
Unsupervised Natural Language Acquisition and Grounding to Visual
Representations for Robotic Systems

Muhannad Alomari, Paul Duckworth, Yiannis Gatsoulis, David C. Hogg and Anthony G. Cohn
Institute for Artificial Intelligence and Biological Systems, University of Leeds, UK

(scmara, scpd, y.gatsoulis, d.c.hogg, a.g.cohn)@leeds.ac.uk

Abstract

We present a cognitively plausible novel frame-
work capable of learning the components of nat-
ural language for robotic systems in a real world
environment. The system is trained by a “show-
and-tell” procedure, in which video clips paired
with natural language commands are provided to
the system, without any prior knowledge about the
mapping between them. The learning approach is
an unsupervised technique, that uses a novel rela-
tional graph representation to build connections be-
tween language and vision. At the same time, a set
of probabilistic grammar rules are generated which
encode the visual semantics of phrase structure and
word classes. We show that the knowledge gained
can be used to parse novel linguistic commands in-
volving previously unseen objects.

1 Introduction
Understanding how children learn the components of their
mother tongue and the meanings of each word has long fasci-
nated cognitive scientists; equally robots face a similar chal-
lenge unless all this knowledge is pre-programmed, which is
no easy task either (nor does it solve the problem of language
change over time). In this paper we show how a robot can
start with no such knowledge and can gradually acquire cer-
tain components of language and their groundings in the per-
ceptual world. Researchers have tackled the language acqui-
sition problem using different approaches, such as individual
and social learning. In individual learning, the robot is pro-
vided with data needed to learn about natural language with-
out any further assistance from the teacher, and is expected to
learn from such data in an unsupervised way [Siskind, 1996;
Roy et al., 1999; Needham et al., 2005; Alomari et al., 2016].
In social learning, the teacher plays an important role in the
learning process, by providing feedback to guide the learner
in acquiring the different language components [Steels and
Kaplan, 2002; Spranger, 2015]. In this research, we follow
the individual approach, as it enables the learning from large
data without the need for constant supervision, thus opening
the door to a number of applications such as automatic sports
commentators, weather forecasting, and intelligent robotics.

This work aims to answer the following two questions,
(i) how can a robot bootstrap its knowledge in language and
vision? and (ii) how can it ground language to concepts in
vision? To answer these questions in a cognitively plausible
setting, we took into consideration that human learning is in-
cremental and it is typically loosely supervised. Also, the sys-
tem should learn from human description of the world, and, at
the same time, the outcome of the learning process should be
representable in a form understandable by humans. Keeping
the aforementioned in mind, we developed a novel individual
learning approach capable of acquiring symbolic knowledge
in both language and vision simultaneously, and using this
knowledge to parse previously unseen natural language com-
mands. The learning is accomplished using a show-and-tell
procedure; this is inspired by the fact that children are able to
acquire knowledge of their everyday physical world and how
to describe it by interacting with their parents in a similar
procedure (show-and-tell). Volunteers controlled a robot to
perform a variety of table top tasks, which were subsequently
annotated with natural language commands, as shown in Fig-
ure 1. The recorded videos and commands are used as in-
put data to our system to learn three key components, (i) the
words’ classes (actions, relations, etc.) in natural language;
(ii) the visual representation of these words; and (iii) the
grammar rules. To the best of our knowledge, this is the first
system that learns all three simultaneously.

Figure 1: An example of a video sequence for the command
“place the apple in the bowl”. The first video (1st row) shows
the entire scene, while the second video (2nd row) shows the
robot’s view of the scene. The red square on the table is to
avoid placing objects outside the robot’s view.



2 Related Work
Language acquisition has been a long standing objective of AI
and cognitive research. One of the earliest computers capable
of understanding natural language commands to perform sim-
ple tasks in a virtual world was SHRDLU [Winograd, 1972].
It was pre-equipped with all the linguistic and visual knowl-
edge needed to understand and perform commands such as
pick up the red block. In this work, we will show how our
system can incrementally learn the knowledge needed to per-
form similar commands in a real-world environment.

In developmental robotics, researchers have combined lan-
guage and vision to teach their robots about different con-
cepts; one of the earliest works to do so was a system by
Roy et al. [1999] capable of learning audio-visual associa-
tions (basically objects’ names) using mutual information cri-
teria. Many more robotic applications were developed subse-
quently, such as Steels et al. [2001; 1995] language games for
autonomous robots, used to teach them meaning of words in a
simplified static world, or Needham et al. [2005] to teach ar-
tificial agents to play table-top games. Further, Steels [2002],
Spranger [2015], and Bleys [2015] designed systems capa-
ble of learning objects’ names and certain relations by either
interacting with human or robot teachers. Researchers also
combined linguistic descriptions from the web with visual
features from images to teach their robots different actions,
such as setting a table in Dubba et al. [2014], or making pan-
cakes in Beetz et al. [2011]. Combining language and vision
was also used to learn natural language commands for robotic
systems, for example, learning linguistic instructions to navi-
gate autonomous mobile robots or drones [Lauria et al., 2002;
Huang et al., 2010; Tellex et al., 2011], or performing manip-
ulation tasks [Dukes, 2013; Spranger and Steels, 2015].

In the works discussed above, the learning of concepts was
enabled by at least one aspect already being known. In some
cases, researchers only presented their systems with a single
concept to learn at a time (i.e. a single object in the scene),
such that it knows which concept is to be learned. In other
cases certain hard-coded knowledge were provided initially
(i.e. colours, grammar rules, etc.). In this research, we use
a more relaxed set of constraints, and yet we show that our
system is still capable of learning about language and vision.

3 Learning Framework
We provide our robot with the ability to learn three com-
ponents, (i) the words’ classes in natural language; (ii) the
visual representation of these words; and (iii) the grammar
rules. Our learning framework can be summarized by the fol-
lowing steps; (a) the robot receives an RGBD video and its
description; (b) each description is represented as a number
of tokens (n-grams), and each video as a sequence of graphs
that encodes the visual information; (c) these representations
are used to build hypotheses that ground n-grams to their vi-
sual representations; these hypotheses are tested and used to
update the robot’s knowledge in language and vision. Further
details of (a, b) are given in § 4, and (c) in § 5. We show that
a robot can learn about language and vision in a real-world
setup in § 6.

4 Knowledge Representation
In this section we describe our representation of the input
data: (i) an RGBD video clip, and (ii) a short description.

4.1 Linguistic Input Representation
For each sentence, we aim to match n-grams to their visual
representations. To do this, we convert the text to all lower
case and remove any punctuation (as this is not explicitly
present in spoken language). We then extract all possible n-
grams with n ≤ N . This bag of n-grams is used to match
language with visual representations, this is explained in § 5.

4.2 Visual Input Representation
For each video clip, we extract a number of visual representa-
tions which we aim to match to language. To do this, we ini-
tially detect objects in the video using an unsupervised table-
top object detector package readily available in ROS [Muja
and Ciocarlie, 2013] as shown in Fig. 2. Each of these objects
is tracked using a particle filter [Klank et al., 2009]. For each
object, we compute a set of properties and pairwise relations.
We then use these properties and relations to build a sequence
of graphs that abstracts the spatio-temporal details of actions.

Figure 2: Clustering the different objects, (a) original scene,
(b) point cloud of original scene, (c) table-top algorithm out-
put (object clusters).

Objects Properties and Relations:
For each detected object in the video clip we compute five
pre-defined visual features:
1) colour : object→ ([0, 360)× [0, 1]× [0, 1])c; colour(o)

gives HSV colour values for object point cloud, where c is
the number of points.

2) shape : object→ R32; shape(o) gives a 32 bin fast point
feature histogram (FPFH) per object cluster.

3) loc(ation): object → R × R × R; loc(o) gives an x, y, z
location of its centroid wrt the robot’s base.

4) dist(ance): object × object → R; dist(o1,o2) gives the
distance between o1 and o2 centroids.

5) dir(ection): object × object → [0, 360) × [0, 360);
dir(o1,o2) gives the azimuth and altitude angles from o1
to o2.

This set of features is not intended to be exhaustive (but rather
to demonstrate the approach); other features could potentially
be included. Our robot has no pre-given knowledge in any of
these feature spaces, e.g. the number of objects in the world,
or the language used to describe them, or any prior discretisa-
tion of the feature space. Once the visual features have been
computed for all objects in the video, we cluster their values
into Gaussian components. The optimal number of compo-
nents is selected unsupervised using a Bayesian Information
Criterion. An example is shown in Fig. 3.



Figure 3: Colours of all pixels in the point-cloud (b) are pro-
jected into a single 3D HSV colour space (c), then clustered
into separate colours (d - i). The same applies for all features.

Graph Representation

At any given time, we represent the state of the visual world
as a directed acyclic graph (DAG) [Christofides, 1975] with
nodes that correspond to the visible objects and all relations
between pairs of these objects. An ordered pair of arcs con-
nect each relation node to its constituent object nodes. The
properties of each object node (colour, location, shape) and
relation node (distance, direction) are represented by con-
nected property nodes. The object node corresponding to the
gripper is distinguished from other objects and has only the
location property (Thus the gripper is in a sense special and
forms a particular pre-known object type). The value at each
property node is either the label of a Gaussian component,
when the measurement (e.g. RGBD vector) has Mahalanobis
distance within a fixed threshold of this component, or the
label ‘changing’ when outside, to signify that this property
is transitioning between components. For our experiments,
only the location property of objects changes in this way. An
example of our graph representation is shown in Fig. 4.

By omitting consecutive repetitions of identical DAGs, we
obtain a sequence of DAGs that represents the video clip. We
will refer to each of these DAGs as states, since they describe
constant configurations of the visible objects, albeit that some
objects may be in motion, denoted by the ‘changing’ label.

The principle we use for learning is to seek frequent co-
occurrences of n-grams of the textual imperatives and sub-
graphs or consecutive sequences of sub-graphs extracted from
the state sequences derived from the corresponding video
clips. The idea is to relate sequences of words to fragments of
the visual representation of the world. Ideally we would like
to perform the learning on all sequences of all sub-graphs, but
this remains an ambition for the future. At present, we steer
the learning towards (1) object properties, by extracting all
connected sub-graphs involving objects nodes and their prop-
erties, (2) relations between objects, by extracting all con-
nected sub-graphs from pair nodes and their properties, and
(3) actions, by extracting sequences of sub-graphs that con-
tain the gripper object node, one other object node that has
a property with the label ‘changing’ and the pair node that
connects the gripper node with this object node. as shown in
Fig. 5. We will refer to these sub-graphs as graphlets, where
each one has at least one connection node (shown in purple)
that is used to connect graphlets together. This allows us to
reconstruct a graph structure from combination of graphlets.

Figure 4: Graph representation for the command “pick up the
orange” consists of two states. State 1 encodes G(ripper)
moving whilst O(range) is static. So the loc(ation) feature
node connected to G is ‘changing’ (red), while the loc node
connected to O remains ‘constant’ (white). State 2 encodes
both G and O move together.

Figure 5: Examples of sub-graphs (graphlets) extracted from
the states in Fig. 4.

5 Language Acquisition and Grounding
In this section, we show how we connect words in language
(e.g. the 1-gram ‘blue’) with concepts in vision (e.g. the
graphlet representing the colour blue), and at the same time
build grammar rules that govern the sentence structure.

5.1 Visual representations of Words
In this work, the grounding is achieved using an idea inspired
by Hebbian theory. Which can be summarized as: “Cells
that fire together, wire together” [Schatz, 1992]. This idea
is translated to “n-grams in language and graphlets in vision
that appear together, are connected”. As an example, the
1-gram ‘blue’ and the blue colour graphlet will appear con-
sistently together throughout the different videos; therefore
should be connected, while the 1-gram ‘the’ is not consistent
with any graphlet; therefore is not connected to any graphlet
(this is how the robot comes to know that ‘the’ is a func-
tional word). To measure the consistency between n-grams
and graphlets, we follow the frequentist approach. We keep
track of the number of times an n-gram and a graphlet appear



individually, and the number of times the two appear together.
We use these frequencies to compute the conditional proba-
bilities that associate each n-gram with a graphlet using:

P (g|n) = Fgn

Fn
, (1)

where n is an n-gram, g is a visual graphlet, Fn is the fre-
quency at which n appeared individually, Fgn is the fre-
quency of seeing both n and g together. This probability
function is computed between every n-gram and graphlet. We
filter out the unlikely associations by keeping only the maxi-
mum likelihood values for every n-gram in every visual fea-
ture space. The robot ends up with a number of associations
that need to be verified; we will show how the verification
process is achieved in the following section.

5.2 Validation of Associations
Once strong associations have been generated (between n-
grams and graphlets), we attempt to validate them by using
previously seen videos and sentences. For example, the 1-
gram ‘blue’ might have a high likely association with two dif-
ferent graphlets, one representing the colour feature blue, and
the other representing (something incorrect) the shape feature
cube. This can occur due to noise or insufficient data.

The validation occurs by examining how these associations
compare with the previously seen videos and sentence pairs.
We start this process by first translating the input sentence
into multiple graphs. This is done by first representing all n-
grams in the sentence with their highly associated graphlets;
and then create multiple graph structures by connecting the
graphlets together in various orders (the order is important
and will later map to learning grammar). We call these graphs
hypothesis graphs. Each hypothesis graph (from a sentence)
is compared against its corresponding input video graph se-
quence, and if any match (i.e. the hypothesis graph is an in-
duced sub-graph of the input graph), then we have validated
the associations for these n-grams. For example, consider the
sentence given in Fig. 4: “pick up the orange”, and suppose
that our robot does not know the meanings of any of the words
in this sentence. However, it associates the 2-gram ‘pick up’
with one action graphlet, and the 1-gram ‘orange’ with two
possible object graphlets, whilst ‘the’ has no strong associa-
tions. These n-grams and graphlets are shown in Fig. 6. To
validate these, multiple hypotheses graphs are generated that
reflect all possible combinations. This is done by connect-
ing the connection nodes (shown in purple) in both the action
graphlet and the object graphlets together, shown in Fig. 6
(A, B). We then check which (if any) of the generated hy-
potheses graphs match the input video. Since the hypothesis
graph shown in Fig. 6-(A) matches with the input video graph
shown in Fig. 4, the robot has validated the associations used
to build this graph and correctly grounded the n-grams ‘pick
up’ and ‘orange’ with their visual graphlets.

5.3 Learning Grammar Rules
In order to understand linguistic commands, the robot needs
to learn grammar rules that govern sentence structure. To
highlight this, consider the example command “place the

Figure 6: n-grams and graphlets associations, which gener-
ates hypotheses graphs.

orange in the bowl”. Even assuming the robot has a cor-
rect visual representation (graphlet) for each word, shown in
Fig. 7, it still needs an understanding of which object should
be placed where. This translates to knowing that the action
graphlet ‘place’ changes the location of the ‘orange’ object
and not the ‘bowl’ object, and further, that it needs to change
the orange’s location to a final value described by the relation-
object graphlets ‘in the bowl’.

Figure 7: The associated graphlets of the n-grams ‘place’,
‘orange’, ‘in’ and ‘bowl’, ‘the’ has no associated graphlets.

To acquire such knowledge, we use the correctly matched
hypothesis graphs (previously described in § 5.2) and gener-
ate their syntactic trees. These trees describe how n-grams
should be connected (ordered) in the input sentence, based
upon how their corresponding graphlets are connected in
the matched hypothesis graph. By using only the correctly
matched hypotheses graphs we follow Chomsky’s Universal
Grammar theory [1965], which states that humans are born
with a set of constraints that are hard wired into their brains,
and which they use to organise language. As an example,
for the command shown in Fig. 4: “pick up the orange”, the
correct hypothesis graph (graph (A) in Fig. 6) is used to gen-
erate its equivalent syntactic tree. The matched hypothesis
graph encodes the knowledge of which objects are manipu-
lated by the actions in the input sentence. This information is



mapped into a syntactic tree, as shown in Fig. 8. The n-grams
in the input sentence are semantically mapped to their corre-
sponding graphlet types (e.g. ‘pick up’ is an Action graphlet,
therefore is labelled Action) The non-terminals (e.g. Action,
Object) are called this way for readability, the robot does not
know these names specifically, though it does know that these
several different kinds of knowledge exist and correspond to
different parts of the visual representation.

Figure 8: Example of a syntactic tree generated from the cor-
rectly matched hypothesis graph.

To learn the grammar rules from syntactic trees, we initiate
our robot with an empty Probabilistic Context Free Grammar
(PCFG) rule set. The PCFG models each grammatical rule by
assigning it a probability, where the probability of each rule is
proportional to the number of times the robot observes. This
idea agrees with the findings of Hudson-Kam and Newport
[2005], which shows that children reproduce the most fre-
quent grammatical forms they hear. Grammar rules learned
from only this example are shown in Table. 1, however, rules
from all input examples are accumulated into one set.

Learning Grammar Rules

Grammar Rules Probability

Action → pick up 1.0

Functional → the 1.0

colour-shape → orange 1.0

S → Action, Functional, M-Object 1.0

Manipulated Object → Object 1.0

Object → colour-shape 1.0

Table 1: Learning grammar rules from the syntactic tree
shown in Fig. 8

6 Experimental Validation and Dataset
We evaluate the performance of our system using two
datasets, a simple real-world setup and a synthetic dataset.

For the real-world setup, we used a Baxter robot as our test
platform and attached a Microsoft Kinect2 sensor to its chest,
as shown in Figure 1. This was used to collect RGBD videos
of Baxter performing various manipulative tasks with real ob-
jects from the robot’s point of view. We collected a dataset
consisting of 160 videos in which volunteers controlled Bax-
ter robot’s arms, and manipulated real objects. These objects
were tracked and their features extracted as described above.
The videos were then annotated with appropriate natural lan-
guage commands (by a separate group of volunteers). This
dataset contains a total of 984 commands (average of six-per
video). A variety of different objects were manipulated dur-
ing the videos such as basic block shapes, fruits, cutlery, and
even office supplies. The aim is that our system will match
the n-grams used to describe these objects to their correct
visual graphlets. A further 40 new videos along with 40 new
commands were collected and used as a test set which include
new objects which were not present in the training set.

For the synthetic world, we used the Train Robots dataset
(http://doi.org/10.5518/32) which was designed to develop
systems capable of understanding verbal spatial commands
described in a natural way [Dukes, 2013]. Non-expert users
were asked to annotate appropriate commands to 1000 pairs
of different scenes. Each scene pair is represented by an
initial and desired goal configuration; we automatically an-
imated these to produce videos. 7752 commands were col-
lected using Amazon Mechanical Turk describing the 1000
scenes. We also translated all the commands from English
to Arabic, particular care was taken on not to alter any com-
mand or change any mistakes in any of them. An example of
the dataset if shown in Fig. 9.

Figure 9: An Example from the Train Robots dataset, the Ara-
bic sentence is translated from the English one.

6.1 Evaluation
We evaluated the performance of our system using two mea-
sures: (i) its ability to correctly ground n-grams to visual
graphlets and therefore learn the groundings of words; and
(ii) its ability to correctly parse previously unseen commands.

Grounding n-grams to graphlets
In this section, we evaluate the system’s ability to acquire the
correct visual-linguistic groundings given the training data.
The system’s task is to learn the different words associated
with each feature space, i.e. that the word ‘red’ matches to a
graphlet containing the colour feature node with a Gaussian
component representing a HSV value of red. We define a cor-
rect matching by manually inspecting the matched n-gram-



Figure 10: The syntactic tree generated for the new command “move the blue egg at the top left corner to the right of the red
mug” using the knowledge gained from the training videos.

graphlet pairs and checking if the Gaussian component falls
within a range the n-gram describes, e.g. red ≈ HSV(0, 1, 1).

Our system was able to correctly ground 47/53 (88.6%) n-
grams to their visual graphlets in the real-world dataset, and
72/81 (88.9%) in English and 90/101 (89.1%) in Arabic in
the synthetic dataset. A detailed analysis of how the system
performed in learning concepts in each feature space is shown
in Table 2. Below is a list of examples of the learnt n-grams
which were used in the linguistic commands:
1) Colours: red; yellow; green; blue; pink; black; purple.
2) Shapes: block; mug; ball; banana; dolphin; duck; can.
3) Locations: top centre; centre; middle; top right; top left.
4) Directions: right; left; behind; under; inside; top.
5) Distances: far; near; close to.
6) Actions: pick up; put down; place; move; pile; shift.

The system couldn’t learn the visual representation of all
n-grams due to noise or lack of training data. For example,
the n-gram cyan was mentioned only once in the real-world
dataset and therefore the system did not manage to correctly
associate it with its matching colour graphlet.

Grounding n-grams results

Features Real-world Synthetic-English Synthetic-Arabic

Colours 12/14 15/16 30/31

Shapes 16/18 18/18 22/24

Location 6/7 17/17 16/16

Direction 6/7 10/10 10/10

Distance 3/4 N/A N/A

Actions 4/4 12/20 12/20

Total 47/53 72/81 90/101

Table 2: Results of learning the n-grams visual representa-
tions from two different datasets.

The use of Gaussian Components to represent visual fea-
tures allows for efficient and incremental learning, the robot
uses an incremental Gaussian Mixture Model approach [Song
and Wang, 2005] to update the different graphlets, which al-
lowed us to represent all the input videos without the need to
store the entire data. All the results presented in this section
are computed using n-grams of n ≤ 3.

Parsing Novel Commands
We also evaluate the system’s ability to generalise its acquired
knowledge to new objects and to parse novel commands. This
is done using the set of learnt grammar rules.

In the real world dataset, a total of 139 grammar rules were
acquired from the 160 training videos. Which we used to test
40 previously unseen videos and commands. In 35 (87.5%) of
the test videos the system was able to translate the command
into a fully correct syntactic tree. An example of a new com-
mand “move the blue egg at the top left corner to the right
of the red mug” and its generated syntactic tree are shown
in Fig. 10. The objects “red mug” and “blue egg” were not
shown to the system in any of the training videos. A sample
of the acquired grammar rules that were used in parsing this
command is presented in Table. 3.

In the synthetic dataset, a total of 533 grammar rules in
the English, and 1344 in the Arabic language were acquired.
Which we used to test on 1343 commands. In 929 (69.2%)
of these commands the system was able to translate the com-
mand into a fully correct syntactic tree. Which is higher than
the state-of-the-art supervised system, standing at (60.9%).

7 Conclusion and Future Work
We have demonstrated for the first time in a developmentally
plausible setting, that a system can simultaneously learn three
kinds of knowledge in an unsupervised manner for process-
ing language and vision from real-world and synthetic data:
(i) the words’ classes (verbs, relations, objects properties)
in natural language; (ii) the visual representation of these
words; and (iii) the grammar rules. The learning of grammar
rules took inspiration from both universal and probabilistic
grammar theories. The 2-level graph representation is also a
key contribution of the paper acting as an intermediary rep-
resentation between the continuous perceptual space, and the
purely symbolic linguistic structures. We plan to extend our
system to learn language generation from video clips using
the gained knowledge.

8 Acknowledgments
We thank colleagues in the School of Computing Robotics
lab and in the STRANDS project consortium (http://strands-
project.eu) for their valuable comments. We also acknowl-
edge the financial support provided by EU FP7 project
600623 (STRANDS).



Learnt Grammar Rules

Non-Terminals

S → action, m-object, final-location 0.857

m-object → FW, object 0.588

final-location → FW, FW, direction, object 0.058

object → colour, shape, FW, FW, location, FW 0.048

object → FW, FW, colour, shape 0.16

location → top, left 0.324

Non-Terminal Leafs

colour → blue 0.126

colour → red 0.264

shape → mug 0.14

shape → egg 0.04

action → move 0.422

direction → right 0.404

FW → the 0.311

FW → of 0.162

FW → to 0.123

FW → at 0.076

FW → corner 0.008

Table 3: The grammar rules used to parse the command
shown in Fig. 10 (FW stands for Functional Word, which is
a word that has no representation in our pre-defined visual
feature spaces).
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