
Learning of Object Properties, Spatial Relations, and Actions for Embodied
Agents from Language and Vision

Muhannad Alomari, Paul Duckworth, David C. Hogg and Anthony G. Cohn
School of Computing, University of Leeds, UK
(scmara, scpd, d.c.hogg, a.g.cohn)@leeds.ac.uk

Abstract

We present a system that enables embodied agents to learn
about different components of the perceived world, such as
object properties, spatial relations, and actions. The system
learns a semantic representation and the linguistic descrip-
tion of such components by connecting two different sensory
inputs: language and vision. The learning is achieved by map-
ping observed words to extracted visual features from video
clips. We evaluate our approach against state-of-the-art super-
vised and unsupervised systems that each learn from a single
modality, and we show that an improvement can be obtained
by using both language and vision as inputs.

Introduction
Understanding natural language commands is essential for
robotic systems to naturally and effectively interact with hu-
mans. In this paper, we discuss our novel loosely-supervised
work in acquiring semantic knowledge of natural language
commands, given pairs of linguistic and visual inputs. Gen-
erally, supervised systems learn from sentences and scenes
that have been manually annotated in detail by a human ex-
pert. The labelling of data is a labour intensive task that hin-
ders the learning from large corpora, and such labels are
not necessarily available for all languages and manipula-
tion scenarios. While unsupervised techniques enable learn-
ing from unlabelled data, their performance is usually sig-
nificantly worse than supervised techniques. In this work,
we present a novel multi-sensory loosely-supervised tech-
nique capable of acquiring knowledge about object proper-
ties, spatial-relations, and actions from unlabelled data by
mapping language to vision. Our system learns about ob-
jects, relations, and actions from a parallel corpus of n pairs
of short video clips V = {v1, . . . , vn}, and sentences de-
scribing these videos S = {s1, . . . , sn}, as shown in Fig. 1.
Our methodology consists of first encoding a number of vi-
sual features for each video clip, and utilizes co-occurrences
of words and visual features to understand natural language.

Understanding Natural Language using multi-sensory
inputs has been a long standing objective of AI and cognitive
research. Siskind (1996) was one of the earliest researchers
to try and understand in a computational setting how chil-
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Figure 1: Example of “push” action (Sinapov et al. 2016)
annotated with the sentence “push the red bottle to the left”.

dren learn their native language and map it to vision. Follow-
ing his research, in the field of developmental robotics re-
searchers have connected language and vision to teach their
robots different concepts; one of the earliest works to do so
was a system by Roy et al. (1999) which is capable of learn-
ing audio-visual associations (i.e. objects’ names) using mu-
tual information criteria. Several robotic applications were
developed subsequently, such as Steels et al. (2001) where
language games for autonomous robots are used to teach the
meaning of words in a simple static world. Researchers have
since developed systems capable of learning objects’ names
and spatial relations by interacting with a human or robot
teacher, as in Steels (2002) and Spranger (2015). The work
of Misra et al. “Tell me Dave” (2015), and Chai et al. “Back
to the blocks world” (2014) focused on learning the natu-
ral language commands for simple manipulation tasks; this
is similar to our work, however we improve on their work
in two ways: First, they used a pre-trained natural language
parser to extract relevant words from sentences for learning,
while we learn from unprocessed linguistic inputs. Second,
they assume the robot knows the representations of shapes
and spatial relations beforehand, while we extract these by
clustering features from video clips.

Extracting Visual Clusters
In this section, we describe how we represent the visual in-
put data by extracting a set of visual features from each
video clip. Then we show how we abstract values from
these features to form a set of clusters. These clusters are
used to learn the semantics of words in the following sec-
tion. We start by processing all video clips to detect and
track the objects in each frame. The objects are detected
using a table-top object detector (Muja et al. 2013), where
each object in a video is assigned a unique id, and its lo-
cation is tracked using a particle filter (Klank et al. 2009).



Next, we obtain three sets of observations: (i) object fea-
tures: {colour, shape, location} of each object; (ii) rela-
tional features: {direction, distance} of each pair of ob-
jects in a scene; and (iii) the atomic actions that the robot
applies on each object during the video. The features and
atomic actions are shown in Fig. 2. The object and relational
features are obtained at the initial and final frames of each
video, whereas actions are obtained throughout the whole
video. It is worth noting that these features are not intended
to be exhaustive, but rather to demonstrate our approach;
other features could be added as an extension to this work.

Figure 2: The set of pre-defined features and atomic actions.

Once the observations (objects, relations, actions) have
been obtained for all objects in all video clips, we process
them to extract unique concepts, e.g. distinguish the shape
cube from the shape prism, and distinguish the colour red
from the colour blue, etc. This is achieved by clustering
the values from all observations of each feature space sepa-
rately to obtain multiple clusters. The extracted clusters are
used to construct a visual clusters vector (F ) with length
equal to the total number of clusters. This forms the list of
possible semantic tags for words. For instance, the Dukes
(2013) dataset (intended to learn natural language com-
mands) contains four unique shapes: prism, cube, ball, and
cylinder. We cluster the shape values of all objects from all
video clips and four clusters/shapes emerge shape1 = cube,
shape2 = prism, shape3 = ball, and shape4 = cylin-
der. The same clustering method is used on all observations
(colours, locations, directions, distances, and atomic
actions) each of which is done separately, i.e. we cluster
colours alone, shapes alone, etc. The outputs (or the clusters)
are then combined into a single vector F = {shape1, shape2,
shape3, shape4, colour1, . . . , location1, . . . , direction1, . . . ,
distance1, . . . , action1, . . .} to represent the visual features
and is used in the next section to learn words’ semantics.

Figure 3: Example “place the green ball above the blue
block” (Dukes 2013) represented using the clusters in F .

Learning Visual Semantics
Assigning a semantic category to a word is an essential pre-
processing step for understanding and executing natural lan-
guage commands in robotics. In this section, we show how
we connect words to semantic clusters that we extracted in
the previous section. The problem statement of this section
is: given (1) a corpus of n sentences S = {s1, . . . , sn}
that contains m unique words W = {w1, . . . , wm}, and
(2) video clips V = {v1, . . . , vn} that contain k extracted
clusters F = {f1, . . . , fk}; can we find a partial function Φ,
such that it maps words from language to their semantic tags
in vision, i.e. Φ : W → F . This semantic learning problem
is formulated as an assignment problem, where we have to
assign words wi ∈ W to clusters fj ∈ F subject to a cost
function C : W × F that needs to be minimised. We de-
fine the cost function as Cw,f = (1 − (Nw,f/Nw)), where
(Nw,f ) is the total number of times a word w and a clus-
ter f appear together, and (Nw) is the total number of times
the word w appears in the entire dataset. This cost function
is equal to zero (Cw,f = 0), if word w, and feature f , al-
ways appear together, and equal to one (Cw,f = 1) if they
are never seen together. This provides a clear indication of
whether a word w should be mapped to cluster f or not.

Once the cost function is computed for all word-cluster
pairs, we create a cost matrix with words W as rows, and
clusters F as columns, as shown in Fig. 4 (left). We then
use the Hungarian algorithm (Kuhn 1955) to find the se-
mantic tag for each word by assigning it to its most suit-
able cluster, as shown in Fig. 4 (right). We also remove
function words (such as ‘the’) by setting a threshold on the
Hungarian algorithm. This has the same effect as using term
frequency-inverse document frequency (tf-idf) weighting to
remove function words (Jones 1972).

Figure 4: Left: the cost matrix. Right: the output (semantic
assignments) using the Hungarian algorithm.



Experimental Procedure
We evaluate the performance of our system using three
datasets: a synthetic-world, and two real-world datasets. For
the synthetic-world, we used the Extended Train Robots
dataset (Dukes 2013; Alomari et al. 2016) which consists
of a thousand short video clips annotated with linguis-
tic commands using Amazon Mechanical Turk, an exam-
ple is shown in Fig. 3. For the real-world datasets, we
used (Sinapov et al. 2016; Alomari et al. 2017). In both
datasets, a robotic arm is used to manipulate objects placed
in front of the robot, and later annotated by a group of vol-
unteers with appropriate natural language commands, exam-
ples from both datasets are shown in Fig. 1 and Fig. 5. A
summary of all three datasets is presented in Table 1. Note
thatN/Ameans a feature space can not be processed for this
dataset, e.g. the Sinapov dataset have a single object in each
scene, therefore no spatial relations.

Figure 5: Scenes from Alomari (2017) robotic dataset, where
each video is annotated with a natural language command.

Datasets summary
features Col Sha Loc Dir Dis Act Avg

Alomari 11 13 3 5 2 3 5.3

Sinapov 9 3 N/A N/A N/A 6 1

Dukes 9 4 4 3 N/A 4 24.8

Table 1: Number of unique concepts in colour, shape, loca-
tion, direction, distance, and action features in all datasets,
and the avarage number of objects present in each scene.

Implementation Details
The objects are detected by applying a tabletop object detec-
tor on the first frame in each video, and then tracked through-
out the video using a particle filter, as shown in Fig. 6.

During the learning process, we use atomic actions
(Fig. 2) to represent more complex actions. For example
a ‘pick up’ action is represented with (approach, grasp, lift)
as the robot approaches, grasps and lifts the object; a ‘drop’
action is represented with just (discard) as the robot lets go
of the object to fall down on the table. The repetition of such
atomic actions across videos forms the action clusters.

We automatically detected function words by setting a
threshold of σ = .6 on the Hungarian algorithm, which cor-
rectly detects and removes all function words. This trans-
lates as a word w being considered a function word if it is
not consistent with any cluster fj ∈ F for more than 60%
throughout the entire dataset.

In our experiment, we divided each dataset randomly into
four equal folds, to perform four fold cross validation.

Figure 6: Example of a video sequence “place the orange in
the bowl” when the objects are tracked using a particle filter.
(Best viewed in colour)

Evaluation
We evaluated the performance of our technique using by its
ability to correctly tag words using the learnt semantic tags
Φ. To better demonstrate our results in semantic tagging,
we compare our technique with (1) a supervised system that
learns from labelled data, and with (2) an unsupervised sys-
tem that learns from unlabelled linguistic data. We consider
our baseline as the performance of the unsupervised system,
i.e. our joint language and vision technique should outper-
form the unsupervised system that learns from unlabelled
linguistic inputs, otherwise there is no benefit of the addi-
tional vision component. Similarly, our upper bound on
performance is the results of the supervised system trained
on human labelled (ground-truth) data.

Semantic Tagging Experiment
In this section, we evaluate the system’s ability to acquire
correct semantic tags for words from parallel pairs of short
video clips and linguistic descriptions. The given task is to
learn the partial function Φ : W → F that maps words
wi ∈ W to their corresponding clusters fj ∈ F , e.g. the
word ‘red’ should be mapped to the cluster colour-red.

The results for our semantic tagging experiment are
shown in Fig. 7. Here, ‘our-system’ is compared against
(1) the supervised semantic tagger (Fonseca and Rosa 2013)
that is trained on human labelled data, and (2) the unsuper-
vised semantic tagger (Biemann 2009) that is trained on un-
labelled linguistic data. The results are calculated based on
the total number of correct tags assigned to each word in
the test fold (four fold cross validation). Note that for the
unsupervised system, the results are calculated based on its
ability to cluster words that belong to the same category to-
gether, i.e. words that describe colours should be given a
unique tag different to those that describe shapes, directions,
etc. Also, we assign new words in the test fold (words that
only exist in the test fold) with a function word tag.

Our system is able to correctly learn (85.6%) of the to-
tal words in the Dukes dataset, (91.3%) in the Sinapov
dataset, and (81.5%) in the Alomari dataset. Compared to
only (32.9%, 39.8%, and 31.2% respectively) using the un-
supervised system. This clearly shows that adding vision
inputs produces more correct and useful semantic tags for
words, even though both systems use unlabelled data. A de-
tailed analysis of how the different techniques performed in
each feature space is shown in Fig. 8. Note thatN/A features
from Table 1 have an empty row-column in our analysis.



Figure 7: The results of (a) supervised, (b) our approach, and
(c) unsupervised semantic learning on all three datasets.

Figure 8: The performance in each feature space for the three
systems on all three datasets.

Conclusion and Discussion
We present a system that learns about object properties,
spatial-relations, and simple manipulation actions by con-
necting multi-sensory inputs in a loosely-supervised set-
ting. Our learning framework consists of connecting words
from sentences to extracted visual clusters from videos. Our
approach outperforms unsupervised semantic tagging tech-
niques and achieves comparable results with supervised sys-
tems that learn from labelled data. The approach could be
used to ground other modalities such as touch as well.

We use the term loosely-supervised to describe the kind of
learning that requires the videos and sentences to be tempo-
rally aligned beforehand, which is typically used for teach-
ing infants about basic concepts such as colours or shapes. A
fully unsupervised system would be able to temporally seg-
ment and align long videos and documents and learn from
them, which remains an ambition for the future.
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