4].

The second phase is given by

Ix = f(kEx), (2)

where k is the exposure time, Ix is the pixel intensity, and
f(·) is the radiometric response function of the camera.1 It
describes how the amount of light that fell on a unit area
of the image sensor maps to a pixel intensity of the output
image. It is an invertible nonlinear mapping. A number
of approaches to recover this mapping were proposed [5]–
[7]. In this work we adopt the method of Debevec and
Malik [5], where the inverse response is estimated from a
set of images of a static scene taken with different exposure
times. Figure 3 demonstrates the recovered response of an
Asus Xtion Live Pro camera.

Combining (1) and (2) we get

Ix = f(kV (x)LX) (3)

This equation suggests that to obtain a faithful appearance
models in 3D maps we need to know f(·) and V (·). This will
allow to inverse the image formation process and accumulate
scene point radiances instead of pixel intensities.

B. Related Work on Color Correction

The task of building 3D maps with color bears similarities
with that of constructing panoramic images and mosaicking.
In both cases multiple observations of the same scene point
are available and have to be fused. Color correction for image
stitching is a well-researched topic; the approaches can be
roughly split into two groups.

The first group works directly in the image intensity
domain. One of the most sophisticated algorithms is that
of Oliveira et al. [8]. They segment images into regions,
compute local joint color histograms of these regions, and
model them using truncated Gaussians. By comparing the
fitted parameters between matching regions they establish
color mapping functions, which are then applied locally.
Such algorithms are expensive, but can handle images made

1Also known as the camera response function (CRF).

https://github.com/taketwo/radical


by different cameras, with different settings, and under
different lighting conditions.

The second group considers the radiometric image forma-
tion process. All the functions and quantities involved in (3)
are explicitly recovered. The vignetting effect is removed and
differences in exposure time are compensated. Goldman and
Chen [4] assume that vignetting response is the same for all
color channels and is symmetrical around the image center.
They parameterize it as a 6th order even polynomial

V (x) = 1 +

3∑
n=1

βn (x− c)
2n
, (4)

where c is the center of the image. They use an alternating
optimization scheme to fit model coefficients and estimate
exposure times and scene point radiances. The same model
is used in [9] and [10]. In the latter an elegant way to
decouple vignetting response estimation from the rest of
the problem is presented, which leads to a more robust
and efficient estimation algorithm. Conversely, in the work
of Yu [11] no functional approximation of the vignetting
response is used. Instead, a look-up-table (LUT) with per-
pixel correction factors is obtained by observing a reference
object in controlled conditions. He takes a single picture of
this object, applies a wavelet denoising scheme, and stores
the result in a LUT.

C. Related Work on High-Quality Texturing

Recently, several contributions were made that aim at
improving coherency and fidelity of reconstructed color
maps. Meilland et al. [12] explored the possibilities for
high dynamic range colors in dense SLAM systems. Kerl
et al. [13] made an attempt to estimate the pure albedo of
the textures observed in RGB-D frames. This allowed them
to remove illumination effects from color images.

Maier et al. [14] presented a keyframe-based approach,
where in parallel to the volumetric reconstruction a set of
RGB-D keyframes is collected as the mapping progresses.
These keyframes are upscaled to super-resolution. Once the
mapping is completed, a mesh representation is extracted
from the TSDF volume and keyframes are mapped onto it.

Zhou and Koltun [15] considered the problem of map-
ping color images onto geometric reconstructions. Typically,
both the images and geometry are noisy, therefore perfect
mapping is impossible. They formulate a problem where the
camera poses and non-rigid correction functions for images
are jointly optimized to maximize photometric consistency.
Their method performs global optimization and is inherently
offline, but outperforms volumetric blending approaches.

In the related field of object modeling, Narayan and
Abbeel [16] have formulated a similar optimization problem,
although without frame correction functions. They demon-
strate that their method produces coherent color models.

None of the mentioned work explicitly account for the
vignetting effects, and only Meilland et al. estimate exposure
time differences. Therefore, the color correction technique
presented in this paper may be viewed as complementary

and can be employed to further improve the appearance of
3D reconstructions.

III. VIGNETTING CALIBRATION METHOD

Given the fact that the geometry of the lens is fixed in
commodity RGB-D sensors, we make a simplifying assump-
tion that the optical response of the camera does not change.
Furthermore, we assume that the individual color channels
are uncorrelated and can be treated separately.

First, we estimate the radiometric response function of
the camera using the method of Debevec and Malik [5].2 It
returns the inverse of the response function in a form of a
look-up table with 28 values per channel. This can be used
to map pixel intensity to image irradiance and vice versa.

A. Data Collection

Calibration setup requires a flat white object with Lamber-
tian reflectance and a static environment with even lighting.
In practice, a sheet of printer paper attached to a desk in
a typical office is suitable. Automatic exposure and white
balance control in the camera have to be disabled. The
exposure time is set to the maximum possible value such that
none of the pixels are saturated (or close to saturation where
the radiometric response is highly nonlinear). This ensures
that the amount of noise in collected images is minimized.

The operator moves the camera around to make sure that
the calibration object has been projected to every image pixel
location multiple times, thus acquiring as much redundancy
in calibration data as possible. Care should be taken to avoid
specular reflections and casting shadows on the calibration
object. In each incoming frame the object is detected. We
use floodfill segmentation with adaptive range and seed it
with the center of the object from the previous frame. This
simple approach is robust enough for our calibration setup.
The intensities of pixels that belong to the object are recorded
into buffers according to their spatial location in the image.

By following the prescribed procedure, in under a minute
hundreds of observations of the object through each image
pixel are accumulated. We compute a per-pixel mean, there-
fore obtaining a “fused” image Ī where noise is averaged
out (see Figure 4a).

B. Model Fitting

Equation (3) can be rewritten as

f−1(Īx) = kV (x)LX (5)

V (x) =
f−1(Īx)

kLX
(6)

The exposure time k was fixed and the radiance LX is
the same for each point of the calibration object, therefore
the denominator in (6) is a constant. Taking into account that
the radiometric response itself is recovered only up to a scale
factor [5], we may write that V (x) = f−1(Īx). Therefore,
after applying the inverse of previously recovered radio-
metric response function, we obtain a “distilled” vignetting

2An open-source implementation is available in the OpenCV library.
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Fig. 4. Calibration example for Asus Xtion Live Pro camera. (a) A ”fused”
image of a flat uniformly lit white paper. (b) Schematic representation of the
polynomial vignetting model fitted to the data. The dots show locations of
the centers of symmetry in the image space. Curves represent the amount of
radial fall-off starting from 1.0 in the center to below 0.5 in the corners of
the image. Different channels are shown with their corresponding colors. (c)
Individual channels (Red, Green, Blue) in the ”fused” image (normalized).
(d) Residuals of the fitted polynomial model.

response. If we normalize it and inverse each element, we
get a matrix of correction factors, that can be multiplied with
irradiance images to remove the vignetting effect.

Alternatively, a parametric model (4) can be fitted to
the data. We would like the error residual ‖Ix − V (x)‖ to
be small for each location x in the image. Therefore, we
minimize the following objective:

(c∗, β∗) = arg min
c,β

∑
i

∥∥∥∥∥Ixi
− 1−

3∑
n=1

βn (xi − c)
2n

∥∥∥∥∥
2

(7)
Note that c is usually fixed to be the center of the image.

In this case the model is linear in it’s parameters and thus

the optimization problem can be solved using ordinary least
squares. In our experiments we discovered that for some
cameras the center of vignetting is shifted with respect to
the image center. In such cases, adding an extra degree of
freedom to the model by turning c into a model parameter
allows us to fit the empirical data better. The objective
becomes nonlinear, but typically can be solved using the
Levenberg-Marquardt algorithm in several iterations.

IV. COLOR CORRECTION

Having obtained V (·) either in the form of a look-up-
table of correction factors, or as a parametric model, we can
compensate the vignetting effect in images delivered by the
camera. From (3), the corrected intensities are computed as

I ′x = f

(
f−1(Ix)

V (x)

)
(8)

For a given image resolution this is an O(1) operation.
If automatic white balance and exposure control in the
camera are disabled, this correction is sufficient. Otherwise
the differences in exposure time should be estimated.3

A. Compensation of Exposure Time Variation
Assume that two images of the same scene are captured

with different exposure times from slightly different view-
points. We can perform dense matching and find pairs of
pixels that correspond to the same world point. Assuming
that its radiance is constant, the ratio of exposure times is

k1
k2

=
f−1(Ix1

)V (x2)

f−1(Ix2)V (x1)
, (9)

where x1 and x2 are coordinates of corresponding pix-
els in first and second image respectively. Potentially, we
have thousands of pairs of matched points, and in practice
they will yield different ratios because of image noise and
mismatches. Furthermore, the assumption that the radiance
of a scene point is constant does not always hold, e.g. for
non-Lambertian surfaces. Therefore, in order to robustify
exposure ratio estimation, we propose to use the median of
the ratios computed for all pixel correspondences.

V. EXPERIMENTAL EVALUATION

We start by presenting an example calibration of an Asus
Xtion Live Pro camera. Figures 4a and 4c show the collected
dataset. Red and green channel responses are symmetrical
around the image center and the polynomial model fits well.
However, the response of the blue channel seems to be
shifted to the right and demonstrates inhomogeneity that can
not be adequately modeled with a polynomial.

Figures 5a and 5b present calibrated vignetting responses
for two more Asus cameras. They demonstrate a similar
amount of radial fall-off, however the difference between
inhomogeneities in the blue channel is clearly visible. Fig-
ures 5c and 5d show calibration results for Intel RealSense
F200 and R200 cameras. The effects are less severe than in
the Asus Xtion Live Pro, however are still noticeable.

3We make a simplifying assumption that auto white balance can be
viewed as independent per-channel adjustment of exposure time.
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Fig. 5. Calibration examples for multiple RGB-D sensors. Each image is a ”fused” view of a flat uniformly lit white paper.
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Fig. 6. Distribution of RMS errors between vignetting responses predicted
by different calibrated models and real responses collected using the
calibration procedure. The error unit is one pixel intensity level.

A. Vignetting Calibration Repeatability

In this subsection we quantitatively assess different para-
metric and nonparametric vignetting response models. Using
the procedure described in Section III we collected 10 fused
responses of the same Asus Xtion Live Pro camera. For
each response we fitted a polynomial model without and
with fixed center, and produced a LUT. Then, for each
calibrated model we computed RMS error between it’s
predicted response and other 9 fused responses (not used for
model fitting). Figure 6 presents the distribution of computed
RMS errors per model type per channel. We observe that
LUT captures the vignetting response well and for every
channel consistently yields the smallest error on average.
For the red and green channels both variants of polynomial
model perform similarly, which indicates that the response
is indeed symmetrical around the image center. For the blue
channel the model with fixed center is worse. Notable is the
large gap between nonparametric and parametric models in
the blue channel.

B. Qualitative Assessment

Figures 1 and 7 present surfel-based 3D reconstructions
obtained using ElasticFusion [2] without and with vignetting
removal (using LUT). In both cases, automatic white balance

Fig. 7. Left: surfel-based 3D reconstruction obtained using ElasticFu-
sion [2]. Automatic white balance and exposure control were disabled; color
artifacts are purely due to vignetting effects. Right: reconstruction from the
same image sequence, but with vignetting effect removed using LUT.

and exposure control of the camera were disabled, so the
color artifacts are purely due to vignetting effects.

Results of applying both vignetting removal and exposure
compensation are presented in Figure 8. The input datasets
consist of a sequence of RGB-D frames (between 10 to 25),
that are taken by a moving camera with automatic white
balance and exposure control enabled. The frames are aligned
using the ICP algorithm and then merged using volumetric
a octree representation.

C. Indirect Quantitative Assessment

We demonstrate indirectly that removal of vignetting ef-
fect leads to more consistent and uniform color maps. In
ElasticFusion a dense surfel map of the scene is maintained.
Each incoming frame is aligned with the current map through
minimization of geometric and photometric errors between
the frame and the rendered view of the scene. Then every
pixel of the incoming frame is associated with a single (or
none) existing surfel through projective association. Existing
surfels are then fused with the new data, i.e. their position,
normal, and color are averaged with the new measurements.
Unless removed, vignetting effect gets averaged in, therefore
biasing estimated colors and reducing overall texture quality.

We modified the mapping software so that after the
correspondences were estimated but before averaging takes
place, we compute the L1 distance between the current
color of the surfel and the color of the pixel sample it
will be averaged with. If vignetting effects were absent and



Fig. 8. Examples of 3D reconstructions using octrees from sequences of RGB-D frames corrupted with vignetting effects and with varying exposure time.
On the left reconstructions without color correction are shown. On the right are reconstructions with vignetting removal and exposure time compensation.

the incoming frames were always perfectly registered to
the existing model, we would expect these distances to be
normally distributed around zero. In reality, due to image
noise and imperfect registration, this distribution will be

shifted to the right and have a tail. We processed an RGB-D
sequence (the same as used to produce Figure 1) without
and with vignetting removal and recorded the distribution
of the L1 distances between colors. These distributions are
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Fig. 9. Histogram of L1 distances between colors of surfels and image
pixels they are being merged with. The number of samples is close to 108.

presented in Figure 9. When no correction is applied, the
distribution is severely skewed, which indicates that the
colors being averaged are often far apart. Vignetting removal
with the nonparametric model gives a large improvement.

VI. CONCLUSIONS AND FUTURE WORK

In this contribution we presented a study of vignetting
effects in multiple consumer RGB-D cameras. A simple
and effective calibration method was proposed that yields
consistent calibration results. Application of the learned
calibration model results in more visually pleasing color
models.

We showed quantitatively that removal of vignetting ef-
fects gives better matches between surfel colors in the
process of mapping. This hints that a possible future work
may include studying the impact of vignetting removal on
the tracking performance in dense SLAM systems. Indeed,
typically the camera pose is estimated through alignment
of current frame and rendered model view by optimizing
a joint geometric and photometric cost function. Improved
color coherence of the 3D model might increase the basin and
rate of convergence during optimization of the photometric
error.

Experimental evaluation confirmed adequacy of the pro-
posed modeling technique and the assumptions that have
been made. Nevertheless, in future work we may explore
correlations between color channels due to debayering, as
well as influence of thermal and environmental conditions
on the vignetting response of the camera.
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