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Abstract

For autonomous robots to collaborate on joint tasks with hu-
mans they require a shared understanding of an observed scene.
We present a method for unsupervised learning of common
human movements and activities on an autonomous mobile
robot, which generalises and improves on recent results. Our
framework encodes multiple qualitative abstractions of RGBD
video from human observations and does not require external
temporal segmentation. Analogously to information retrieval
in text corpora, each human detection is modelled as a random
mixture of latent topics. A generative probabilistic technique
is used to recover topic distributions over an auto-generated
vocabulary of discrete, qualitative spatio-temporal code words.
We show that the emergent categories align well with human
activities as interpreted by a human. This is a particularly
challenging task on a mobile robot due to the varying camera
viewpoints which lead to incomplete, partial and occluded
human detections.

Introduction

Advancements in the reliability of autonomous mobile robot
platforms means they are well suited to continuously update
their own knowledge of the world based upon their many
observations and interactions (Marder-Eppstein et al. 2010;
Hawes et al. 2016). Unsupervised learning frameworks over
such long durations of time have the potential to allow mobile
robots to become more helpful, especially when cohabiting
human populated environments. By removing humans from
the learning process, i.e. with no time-consuming data anno-
tation, such robots can cheaply learn from greater quantities
of available data (observations), allowing them to adapt to
their surroundings and save time/effort hard-coding specific
information. Understanding what human activities occur in
which regions and when, allows the robot to adjust its own
behaviour, or assist in a task it believes is being undertaken.

The contribution of this work is in unsupervised activity
analysis on continuous, unsegmented video sequences us-
ing Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan
2003). We focus on simple human activities for daily living
observable by a mobile robot in a human work place envi-
ronment. Our framework outperforms recent work in the
literature which uses manually segmented videos, where a
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single activity instance is present in each (Duckworth et al.
2016). We generalise that work with a method allowing for
use of full length observations recorded from a mobile robot
with no human filtering or segmentation. We propose a prob-
abilistic generative approach that models each observation
as a mixture of latent topics, where each topic recovered is a
distribution over a vocabulary of discrete descriptors and is
considered as a human activity class. Removing the require-
ment for temporal segmentation of the recorded observations,
our robot is able to more quickly access larger quantities of
data which otherwise would need human annotation to se-
lect interesting sequences of frames. Our work moves away
from using a standard dataset, where each example contains
a single pruned activity instance, to a more realistic setting
where the robot is not told which sub-sequence of the obser-
vations to learn from. This loosely translates as removing
the assumption that humans continuously perform interesting
activities when being observed. We replace it with a more
reasonable assumption that a human detection is modelled as
a probabilistic mixture over an underlying number of latent
topics, where some topics can be considered “interesting”
human activities, and others more “mundane”; the definitions
of these rely on the task-specifics of the mobile robot.

Further challenges when using human activity data cap-
tured from a mobile robot include: ¢) The robot’s on-board
sensors only grant a partial and changing viewpoint of the
world, i.e. it obtains incomplete and noisy observations. 1)
Each observed activity is likely to be carried out with par-
ticular variations, e.g. opening a door with different hands.
Our framework helps alleviate these problems in two phases;
first by utilising a state-of-the-art human pose estimator to
improve the quality of observations, and secondly we use
a qualitative spatial representation (QSR), which abstracts
quantitative data to a discrete set of qualitative values, thus
converting somewhat noisy observations of arbitrary spatial
positions into semantic low level actions. For example, if a
person reaches for a mug, the exact spatial position of the
hand or mug are not as useful for learning the human activity
“making coffee”, as a qualitative representation of the hand
approaching the mug.

Our methodology consists of first detecting and tracking
humans from a mobile robot, then abstracting their pose
estimates using multiple QSRs and encoding them as the oc-
currences of discrete qualitative descriptors. We analyse the



collection of encoded feature vectors analogously to a corpus
of text documents containing multiple topics of interest. Mul-
tiple latent topics are recovered from the observations and
considered as human activity classes, each defined as a distri-
bution over the discrete vocabulary. To do this we perform
LDA, a three-layer hierarchical Bayesian model where each
observation is modelled as a finite mixture over an underlying
set of topics, and each topic is, in turn, modelled as an infinite
mixture over an underlying set of topic probabilities.

To the best of our knowledge, we are the first to com-
bine a generative, probabilistic approach such as LDA with
a qualitative spatial representation to recover real-world hu-
man activity classes. In the following sections we provide
formal details of the human pose estimates acquired by the
robot, the qualitative abstractions used to generalise the ob-
servations and extract discrete features; a description of the
generative learning process, experiments and their results;
and our conclusions.

Related Work

Activity recognition from visual data is a mature sub-field of
artificial intelligence. For a comparison on general activity
recognition techniques, the reader is pointed to survey papers
which cover the topic using RGB cameras (Turaga et al. 2008,
Lavee et al. 2009, Weinland et al. 2011) and 3D RGBD
cameras (Ye et al. 2013; Aggarwal and Xia 2014). Many
common techniques perform supervised learning, where each
data sample requires manual hand annotation with a ground
truth label. This is not a feasable solution for a long term
autonomous mobile robot.

More task-appropriate are unsupervised techniques which
do not require time-consuming, offline manual annotations.
Previous works have used probabilistic Latent Semantic
Analysis (pLSA) and LDA for learning human activity cat-
egories in an unsupervised setting: authors have used low-
level Space-Time Interest Point (STIP) features (Niebles et
al. 2008); local shape context descriptors on silhouette im-
ages (Zhang and Gong 2010); and a combination of semantic
and structural features (Wong et al. 2007, Liu et al. 2008).
However, each has been performed without the variability
of a mobile robot’s frame of reference, and are restricted to
a single person, performing a segmented action during the
training phase, unlike our dataset.

An unsupervised approach, coupled with a qualitative rep-
resentation, has been used in (Sridhar et al. 2010), where
a qualitative spatial calculus is used to encode continuous
videos containing aeroplane turnaround scenes. However,
their videos consist of slow moving objects from a static cam-
era frame of reference. Most similar is the work (Duckworth
et al. 2016), where extracted qualitative features are used to
encode human observations from a mobile robot. However,
their approach requires a dataset of sample video clips, each
containing a single “interesting” human activity sequence.
They propose a discriminative learning approach where each
segmented video is modelled as a single latent concept recov-
ered from the dataset. In our work we model an observation
as a probabilistic mixture of topics, removing the requirement
for human temporal segmentation.

Knowledge Representation

Our aim is to understand human activities from long term
observations of a human populated environment and for an
autonomous robot to obtain a conceptual model of activities
taking place. This level of understanding has the potential
to be used by the robot to collaborate on joint tasks, and
have a shared understanding of an observed scene (though
this is beyond the scope of this paper). In this section, we
first introduce the input data captured from our mobile robot,
followed by details about the qualitative representation used
to abstract the data, and finally we describe an auto-generated
code book which is used as a discrete vocabulary resulting
in a term-document matrix, similar to information retrieval
settings.

Human Pose Estimates

Our mobile robot detects humans and infers their 3D pose
(15 body joint locations) as they pass within the field of
view of its RGBD sensor. We represent the human pose
estimates as ROS messages, where a single detected body
joint location is represent as an (zyz) Cartesian coordinate
in the camera coordinate frame along with the correspond-
ing (zyz) position translated into the global map coordinate
frame, i.e. j = (id,z,y, 2, Tm, Ym, Zm ). The map frame
coordinate relies on the robot being well localised within the
map frame which is achieved by the robot being static during
recordings. A human pose then comprises of a collection
of body joint locations, i.e p = [j1, J2,- .., j15). For each
human detected by the robot, we obtain a sequence of human
poses over a time series of detections. We define a human
pose sequence, S = [p1,p2,...,Di,--.], Where each p; is
the detected human pose at timepoint ¢, and no restrictions
are placed upon the length of the recorded sequences. This
variation in length is a major difficulty when using real world
data to learn activities on a mobile robot.

Figure 1 (right) shows the Scitos A5 mobile robot used to
observe the environment and (left) one section of its global
map; semantically labelled with key regions and landmark
objects in advance. Brightly coloured CAD (Blender) mod-
els can be seen where semantic objects are positioned in the
environment (best viewed in colour), and are used to cal-
culate qualitative spatial relations in the next section. Our
framework would extend trivially to include dynamic objects
detected in real-time by the robot.

Figure 1: (left:) Semantic global map showing the kitchen
region boundary in yellow. (right:) Scitos A5 mobile robot.



Qualitative Pose Sequences

Abstracting human pose sequences using a qualitative spa-
tial representation (QSR) allows the robot to learn common
and repeated patterns being performed over multiple observa-
tions, even if they vary quantitatively in their execution. For
example, if a person raises their hand above their head and
waves, the exact (zyz) coordinates of their hand or head are
not important; it is the relative movement which captures the
possible “waving” activity. Moreover, human activities often
occur over differing durations. For example, the activity of
standing still (where pose estimates are easy to estimate) can
occupy a few thousand frames, whereas a more complex task
such as opening the fridge can take less than a second (30
frames) and contain noisy pose estimates due to occlusions.
The person also may only appear in the robot’s field of view
for a few seconds, during which limited time the pose es-
timates can be noisy and inaccurate. Conversely, a person
might be performing a static activity and detected for thou-
sands of frames (poses). This variation is a major difficulty in
mobile robotics, which abstracting the data into a qualitative
space helps to alleviate.

In this paper, we abstract human poses using three
QSRs computed by a publicly available ROS library we co-
authored (Gatsoulis et al. 2016b; 2016a): 1) Ternary Point
Configuration Calculus (TPCC) qualitatively describes the
spatial arrangement of a point, relative to two others, i.e. it
describes the referent’s position relative to the plane created
by connecting the relatum and origin, values are triples of
( { front, back }, { left, right, straight }, { distant, close } )
(Moratz and Ragni 2008); 2) Qualitative Trajectory Calculus
(QTC) represents the relative motion of two points with re-
spect to the reference line connecting them, and is computed
over consecutive timepoints (Delafontaine et al. 2011); it de-
fines the following three qualitative spatial relations between
two objects 1 01, 02: 01 is moving towards o9 (represented
by the symbol —), 0; is moving away from o, (4), and o7 is
neither moving towards or away from oz (0). 3) Qualitative
Distance Calculus (QDC) expresses the qualitative Euclidean
distance between two points depending on defined distance
thresholds (Clementini et al. 1997). The intuition is based on
the assumption that human motion can be partially explained
using distance relative to key landmarks. A set of QDC rela-
tions localises a person with respect to reference landmarks,
and changes in the relations can help explain relative motion.
An illustration of the three QSRs can be seen in Figure 2.

The three QSRs are computed from (xyz) data of partic-
ular body joint positions over a series of timepoints. That
is, a human pose sequence S is abstracted into multiple se-
quences of qualitative relations (one per calculi being used)
and represented as a QSRLib response message (implemen-
tation details of which are given in the Experiments section).
We believe these three QSR are appropriate to qualitatively
describe the kind of human activities we are interested in;
however, it is not an exhaustive list and other qualitative
calculi could be explored (Chen et al. 2015).

"Note that objects are abstracted to their centroids when com-
puting these QSRs.
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Figure 2: QSRs: (left:) QDC (relative distance) between right
hand-object 1. (centre:) TPCC system between right hand-
(relatum-origin) plane (for the full TPCC system see (Moratz
and Ragni 2008). (right:) QTC (relative motion) between left
hand-object 2 pair.
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Object 1

Extracting Qualitative Code Words

Many human activities observed by a robot can be explained
by a sequence of primitive actions over a duration of time.
Here, we describe how we temporally abstract over a time
sequence of qualitative relations to generate a vector over a
discrete code book (vocabulary) for each observed activity.

We first abstract the sequence of body joint positions .S
into a sequence of QSR values () (one per calculi used), then
compress repeated values to obtain an interval representation
I of an activity 2. For example, if the right hand appears
to be moving towards the head (QTC relation: ‘—’), for 7
consecutive frames and then is static (0) with respect to the
head for 7/ further frames, we compress this into an interval
representation consisting of two intervals: [(nead, Rhand) =
{il, 22} . il = {‘7’, (O,T — 1)} and ig = {‘O,, (7',7' +
7/ — 1)}. Each interval ¢ maintains the QSR value (or set
of values; one per calculi used) in addition to the start and
end timepoints, see first row of Figure 3 (top). An interval
representation I of a complete human pose sequence contains
a row for each pair of body joints or landmarks.

Given a set of human pose sequences, encoded from a
number of observed activities, we compute an interval rep-
resentation [ for each and extract a set of unique qualitative
features (code words) which are used to describe the observa-
tions. We compute an interval graph (de Ridder et al. 2016)
for each interval representation [ in our dataset by applying
a subset of Interval Algebra (IA) (Allen 1983) to abstract
the temporal relations between the observed intervals. TA
is used to represent and reason with temporal intervals and
defines 13 qualitative relations (for a complete list of the
relations refer to (Allen 1983)). An example interval graph
can be seen in Figure 3 (bottom), which encodes both rows
present in Figure 3 (top). Here, a node ¢’ is used to represent
an interval ¢ and contains only the QSR value (or set of val-
ues) that hold between the objects of that interval, and the
objects themselves. The exact timepoints are not explicitly
depicted in the node, e.g. node 4} in Figure 3 (bottom) con-
tains (head, Rhand,*—’) information temporally abstracted

’In the literature, this is closesly related to a Qualitative Spatial
Temporal Activity Graph (QSTAG) (Gatsoulis et al. 2016b), and
similar to the representation used in (Duckworth et al. 2016).
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Figure 3: (top:) Interval representation of two pairs of body
joints. (bottom:) Interval Graph. (Best viewed in colour.)

from 7;. Taking any two intervals, it is possible to calculate
the temporal relation which holds between them using IA
and is represented as a labelled, directed arc between the cor-
responding nodes, as seen in Figure 3. For example, the TA
relation that holds between the 77 and ¢ intervals is “meets”;
and between ¢; and i4 is “overlaps”. Nodes are only linked if
their intervals are temporally connected, i.e. there exists no
temporal break between a pair of intervals, hence there are
no arcs with IA relations before or after. Note, where two
intervals occur at the beginning or end of the video clip (and
therefore beginning or end of the interval representation),
e.g. 11 and i3, there is insufficient temporal information to
abstract over the intervals and there is no arc between the
corresponding nodes in the interval graph, e.g. i} and 5.

From the set of all interval graphs, we define a code book
V as the set of unique code words V' = [y1, 72, . .. ], which
are extracted by enumerating all paths through all interval
graphs, up to and including some fixed path-length k. For
example, for £ = 2 the unique code words extracted from
the interval graph shown in Figure 3 (bottom) are generated
by taking all paths of length 1 and 2, i.e. { 4}, i}, %, 4, i,
(7} meets i%), (¢} overlaps ¢}), (i5 overlaps ijy), (i meetsi}),
(74, meets if)}. The length of the code book V' depends upon
the number of unique paths and is affected by the number
of objects encoded, the QSR calculi used along with their
values, plus the path-length k. The experimental details of
these choices are given later. The code words generated
using this technique represent combinations of qualitative
relation intervals specifically observed within the data and is
akin to observing a particular set of words (or n-grams) in a
document. This makes it an efficient and intuitive method for
representing observed human activities.

For each observed activity, we encode a sparse vector (with
length |V'|) describing the frequency of each code word in that
observation and call this an observed activity “histogram”.
This is similar to a Bag of Words, where the code words
extracted from the video ignores positional arrangement.

Latent Dirichlet Allocation

In this section we draw comparisons with document analy-
sis and use Latent Dirichlet Allocation (LDA); a generative
probabilistic model of a collection of discrete data and use
Collapsed Gibbs Sampling (Lynch 2007) which extracts a
set of interesting topics from the corpus. LDA extends La-

tent Semantic Indexing (LSI) (Deerwester et al. 1990) and
probablistic LST (Hofmann 2001).

Similarly, we use LDA to uncover human activities (top-
ics) from videos (documents) using our encoding as activity
histograms over a code book (discrete vocabulary). In this
setting each human observation is analogous to a document
and modelled as a random mixture over latent topics. Each
topic is a latent multinomial variable and characterised by
a distribution over a vocabulary of code words. This frame-
work allows us to model each observation as a mixture of
topics, where each code word is sampled from a multinomial
distribution over the vocabulary. This translates as allowing
a mixture of activity classes to be encoded within the same
observation, removing the requirement for temporal segmen-
tation of human observations into “interesting” sequences
and hence generalising the work in (Duckworth et al. 2016).
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Figure 4: Graphical model representation of LDA using plate
notation. Nodes represent random variables, links between
nodes are conditional dependencies, plates are replicated
components, and shaded nodes are observations.

LDA is a probabilistic topic model that generates a set of
M documents D, from a set of underlying 7" topics, where
each topic is a distribution ¢ = {¢1,..., 7} over the vo-
cabulary of unique code words V' (extracted in the previous
section). Each document d € D consists of a set of N; words
Wy, and is composed of a distribution § = {6; : i € D} over
the topics. Figure 4 shows a graphical model representation
of the three-layer hierarchical Bayesian model using plate
notation. The variables ¢ and 6, as well as z (the assignment
of word tokens to topics) are the three sets of latent variables
that we would like to infer. We briefly introduce the main
random variables here, (ford € D and n € Wy):

i. 64: topic proportions of document d,

il. Zgy: per-word topic assignment,

iii. Wy ,: observed words (shaded grey),

iv. ¢, € ¢: word proportions of topic ,

v. a, (: Dirichlet hyperparameters.
The generative process can be characterised by first sampling
a Dirichlet(«v) distribution over topics, then sample a topic, fi-
nally sampling a word from that topic. The three-layers of the
Bayesian model are described by the parameters («, 5) which
are corpus level parameters. The variables 8, (for d € D)
are document level parameters, sampled once per document,
and finally, the variables z4 ,, and wg , are word-level and
sampled once for each word in a document. Given the param-
eters « and 3, the joint distribution of a topic mixture 6, a set
of N topics z, and a set of N words w is given by:

N
p(@,Z,W|O(, 5) = p(0|05) H p(z7l‘9)p(wn|zna ﬂ)

n=1

Given this generative model, our aim is to determine the



latent topics based on the observed words that appear in
our observations. This translates as computing the posterior
distribution of the hidden variables given a document:

p<97 z, W‘O‘a B)
p(Wle, B)

which is intractable, and so we use Collapsed Gibbs Sam-
pling; an approximate inference algorithm based on the
Monte Carlo Markov Chain (MCMC) technique where the
idea is to generate posterior samples from its conditional
distribution.

p(67Z|W,Oé,6) =

Experimental Procedure

‘We begin this section by describing the observed data cap-
tured and recorded from an autonomous mobile robot. Then,
we describe three experimental settings intended to highlight
the improvement of our methodology over (Duckworth et al.
2016), and present results in the next section.

Dataset

To validate our methodology, we use a publicly available
dataset recorded from an autonomous mobile robot observing
human environments over a one week duration 3. The robot,
fitted with a headmounted ASUS Xtion Pro-Live RGBD
camera and OpenNI2 human pose estimator, was tasked with
patrolling pre-defined waypoints and observing a kitchen and
student common area with varying view points. The robot
observed 287 individuals during the one week process and
created a human pose sequence for each. These sequences
contain arbitrary number of poses with high variance; mean
(1) and std (o) = (513, 588).

For the purpose of obtaining a ground truth, each recorded
sequence was temporally segmented by volunteers into mul-
tiple shorter sequences containing only a single activity class.
The following is a list of the activity classes annotated, along
with the number of occurrences: Microwave food (19); Take
object from fridge (81); Use the water cooler (26); Use
the kettle (70); Take paper towel (45); Throw trash in bin
(65); Wash cup (82); Use printer interface (35); Take print-
out from tray (24); Take tea/coffee (35); Opening double
doors (11). The granularity of the activity schema was de-
termined by the data available from the robotic vision com-
ponent; in particular no object tracker was available, and
hand tracks were unreliable. A total of 493 individual ac-
tivity instances were segmented. These sequences are much
shorter, (u,0) = (137,191), and temporally focused on the
activity instance taking place. We consider these sequences
as each containing a single “interesting” activity, as defined
and segmented by the volunteer annotators.

Note, 77 (of 287) observations were deemed to contain
none of the above activity classes by the annotators, and given
the label “NA”. This is a considerable percentage of noise
and provides a major difficulty when no manual segmentation
or filtering of the data is provided.

3Dataset: http://doi.org/10.5518/86.

Pose Sequence Improvements

A common approach to capture human pose estimates is to
use the OpenNI tracker (OpenNI organization 2016) to detect
multiple persons and infer their 3D pose in real-time from
the sensors’ depth stream. For our work however, it is espe-
cially important to obtain reliable pose estimates in cases of
human-object interaction from difficult viewpoints. Unfortu-
nately, these interactions cause most pose estimation errors
from OpenNI, where the object is inadvertently considered
part of the person/foreground and/or the person is backward
facing during an interaction, see Figure 5(a). To mitigate this
problem, we leverage RGB colour data to help distinguish be-
tween object and person and resolve backward facing poses.
Our pose estimation system operates in a two phase approach,
firstly, the efficiency of OpenNI is utilized to produce person
bounding boxes per frame (in real-time on the CPU). Sec-
ondly, person bounding boxes and the RGB frame are fed
as input into a state-of-the-art convolutional neural network
pose machine (CPM) (Wei et al. 2016) to better estimate
the 2D human pose (on a midrange GPU). Subsequently, we
take the improved (zy) coordinates of body joint positions
from the CPM, and the depth coordinate () from the original
OpenNI detection, see Figure 5(b).

' person

(a) Inaccurate OpenNI pose estimates (b) Improved pose estimates

Figure 5: Improved human pose estimates. (View in colour.)

Experimental Setup

We conducted three experiments using the above dataset;
each differs in the level of temporal segmentation of the
observations provided to the system.

Experiment 1: We first present a direct comparison be-
tween our methodology and that of the most similar litera-
ture (Duckworth et al. 2016), where Latent Semantic Analy-
sis (LSA) is used to recover semantic concepts from a term-
document matrix. The temporally segmented human activ-
ities dataset of 493 activity instances is used with the CPM
improved pose estimates and we present results using only the
OpenNI pose estimates in brackets. We validate our learned
topics by comparing the cluster metrics obtained when using
a supervised algorithm, as an upper bound; a linear-SVM is
trained using 5-fold cross validation and has access to the
ground truth labels during the learning process. A compari-
son to a standard unsupervised clustering algorithm, k-means,
and random chance is also presented; each as an average over
10 repeats.



Experiment 2: By concatenating multiple segmented clips
together, we highlight the probabilistic mixing properties of
our LDA model. This set of video clips is formed by taking
the temporally segmented sequences used in experiment 1,
and concatenating them back together, excluding the tem-
porally surrounding poses. This results in a set of, possibly
discontinuous, video sequences where only the annotated
“interesting” activity classes take place and the other poses
are removed. There are 210 such sequences containing 2.3
segmented clips on average (max=10), where each sequence
now has multiple associated ground truth labels. In this set-
ting, the same sequences of data are provided as experiment 1,
however multiple sequences are now present in each obser-
vation and requires modelling the observation as a mixture
of topics. We also present a comparison to (Duckworth et al.
2016) using these video sequences.

Experiment 3: Finally, in this experiment no temporal
segmentation of the observations is provided to the system,
and the topics generated are described with respect to the
multi-labelled ground truth activities taking place. The 287
full length human pose sequences contain the above “inter-
esting” sequences, but also contain many more interactions,
e.g. people walking, standing, chatting, and are much longer,
(1, 0) = (513, 588) and more varied. For this reason, we
do not expect the learned topics to match one-to-one to the
ground truth labels annotated by the volunteers. However,
we present a mapping between the learned topics and the
annotated labels, which help us understand what the topic
distributions refer to. This leads to the interesting question
of “what constitutes an activity class”?

Implementation Details

Here we describe the implementation details used in the
above experiments. Computing the QSRs from the human
pose sequences is performed in a two stage process. First
abstracting the person’s relative body joint positions in the
camera frame of reference, and secondly, abstracting the
person relative to pre-defined semantic landmarks in the map
coordinate frame of reference. Each observation (regardless
of the segmentation provided), is represented as a human pose
sequence Sy, = [p1, P2, - - - pt], of body joint positions p;.
To calculate TPCC relations for a pose, we fix the origin
and relatum to the head and torso joint positions respectively
to generate a person’s “centre line”, see Figure 2 (right). A
sequence (Qcam, of length ¢, is produced containing TPCC
relations between this plane and the left/right hands, knees
and shoulder joint positions. Similarly, to encode a person’s
position in the global map frame we use QDC and QTC cal-
culi, see Figure 2 (left). These QSRs are used to describe the
relative position of the person’s torso body joint and left/right
hand positions, relative to a set of 12 landmark objects in the
“kitchen” semantic region, see Figure 1. A sequence Qmap,
length ¢t — 1, of QDC and QTC pairs is produced *. Since the
landmarks are static, we use the QTC g1 variant of QTC (De-
lafontaine, Cohn, and Van de Weghe 2011). The threshold
values used for the QDC relations are: rouch [0-0.25m], near

*QTC relies on pairs of consecutive poses, so we remove the
QDC value at t = 1 to obtain ¢ — 1 pairs.

(0.25-0.5m], medium (0.5-1.0m] and ignore (>1m]°. For
example, in an observed activity where a person opens a
fridge, a possible sequence for the hand-fridge pair in Qmap
is: [(‘+’, ‘Near’), (‘+’, ‘Near’), (‘+’, ‘Medium’), ...], where +
is from the QTC calculi and Near, Medium from QDC.

For each sequence (Qcam and Qmap, We apply a median filter
(window size = 10 frames), which smooths rapid flipping
between relations, owing to noise in the pose sequences.
We then create an interval representation and interval graph
for each, by compressing repeated relations and abstracting
temporally using IA, as described above. Since the number
of paths increases exponentially with the number of interval
nodes (each encoding two objects), we use path-length k = 4
and restrict the nodes on a path to encode at most 4 different
objects in total. Enumerating all paths, we generate a single
code book V' which contains relations from TPPC, QTC
and QDC. We apply a binary low-pass filter to remove any
code words that occur in fewer than 5 observed activities,
which we regard as noise. Note |V/| varies between the three
experiments due to the increase in observed unique interval
paths when no segmentation is performed (plus the effect of
the binary low pass filter), i.e. in the three experiments |V|
= 4565, 4337 and 18,001, respectively. Finally, we create
an activity histogram for each recorded activity, consider
them documents and perform LDA with hyperparameters
a, 8 =(0.5,0.03).

Results

In this section we provide results for the three experimental
settings described above. Using an unsupervised learning
framework, it is not possible to map the learned topics (or
clusters) directly to each activity class in the ground truth la-
bels. This can be a many-to-many mapping, especially when
dealing with highly unbalanced classes. Therefore, we pro-
vide results using popular clustering metrics where the aim is
to generate clusters composed of the same activity class label,
and that all instances of a class are present in the same cluster.
For this purpose we use the two metrics, V' -measure (Rosen-
berg and Hirschberg 2007) and (Normalised) Mutual Infor-
mation (NMI) (Vinh et al. 2009). The V -Measure is a com-
bination of the homogeneity and completeness clustering
metrics, given two sets of labels. Homogeneity evaluates
whether all the predicted clusters contain only data points
which are members of the same class; whereas completeness
evaluates whether the member data points of a given class
are all elements of the same predicted cluster. Both values
range from 0 to 1, with higher values desirable. NMI is an
normalization of the Mutual Information (MI) score between
two sets of clusters, ranging from 0 (no mutual information)
and 1 (perfect correlation).

Experiment 1 results are presented in Table 1, along with
a comparison to the current state-of-the-art technique, Latent
Semantic Analysis (LSA) (Duckworth et al. 2016). Our
method outperforms LSA when both methods are provided
with temporally segmented activity clips, containing a single
activity instance in each. Results are provided using only

>We intentionally do not encode “ignore” intervals, creating a
sparse interval representation and leading to a more efficient process.



the OpenNI pose estimates (in brackets), and performance
improves when combined with the 2D CPM human pose
estimates. To calculate the above metrics, only the highest
topic proportion (> 0.5) is selected, and 383 observations are
classified. As in the previous work, the number of topics is set
to the number of activity classes in the dataset 7' = 11. Both
techniques significantly out perform k-means and uniform
random assignment (using 11 clusters), and the results of
a supervised method (linear-SVM) which has access to the
ground truth labels during the training process, and could be
regarded as an upper bound on the possible performance.

Metric | LDA | LSA | k-means | random || SVM
V-measure | 0.69 (0.64) | 0.54 0.27 0.05 0.71
NMI 0.69 (0.64) | 0.53 0.29 0.05 0.71
Accuracy N/A N/A N/A 0.11 0.77

Table 1: Results using temporally segmented video clips:
LDA (OpenNi/CPM vs OpenNi only in brackets), com-
pared against LSA; unsupervised k-means clustering; random
chance; and a supervised SVM as an upper bound.

Experiment 2 uses the concatenated sequences of clips,
described above, and translates as multiple activities occur-
ring in each observation (and nothing else). Figure 6 (left)
presents a cosine similarity matrix of the 11 learned topic
distributions when using these concatenated clips compared
against the topics learned in experiment 1 (using temporally
segmented activity clips). The strong diagonal indicates a
one-to-one mapping between the two recovered sets of topic
distributions and validates the mixture assumption of LDA,
i.e. longer observations do not require temporal segmenta-
tion and that similar topic distributions are recovered from
observations containing a mixture of activities. The average
cosine similarity between the two sets of topic proportions
is 0.82. Further, the average cosine similarity of the topic
distributions using LSA is 0.60, which shows our method is
able to handle a mixture of classes in each observation better.

In Experiment 3 we provide no temporal segmentation
and as a result the observations are much longer and consid-
erably more varied. For this reason, there is not a one-to-one
mapping present between the topics recovered and the activ-
ity class labels. In this setting, we sum the topic proportions
of all documents which contain each annotated ground truth
label (with low-pass filter > 0.5). This is represented as a
matrix and shown in Figure 6 (right). For brevity, we merge
the two “printing” rows together (these are not distinguish-
able), and remove the “opening double door” row since it
has the least number of instances (11). We can see that the
majority of the learned topic distributions correlate to a sin-
gle or pair of activity class labels, e.g. topic ID 6 correlates
highly with “take tea/coffee” and likewise ID 3 to “washing
up”. Topics such as ID 1 relate to a mixture of human labels
such as “using kettle” and “using paper towel”. This is intu-
itive, and based upon the activities that are often observed
together, e.g. washing and drying a mug. However, some
classes are being confused based upon their spatial arrange-
ment in the environment, e.g. the microwave is 30cm away
from the water dispenser. These objects are not commonly
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Figure 6: (left:) Similarity of 11 learned topics, segmented
(Ex.1) vs concatenated (Ex.2) video sequences. (right:)
Topic-proportions per activity class, using no temporal seg-
mentation (Ex.3).

used together, however topic ID 10 contains a mixture of
these classes (plus “N/A”, and “use kettle””). From manual
inspection, we see that people usually stand waiting for the
microwave/water cooler; this is what this topic distribution
represents. By using a low-pass threshold it is unclear what
topic ID 0 or 7 relate to. However, from manual inspection
it is clear that both topics relate to behaviours which occur
across many labels below the required thresold; thus the set
of human activities in this dataset can be distinguished using
only 9 of the 11 topic distributions.

Conclusion

This paper focuses on learning human activities from long
term mobile robot observations in an unsupervised setting.
Our methodology is capable of improving upon and general-
ising our previous work. It first abstracts pose estimates of
detected people using qualitative representations which help
alleviate challenges arising from activity recognition on a mo-
bile robot, in particular varying view points and noisy/partial
detections. It then auto-generates a vocabulary of discrete
qualitative spatio-temporal code words which is used to en-
code observations analogous to information retrieval settings,
where observations are considered documents. A probabilis-
tic topic model (LDA) is used to recover latent topics which
are considered to represent human activities. Our method-
ology improves upon recent literature on learning human
activities from a standard human activity dataset with large
intra-class variations present. Further, we generalise the
method for use on a mobile robot by performing learning
using no temporal segmentation or manual filtering of obser-
vations. This is achieved by using a probabilistic generative
approach where each observation is modelled as a mixture of
latent topics.

Given the complex nature of human environments, one
limitation of our method is that the learned topic distributions
cannot evolve over time (if activities evolve), and that the
number of topics should be set in advance. A possible direc-
tion to look into is the use of Dynamic Topic Models (Blei
and Lafferty 2006). It is also the case that object-specific
terms in the QSRs would benefit from further abstraction,
allowing us to learn more general, object-independent topics,
such as “picking” and ‘carrying”.
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