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Abstract A complex system for control of swarms of
micro aerial vehicles (MAV), in literature also called as
unmanned aerial vehicles (UAV) or unmanned aerial systems
(UAS), stabilized via an onboard visual relative localization
is described in this paper. The main purpose of this work is
to verify the possibility of self-stabilization of multi-MAV
groups without an external global positioning system. This
approach enables the deployment of MAV swarms outside
laboratory conditions, and it may be considered an enabling
technique for utilizing fleets of MAVs in real-world scenar-
ios. The proposed visual-based stabilization approach has
been designed for numerous different multi-UAV robotic
applications (leader-follower UAV formation stabilization,
UAVswarmstabilization anddeployment in surveillance sce-
narios, cooperative UAV sensorymeasurement) in this paper.
Deployment of the system in real-world scenarios truthfully
verifies its operational constraints, given by limited onboard
sensing suites and processing capabilities. The performance
of the presented approach (MAV control, motion planning,
MAV stabilization, and trajectory planning) in multi-MAV
applications has been validated by experimental results in
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indoor as well as in challenging outdoor environments (e.g.,
in windy conditions and in a former pit mine).
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1 Introduction

The proposed approach relies strictly on onboard sensors and
aspires to be an enabling technique for using closely cooper-
ating MAV-groups in workspaces that are not equipped with
motion capture systems (e.g. VICON1), which usually pro-
vide very precise and fast global localization of MAVs. With
the proposed method, the utilization of closely cooperating
MAVs is possible without installing any global localization
infrastructure prior to theMAVsdeployment in aGPS-denied
environment. Besides, it enables applicability of multi-MAV
teams in tasks requiring flight operations in close proxim-
ity between neighbors, where precision and reliability of
GPS are not sufficient. The proposed approach is also espe-
cially appealing for missions in which the GPS signal may
be jammed.

The robot localization being restricted to the onboard
sensory system also significantly reduces the amount of com-
munication necessary for the robots’ coordination. In some
applications, the group stabilization and control towards
mission objectives can be achieved without explicit commu-
nication, as shown later in this paper where examples of the
applicability of the system are presented. Disabled commu-
nication is crucial for MAVs operating in workspaces where

1 http://www.vicon.com/.
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radio transmissions are not feasible due to the structure of
the environment or due to safety rules. Besides, current com-
munication technologies do not provide sufficient bandwidth
for large communities of robots operating in relatively small
areas. In the proposed method, robots can share the infor-
mation required for self-stabilization through observation of
states of neighbors, i.e. by the onboard (in our case, visual)
relative localization.

This paper presents a control system designed for multi-
MAV teams, its overall structure, and a description of its
components. An important part of the paper is an overview
of three commonly used planning approaches for multi-
MAV system (formation control, environment monitoring by
swarm control, andMAV-group deployment in a surveillance
scenario), which were designed for using with this system.
In the description of the methods, it is highlighted how to
deal with constraints given by the visual relative localization
and how to integrate them into motion planning in specific
multi-MAV applications. This should provide a guideline
for developing high level planning algorithms in specific
multi-MAV applications, since satisfying constraints of the
onboard relative localization is crucial for achieving reliable
behaviour by the MAV-group. Unlike the external global
positioning system, where the precision and reliability of
the robots’ localization is independent to mutual positions
of MAVs and the shape of the swarm, the operational space
of the onboard relative localization sensors (for the vision
sensor, mainly the range and the view angle of cameras) sig-
nificantly limits the deployment of robots.

We rely on a light-weight embedded vision system using
monocular cameras with a limited view angle. The system
takes advantage of the possibility to equip all team members
with black and white (B/W) patterns, which enables us to
achieve sufficient precision on the order of centimeters if the
actual distance between neighboring vehicles is on the order
ofmeters. The detection of simple patternswith known shape
and size also significantly speeds up the image processing.
The localization system may therefore provide relative posi-
tion measurements up to 60 times per second, and may be
directly employed in the feedback loop for control and sta-
bilization of the MAV-group.

The proposed control scheme integrates information from
an onboard camera module with data from an inertial mea-
surement unit and a commercially available PX4Flow2 smart
sensor employed tomeasure the altitude and velocities of par-
ticularMAVs in the swarm.TheMAV-group is then stabilized
in three levels. The lowest level is the fastest control loop real-
ized by theOEMMikroKopter’s attitude stabilization board.3

Above this loop, we have developed a position stabilization
mechanism that leverages data from the visual relative local-

2 https://pixhawk.org/modules/px4flow.
3 http://www.mikrokopter.de/.

ization unit in the control feedback. On the top of that, we
show three examples of swarmmotion planning. The motion
planning acts as the third control level designed for naviga-
tion of the wholeMAV-group and its stabilization in required
shapes, which may be dynamically changed. The methods
employ a concept of adaptively evolving group behaviors
that are established to decrease the uncertainty of the rela-
tive localization. These approaches are novel in the way how
the constraints of vision based localization are incorporated
into the control scheme. The operational constraints of the
relative localization describe where neighboring particles or
an object of interest equipped with the identification pat-
tern may be detected and localized with a required precision
and reliability. Plans that consider a model of the localization
precision and reliability may decrease the overall uncertainty
and increase the reliability of the complex autonomous sys-
tem, as it was shown in our previous work on this topic (Faigl
et al. 2012). Therefore, the proposed group motion planning
approaches use a model of the localization system arising
from theoretical analyses of the vision system and from an
experimental evaluation of the system performance in real
scenarios.

The paper is organized as follows. The related work and
the contribution of the proposed MAV-group stabilization
systems with respect to the state-of-the-art are presented
in Sect. 2. In Sect. 3, the hardware components of the
localization module and the pattern detector approach are
presented. The control scheme suited for onboard visual rel-
ative localization is proposed in Sect. 4. Section 5 presents
an experimental verification of the system. Section 6 sum-
marizes three examples of high level motion control with
integrated MAVmotion constraints, obstacle avoidance, and
constraints of the relative localization. These approaches and
the performance of the onboard relative localization sys-
tem are verified in real flight conditions. Finally, concluding
remarks are stated in Sect. 7.

2 State-of-the-art

2.1 Swarms of autonomous vehicles

Recent research on multi-MAV systems has focused on
aspects of communication and maintenance of connectivity
within the team members (Teacy et al. 2010; Schmickl and
Crailsheim 2008), modeling of the swarm behavior by pre-
dicting individual behaviors (Winfield et al. 2008; Hamann
and Worn 2008), task allocation and strategies for solving
multiple tasks (Berman et al. 2009; Liu et al. 2007; Fazli
et al. 2013), and control and collision avoidance within the
swarm (Sharma and Ghose 2009; Kumar et al. 2010; Yu and
Beard 2013; Turpin et al. 2012). Topics covered in this paper
are relatedmainly to control and stabilization ofMAV teams.
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In literature, one can find papers describing control method-
ologies for swarms of both autonomous ground vehicles
(Kloetzer and Belta 2007; Cai et al. 2011; Cheah et al. 2009;
Marjovi and Marques 2013) and unmanned aerial vehicles
(Bennet andMcInnes 2009; Barnes et al. 2008; Holland et al.
2005;Doitsidis et al. 2012). Thesemethods are often inspired
by nature (e.g., by flocks of birds Leonard & Fiorelli (2001)
or molecules forming crystals Balch and Hybinette (2000)),
and they try to fulfil various requirements of swarm robot-
ics. Since the proposed approach follows the requirements
of swarms as listed in Trianni (2008): scalability for large
groups, high redundancy and fault tolerance, usability in
tasks unsolvable by a single robot and locally limited sensing
and communication abilities, examples of studies investigat-
ing these domains should also be mentioned. In particular, a
hierarchical framework for planning and control of arbitrar-
ily large swarms is proposed in Kloetzer and Belta (2007).
Considerations influencing the fault tolerance of teams are
discussed in Christensen et al. (2009) and various co-
operation strategies for teams of MAVs solving multi-robot
tasks are published in Buerkle and Leuchter (2009). Finally,
controllers for swarms of robots with limited communication
requirements are described in Cai et al. (2011) and Cheah
et al. (2009), where the necessary conditions for swarm sta-
bility are described using a direct graph topology in Cai et al.
(2011), and aLyapunov-like function is employed for conver-
gence analysis of multi-robot systems in Cheah et al. (2009).

The work in Cheah et al. (2009), which investigates
swarming behaviors of ground robots in a planar environ-
ment, is the most closely related to the research proposed in
this paper. We also aim to develop a system for stabilization
of swarms in a desired shape while maintaining a close dis-
tance among swarm members. Beyond the method designed
inCheah et al. (2009) for ground robots, 3D swarmprinciples
and swarming rules adapted for the requirements of visual
relative localization are established in this paper.

In general, most of the state-of-the-art algorithms men-
tioned above have been verified only via numerical simu-
lations, using ground vehicles, or rarely with MAVs, but
in laboratory conditions (usually with VICON in control
feedback). These approaches therefore often omit realistic
constraints given by the real outdoor deployment of compact
MAV-groups, which is the aim of this paper. The proposed
system goes beyond these works mainly by incorporating
the requirements of relative visual positioning into theMAV-
group motion planning, stabilization, and coordination. This
improvement makes it possible to deploy large multi-MAV
systems flying in compact formations or swarms outside of
laboratories equipped with positioning systems. Besides, the
possibility of direct interactions by perceiving neighboring
robots in the MAV-group brings artificial swarms closer to
the initial ideas and theoretical studies of swarming princi-
ples observed in nature.

2.2 Systems of relative localization of autonomous
robots

Let us now briefly describe the state-of-the-art methods of
geometric pattern detection, since the employed visual rel-
ative localization system based on B/W pattern detection
is instrumental in the presented control approach. A basic
method for geometric pattern detection is the General-
ized Hough Transform (Ballard 1981) used for finding the
parameters of the expected geometrical shapes, which is
unfortunately computationally demanding. The computa-
tional complexity issue is investigated e.g. inCai et al. (2004),
where theRANSACalgorithm is applied, inRad et al. (2003),
which is aimed at tracking objects easily separable from the
background, and in Jia et al. (2011), where themethod is con-
strained to finding ellipses. These methods are sufficiently
fast when using a standard PC, whichmay be placed onboard
more powerful ground robots. However, these methods can-
not be considered real-time for light-weight MAVs equipped
with small embedded processors. One can find algorithms
suited for embedded systemswith real-time performance, but
their limitations restrict their utilization in real-world appli-
cations (e.g. the system in Carreras et al. (2003), which is
based on detecting color segments, and the approach inMas-
selli and Zell (2012), which uses a pattern of four tennis balls,
suffers in varying lighting conditions).

If we omit methods with image processing performed on
an external desktop PC (e.g. GarcaCarrillo et al. (2011); Boš-
nak et al. (2012)), the most relevant approach to our vision
system is proposed inLange et al. (2009). Themethod (Lange
et al. 2009) uses white rings for MAV positioning during
landing, but provides a relative position update at only 0.1Hz.
In addition, a more powerful onboard PC is required for the
real-time control in Lange et al. (2009). The same problem
arises in Yang et al. (2012), where the “H” shape landing
pattern is detected in real-time, but with a powerful onboard
PC. Our solution provides sufficient sensitivity of detection
and precision for the MAV-group stabilization and satisfies
computational requirements of onboard embedded systems
carried by lightweight MAVs.

3 System for relative localization

As mentioned in the introduction, the core technique for
the proposed stabilization, coordination, and navigation of
MAVs is the visual relative localization based on the pattern
detection by onboard cameras. The two main requirements,
fast localization and onboard usability, require low computa-
tional demands for the image processing part. Therefore, we
use an algorithm that allows for rapid detection and local-
ization of simple circular patterns composed of concentric
black and white circles of known diameter. Our algorithm
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Fig. 1 The localization pattern and the operational space of the relative
localization system

(details described in Krajník et al. (2014)) outperforms com-
mon black-and-white pattern detectors in terms of speed by
an order of magnitude while achieving similar precision and
robustness. An example of the localization pattern with a
sketch of the possible operational space of the relative local-
ization module is depicted in Fig. 1.

The detection algorithm searches the image for circular
patterns using a combination of flood-fill techniques, on-
demand thresholding, and on-the-fly statistics calculation.
The statistical information gathered on-the-fly is used to test
whether the continuous areas of pixels are likely to represent
the searched pattern, and quickly reject false candidates. The
main advantage of the method is that it can be initiated from
any position in the image without a performance penalty,
which allows for a simple implementation of pattern track-
ing. In a typical situation, the algorithm processes only the
area that is occupied by the pattern itself, which results in a
significant performance boost.

In the initial phase of the pattern detection, the image is
scanned for a continuous segment of black pixels. Segmen-
tation of the pixels into black and white classes employs
an adaptive thresholding that ensures good performance of
the algorithm under variable light conditions, which is espe-
cially important in real-world outdoor experiments. Once a
continuous segment of black pixels is found by the flood-
fill method, it is tested for minimum size and roundness.
A pattern with outer and inner diameters do, di , bounding
box dimensions bu , bv and area s is considered circular if its
roundnessρout is smaller than a predefined constantρmax , i.e.

ρmax > |ρout | =
∣
∣
∣
∣
∣

π

4s
bubv

d2o − d2i
d2o

− 1

∣
∣
∣
∣
∣
. (1)

If a black region passes the roundness test, the flood-fill
algorithm is initiated from the region’s centroid in order to
search for the inner white segment. Since the inner segments
are circles and not rings, the roundness test for the innerwhite
segments is simpler than (1):

ρmax > |ρin| =
∣
∣
∣
π

4s
bubv − 1

∣
∣
∣ . (2)

Then, the concentricity of segments and the ratio of their
areas are tested. After passing these tests, the positions of the
segments’ pixels ui , vi that were stored during the flood-fill
are used to calculate the ellipse center u, v and covariance
matrix C as follows:

C = 1

s

s−1
∑

i=0

(

uiui uivi
uivi vivi

)

−
(

uu uv

uv vv

)

. (3)

Note that ui , vi are integers, and the computationally most
expensive part of (3) is calculated using integer arithmetic.

Finally, the ellipse semiaxes e0, e1 are obtained from
eigenvalues λ0, λ1 and eigenvectors v0, v1 of the covariance
matrix C as follows:

e0 = 2λ
1
2
0 v0,

e1 = 2λ
1
2
1 v1.

(4)

Knowing the length of the ellipse semiaxes, the final seg-
ment test is performed:

ξ > |πe0e1s − 1| . (5)

The constant ξ represents a tolerance value much lower
than ρmax , because the ellipse dimensions e0, e1 are obtained
from the covariancematrixwith the sub-pixel precision. If the
detected segments satisfy (4), they represent the localization
pattern, and the obtained information is used to calculate the
spatial dimensions of the pattern.

To obtain the relative distance of the pattern, we calculate
the image coordinates of the ellipse (co-)vertices and trans-
form these into canonical camera coordinates. This transfor-
mation takes into account not only the camera length and
optical center, but also its radial distortion. The transformed
vertices are then used to calculate the centre and axes of the
ellipse in the canonical camera form. From the vertices, we
calculate a conic Q such that the ellipse points u′, v′ satisfy
⎛

⎝

u′
v′
1

⎞

⎠

T

Q

⎛

⎝

u′
v′
1

⎞

⎠ = 0. (6)

Then, we calculate the eigenvalues λ0, λ1, λ2 and eigen-
vectors q0, q1, q2 of the conic Q and use them to obtain the
position of the pattern in space by the equations presented
in Yang et al. (2012):

x = do√−λ0λ2

(

q0λ2

√

λ0 − λ1

λ0 − λ2
+ q2λ0

√

λ1 − λ2

λ0 − λ2

)

, (7)

where do is the circular pattern diameter.

123



Auton Robot

Table 1 Performance of the relative localization

Resolution 320 × 240 480 × 360 640 × 480 752 × 480

FPS 60 46 30 27

L
(m)

Le
(cm)

Lδ

(%)
Le
(cm)

Lδ

(%)
Le
(cm)

Lδ

(%)
Le
(cm)

Lδ

(%)

0.5 1.2 0.1 0.9 0.4 3.6 0.6 4.3 1.2

1.0 0.1 0.1 0.3 0.1 1.5 0.3 2.3 0.6

1.5 0.6 0.1 0.9 0.1 0.1 0.1 0.4 0.5

2.0 0.2 0.5 1.0 0.1 1.1 0.1 0.8 0.1

2.5 2.0 0.2 0.0 0.2 0.7 0.2 1.8 0.2

3.0 1.2 0.2 0.7 0.3 0.0 0.2 4.0 0.2

3.2 3.0 0.2 1.8 0.7 3.5 0.2 2.3 0.2

3.5 – – 1.8 0.9 0.8 0.2 2.2 0.2

4.0 – – – – 5.4 0.4 3.3 0.4

4.5 – – – – 2.7 0.3 2.5 0.2

5.0 – – – – 2.4 0.6 3.4 0.6

5.5 – – – – 6.6 0.5 6.5 0.7

3.1 Relative localization system performance

The aim of this section is to show the performance of the
relative localization system and to empirically specify its
operational space. For details and experiments identifying the
sensormodel, see Faigl et al. (2013) andKrajník et al. (2014).
Except the viewing angle, which can be clearly defined for
each optical system (based on the lens), the most important
factors that need to be considered in swarm stabilization and
motion planning are the measurement accuracy and relia-
bility. Both of these depend on the distance of the measured
object, which provides amaximummeasurable distance with
acceptable system properties. Themaximummeasurable dis-
tance is then considered to be the range of the relative visual
localization. This a priori obtained sensormodel is crucial for
the proposed multi-MAVmotion planning and coordination.
The detection reliability was measured with a pattern (with
outer diameter do = 0.18 m) placed on the camera optical
axis at a distance L from the camera and compared with the
ground truth (see Table 1).

Four different resolutions of the Caspa camera (used in
all presented experiments) have been tested. The higher res-
olutions provide significantly better results, but at the cost
of a decreasing measurement rate. The presented frame rates
measured as Frames per Second (FPS) are obtained when
the pattern is tracked (i.e. the blob is continuously detected
without failures).4 If the pattern is not detected on the basis
of its position in the previous image and the whole picture
needs to be processed, the frame rate sinks to 50–60% of

4 For the 320× 240 resolution, the frame rate is limited by the camera,
which can provide images at 60 Hz.

the previous value. However, this lower value is not signifi-
cant for the proposed control approach, since the measured
relative distance is considered in the control loop only if the
pattern is repeatedly detected. In the error and reliability data,
we assume a systematic error proportional to the measured
distance, which may be identified using the real distances
and the Least Square Method (LSM). We present an average
distance corrected by the systematic error (denoted as L̂),
since this value is more relevant for control and stability than
the actual measured values of the distance in swarm applica-
tions. The corrected error in the distance estimate is obtained
as Le = |L − L̂|, where L is the ground truth. The stan-
dard deviation, Lδ , presented as percentage of the measured
distance, describes the repeatability of the measurements.

In addition to the variable resolution of the processed
images, another aspect influencing the performance is the
size of the pattern. As expected, with smaller patterns, the
distance measurement error increases and the maximum
measurable distance significantly decreases. For example,
480 × 360 image resolution allows the maxium measurable
distances Lmax = {3.5, 2.0, 1.5, 1.0, 0.5} m with pattern
diameters d = {18, 9, 8, 7, 5} cm.

In addition to this analysis, we conducted an experiment to
evaluate the performance of the vision-based relative local-
ization and to characterize its operational limits in flight
conditions (see Fig. 2). During the experiment, two MAVs
hovering in approximately static positions aim to localize the
third MAV, which is following a predefined trajectory (see
Fig. 3 for the ground truth positions of all MAVs obtained
using VICON). All vehicles are equipped with cameras and
identification patterns. This measurement was crucial for
experimental evaluation of the limits of the space in which
neighboring MAVs can be relatively localized.

4 MAV model and control system

4.1 MAV model

In the proposed approach, a suitable model of the quadro-
copters is essential for use in simulations of MAVs move-
ment, in motion planning, and in inter-vehicle coordination.
This ensures that the motion constraints are satisfied during
the planning process and that the obtained solution is feasi-
ble for the MAV-group. In this work, we rely on a simplified,
decoupled dynamical model described as follows:

ẍW = U

m

(

sinψ I cosφW − sin θ I sin φW
)

,

ÿW = U

m

(

sin θ I cosφW + sinψ I sin φW
)

,

z̈W = U

m
cos θ I cosψ I − g, (8)
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Fig. 2 Snapshots from
measurements of the operational
space of the visual relative
localization system, which is
important for specifying
constraints for the planning of
swarm movement

Fig. 3 Positions of MAVs captured by VICON during the experiment
from Fig. 2

where φ is the yaw angle, θ is the pitch angle, ψ is the roll
angle, U is collective thrust, m is the mass of the MAV, and
g is the gravitational acceleration. We consider 3 frames of
reference (Fig. 4). The world frame (W ) that is fixed in the
workspace, the body frame (B) that coincides with particular
MAVand the IMUframe (I ) inwhich the roll andpitch angles
are measured.

4.2 Control and stabilization scheme

The complete system used for stabilizing the group members
at desired relative distances (keeping the required shape of
the group) and for motion simulation at the motion planning
level is depicted in Fig. 5. The system consists of a controller
(block C), the stabilization unit (S), and the model from (8).
For deployment of the system, parameters of the linearmodel
are identified usingLeast SquaresMethod from themeasured
flight data.

By

Bx

Bz
ψ

θ

Wx

Wy

Wz

Ix

Iy
Iz

r, φ

Fig. 4 The reference frames used in description of MAV control
scheme.W world frame, B body frame, I IMU frame

C S M

⎛
⎜⎜⎝

ψ
θ
U

φ̇

⎞
⎟⎟⎠

⎛
⎜⎜⎝

xD

yD
zD
φD

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ψD

θD
UD

˙φD

⎞
⎟⎟⎠

⎛
⎝

ẍ
ÿ
z̈

⎞
⎠

⎛
⎝

ẋ
ẏ
ż

⎞
⎠

⎛
⎜⎜⎝

x
y
z
φ

⎞
⎟⎟⎠

θ, ψ
φ̇ẋ, ẏ, ż

x, y, z, φ

Fig. 5 Scheme of the system together with a controller. Position, its
derivatives and φ are meant in the world frame, θ and ψ in the IMU
frame

The flow of data within the proposed swarm stabiliza-
tion system is shown in Fig. 6. The control scheme is suited
for the MikroKopter quadcopter platform used for experi-
mental evaluation of the visual relative localization based
stabilization of the multi-MAV system in Sect. 5. The com-
mercially available MikroKopter set includes a proprietary
attitude stabilization board (Flight-CRTL) using an onboard
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Fig. 6 Scheme of the data flow

Inertial Measurement Unit (IMU) for control feedback. The
vision-based stabilization is built upon this lowest level and
controls the relative positions between neighboring swarm
entities. The solution is based on a custom board with the
ATmega μ-controller, which also serves as a communica-
tion hub between all onboard modules. Data received from
the visual system, together with the output from IMU and
from the PX4Flow smart camera sensor, serve as the con-
trol feedback at this level. The PX4Flow sensor provides
information on the altitude and velocities relative to the sur-
rounding environment. This setup is crucial for suppressing
the motion oscillations within the group that are caused by
the cumulative position error. The IMU provides angles θ I ,
ψ I , PX4Flow provides ẋW , ẏW , and zW , and the camera
module provides relative coordinates to the particular neigh-
bor x In , y

I
n , z

I
n . The position controller computes the desired

control outputs φ I
D , ψ

I
D , and U

I
D .

Three controllers are integrated in block C; the for-
ward and lateral controllers are identical due to the system
decoupling. The following equation denotes the controllers
outputs:

θ I
D = KPex + KD

dex
dt

+ KI

∫ t

0
ex dτ,

ψ I
D = KPey + KD

dey
dt

+ KI

∫ t

0
ey dτ,

UD = LPez + LD
dez
dt

+ L I

∫ t

0
ez dτ, (9)

where KP , KD , KI , KA, LP , LD , and L I denote the con-
troller constants that need to be identified during the system
setup. The control errors, eIx , e

I
y , and e

I
z , define the difference

in the IMU coordinate system between the actual position of
the controlled MAV and the desired position. The desired
position is determined by the relative position to the circu-
lar pattern (resp. patterns) measured by the onboard visual
localization, and by the desired relative position to the pat-
tern (resp. patterns) given by a high-level planning method
(see Sect. 6 for examples of various planning approaches).
The desired position may be dynamic in the sense of mov-
ing localization pattern (resp. patterns), which is placed on

neighboring MAV (resp. MAVs), and/or in the sense of alter-
ing desired relative positions. In experiments with a static
hovering MAV, the desired position is determined relatively
to an initial position by the PX4Flow sensor.

5 Experimental verification of the system with
visual relative localization in control feedback

In the first experiment, which was performed to demonstrate
the performance of the control scheme, a singleMAV is stabi-
lized at a fixed relative distance to a static localization pattern.
In this case, the MAV is also equipped with the localization
pattern for its off-line global localization using an external
fixed camera (see Fig. 7). The data from the external camera
is used for experiment recording and off-line analysis, while
the MAV control relies on onboard sensors only. The results
from this external camera are plotted in Fig. 8. Themean con-
trol deviation from the desired equilibrium was 0.11, 0.12,
and 0.04m with standard deviations 0.14, 0.15, and 0.05m,
measured in the x , y, and z coordinates. The slight motion
oscillations are causedmainly by the noise in the sensor data.
See Fig. 9 for data from the camera module with Gumstix,
optical flow obtained from the PX4Flow sensor, and the out-
puts of the designed controllers. A detailed view of a sample
from Fig. 9 is presented in Fig. 10.

The stabilization of neighboring vehicles with a prede-
fined mutual distance is shown in the outdoor experiment in
a former pit mine (see Fig. 11 for pictures from the exper-
iment). The experiment verifies the ability of the system to
follow a moving “leader” MAV with an attached localiza-
tion pattern. The first MAV (the leader) is controlled along a
pre-planned trajectory based on the visual odometry from a
PX4Flow sensor (the pose estimate is obtained by integrating

Fig. 7 MAV stabilized at a fixed relative distance to the static pattern.
The onboard pattern is used for external localization, which gives the
ground-truth for experiment evaluation
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Fig. 8 Deviation from the desired equilibrium located at 2.5 m from the static circular pattern (experiment in Fig. 7). Data obtained from the record
of the external camera

Fig. 9 Sensor data and controller output during the experiment shown
in Fig. 7. The first picture presents the output (in x , y, and z coordi-
nates) from the onboard relative localization module. The output from

the PX4Flow sensor is shown in the second picture, while the outputs
of the controllers are presented in the third plot

the optical flow from the down-looking camera). The second
MAV follows the first one at a fixed desired spacing based on
feedback from the onboard visual relative localization sys-
tem. The elevation above the slope of the mine is fixed for
both MAVs based on the feedback from the sonar.

The same experimentwas repeated in the presence ofwind
on a flat road. We demonstrated that the system is also able
to stabilize the formation with minimal influence of the wind
on the performance of the system (see Fig. 12 for pictures
taken during the experiment). Videos of these experiments
can be downloaded from Multimedia (2015).

The aim of the experiment presented in Fig. 13 is to
demonstrate flying in strings of the relatively stabilized
MAVs using the proposed system. In the case of stabilization
of large groups ofMAVs, it is difficult to ensure that allMAVs
are stabilized directly to the same MAV (a common leader).
Naturally, more complex networks arise in swarms or for-
mations of MAVs, in which always some robots need to be
stabilized relatively to neighbors that are already stabilized
relatively to another robot, etc.

Data in Table 2 with results of experiments from Fig. 13
show only a slight increase of motion oscillation of an MAV
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Fig. 10 Zoomed view on data from Fig. 9

Fig. 11 Leader-follower
formation flying on a slope
surface

Fig. 12 Leader-follower
formation in windy conditions

following another MAV in a comparison with the situation
where the same MAV is stabilized relatively to a static pat-
tern. The moving pattern introduces additional noise into

the measurement of the relative localization and further-
more slightly decreases performance of the vision system
as described in Faigl et al. (2012). See the second and the
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Fig. 13 Verification of the proposed approach for stabilization of
MAV-groups based on the visual relative localization. Experiments
show (see data in Table 2) that due to the measured relative speed
between the MAVs and surface, which is employed in control feed-
back, position oscillations do not increase with the size of the group
being relatively stabilized a 1-MAV. MAV relatively stabilized to a sta-
tic pattern using the visual relative localization in control feedback b
MAV pair. The MAV on the right (follower 1) is relatively stabilized to
a static pattern. The second MAV (follower 2) is relatively stabilized to
the follower 1 c 3 MAVs in line. The MAV in the most right (leader)
hovers on spot using the PX4Flow sensor. ThemiddleMAV (follower 1)
is relatively stabilized to the leader. The MAV in the most left (follower
2) is relatively stabilized to the follower 1

fourth columns of the table that show flight performance of
theMAVwith id 3 in two different roles: (1) as a leader stabi-
lized relatively to the static pattern, (2) as a follower stabilized
relatively to another leader. Similar comparison can be seen
in the third and the sixth columns for the MAV with id 2.

In addition, the motion oscillations of the MAV with id 3
are comparable in theMAV pair experiment (fourth column

Table 2 Tests of the flight performance ofMAVs in a static platoon-like
formation hovering on a spot

Exp. type 1-MAV MAV pair 3 MAVs in line

MAV id 3 2 3 1 2 3

MAV role L L foll. 1 L foll. 1 foll. 2

Mean error (cm) 13.1 19.6 14.6 14.7 20.0 14.9

Stand. dev. (cm) 6.9 11.2 8.2 7.8 12.5 8.3

Snapshots from the experiments are shown in Fig. 13 and videos are
available at Multimedia (2015). The mean error and standard deviation
are measured from a fixed equilibrium by the external video system
(Krajník et al. 2014). The equilibrium is defined by a fixed relative
position to the onboard pattern in case of followers, by a fixed rela-
tive distance to the static pattern in case of the leader in the 1-MAV
and MAV pair experiments, or the equilibrium is set as a fixed initial
position in case of the leader in the 3 MAVs in line experiment. The
relative distance between neighbouring MAVs and between the MAV
and the static pattern was 2.5 m in all experiments. The statistics were
obtained from approximately 900 samples for each of the experiments.
Approximately 30s long records with the rate 30 frames per seconds
were analysed for each experimental flight

of the table),where theMAVwith id 3 acts as thefirst follower
that is directly stabilized to the leader, and in the 3 MAVs in
line experiment (seventh column), where the MAV with id
3 acts as the second follower that is indirectly stabilized to
the leader; over another follower. Taking into consideration
the data that describes the motion performance of the MAVs
with id 2 and 3, one can see that the difference between these
two robots is more significant than the difference between
motion of MAV 3 in roles of the follower 1 and 2. Even
though allMAVs are controlled by the same systems with the
same parameters and sensors, the small differences during
their manufacturing influence the flight performance. The
independence of the control performance from the number
of robots in the controlled string was observed also in case of
moving relatively stabilized formations (see Figs. 11 and 12),
which is crucial in most of the applications requiring the
group stability. In all experiments in Fig. 13, the relative
distance between neighbouringMAVs and between theMAV
and the static pattern was 2.5 m.

In addition to these outdoor experiments, the vision system
was tested in numerous experiments of various multi-robot
applications with the VICONmotion capture system as a ref-
erence. The precision and reliability of the external motion
capture system is sufficient to consider the obtained data as
the ground truth (Michael et al. 2010). Details on the tested
multirobot scenarios and the obtained results are given in
Sect. 6. In the formation driving experiments (Figs. 16, 17,
18, 19, 20, 21), where the relative distance between quadro-
copters is almost constant, the reliability of the measurement
is approximately 98 %. If we exclude the outliers caused
by identification of a “wrong” MAV, or by occlusions, the
mean error of the relative distance is 1.1 cm (with standard
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deviation 0.9 cm) at a distance of 1.5 m between neighbor-
ing MAVs. The maximum error is always < 4 cm in these
experiments. In the swarm experiments (Figs. 24, 25, 28, 29,
30), the relative distance between quadrocopters differs from
1–2.5 m and the measurement reliability is approximately
95 %. The mean error of the relative distance is 1.3 cm (with
a standard deviation of 1.7 cm). This slightly worse perfor-
mance is caused by a longer relative distance between the
robots and by their relative motion, which may spoil some
pictures captured by the onboard cameras (the camera and the
objects in the images move independently). The frame rate
exceeds 30 frames per second if the images are processed
online and pictures are not stored in the memory of the cam-
eramodule. If unprocessed images need tobe stored for a later
evaluation of the experiment, the rate has to be reduced to
10–15 fps.

6 Multi-robot scenarios demonstrating the
practical usability of the system

The aim of this section is to present examples of practical uti-
lizationof the proposed system.Wehave chosen three general
approaches to MAV deployment that are currently solved in
state-of-the-art literature (leader-follower formation flying,
swarm-inspired stabilization, and multi-MAV surveillance)
to showhow these scenarios can be solved using the proposed
system.Eachof themulti-robot scenarios proposes a different
approach to motion planning and coordination of the MAV-
group. The common challenge lies in the necessity to satisfy
the MAV motion constraints and the constraints imposed by
the relative localization. Therefore, the description of these
methods is focused on integration of the relative localization
constraints into the planning algorithms. In addition, in the
experimental parts of this section, the tests with the VICON
motion capture system in control feedback verify that the
trajectories of the MAVs obtained by the proposed high-
level planning systems are feasible for real MAV-groups.
This means that the obtained trajectories respect the MAV
dynamics, the localization constraints, and the environment
constraints (obstacles and no-fly zones). Besides, the aim
of these experiments is to evaluate the performance of the
camera module and the localization algorithm in multi-MAV
applications. The results of the experiments are compared
with the ground truth and are attached to the description of
each method in the following subsections.

6.1 Scenario 1: leader-follower formation flight

In this scenario, a formation of multiple MAVs reaches a
desired target region in a complex environment with obsta-
cles, while maintaining predefined relative positions. The
desired shape of the formation can be temporarily changed

only if it is enforced by environmental constraints (e.g. in
narrow passages). The proposed formation control mecha-
nism is suited for the real-world deployment of autonomous
robots relying on the onboard visual relative localization,
which brings additional movement constraints to the MAV
team. The method is based on a leader-follower technique,
where the team of robots is stabilized by sharing knowledge
of the leader’s position within the formation (see the original
leader-follower approach (Barfoot and Clark 2004) designed
for a group of ground robots (UGVs) and the extension of
the leader-follower approach for heterogenousMAVs-UGVs
teams in Saska et al. (2014c, d) for details). The method pre-
sented in this section is an extension of our work introduced
in conference paper (Saska et al. 2014b), where only sim-
ulation results were presented and where the requirements
on the onboard relative localization necessary for the HW
experiments, which is the main contribution of this paper,
were not included.

We do not rely on following a given trajectory, as in most
of the state-of-the-art methods (Chao et al. 2012; No et al.
2011; Liu et al. 2011). We propose to integrate the stabiliza-
tion of followers in the desired positions behind the leader
together with the trajectory planning into a desired goal area
with obstacle avoidance ability for the entire formation. The
global trajectory planning is directly integrated into the for-
mation control mechanism, which is important for finding a
feasible solution for the proposed approach using the relative
visual localization of the team members. For stabilization of
the MAV group via the onboard relative localization, it is
crucial that direct visibility between team members is not
interrupted by an obstacle. Thus, in the trajectory planning
process, direct visibility is ensured by penalizing collisions
between obstacles and a 2D convex hull of the positions of
followers, which represents the 3D formation. The 2D con-
vex hull is obtained as a projection of positions of followers
into a plane that is orthogonal to the trajectory of the virtual
leader in its current position (see Fig. 15a). For the obstacle
avoidance function described in Eq. (11), the convex hull is
dilated by a safety radius, which is considered around each
MAV, to keep obstacles at a desired distance from the fol-
lowers. The trajectory planning into the desired goal region
and the immediate control of the formation is then integrated
in a single optimization process with this obstacle avoidance
function. The method can continuously respond to changes
in the vicinity, while keeping the cohesion of the immediate
control inputs with the directions of movement of the MAV
formation in the future.

In the algorithm, followers follow the trajectory of the
leader at distances defined in the p, q, h curvilinear coordi-
nate system, as visualized in Fig. 14. The position of each
follower i is uniquely determined: (1) by states xL(tpi ) in
the traveled distance pi from the actual position of the leader
along its trajectory, (2) by the offset distance qi from the
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Fig. 14 The desired shape of the formation described in curvilinear
coordinates

Fig. 15 An example of the dilated convex hull projected along a tra-
jectory. This trajectory would be infeasible for the formation stabilized
by the presented approach, since an obstacle appears inside the convex
hull a contours of the convex hull projected along the leader’s trajectory.
An obstacle is denoted inside the hull to clarify the meaning of function
dist (XL (·), ol ) b 3D visualization of the convex hull projected along
the leader’s trajectory (the circular obstacle is hidden inside the hull)

leader’s trajectory in the perpendicular direction and, 3) by
the elevation hi above the leader’s trajectory, as follows:

xi (t) = xL(tpi ) + (−qi sin(θL(tpi )), qi cos(θL(tpi )), hi
)T

,

θi (t) = θL(tpi ), (10)

where xL(tpi ) is the position of the leader at the timewhen the
virtual leader was at traveled distance pi behind the current
position and θL is the yaw of the leader at time tpi .

The short-term trajectory planning responding to the local
workspaceof the robots and the long-term trajectory planning

providing a plan to the target location are solved together in
a single optimization step. The leader’s trajectory encoded
into a vector of constant control inputs at time t is used
as the optimization vector XL(t) = [νL ,1, vL ,1, kL ,1, . . .

, νL ,N , vL ,N , kL ,N , νL ,N+1, vL ,N+1, kL ,N+1, δL ,N+1, . . . ,

νL ,N+M , vL ,N+M , kL ,N+M , δL ,N+M ] to include both, the
local and the global trajectory planning. The vector XL(·)
consists of the normal velocity νL(m · s−1), the tangential
velocity vL(m·s−1), the curvature kL ,· [m−1], and the length
of the time interval δL(s). The curvature kL ,· of the trajec-
tory followed by the leader is constant within each control
segment and may vary along the whole trajectory. The time
interval δL , j is constant if j ∈ {1 . . . N } and becomes vari-
able if j ∈ {N + 1 . . . N + M}. The constant time interval is
denoted as�t and is set as δL , j := �t = 0.1s, j ∈ {1 . . . N },
in the experiments. N is the number of transition points in
the short control horizon with the constant �t between the
transition points. M is the number of transition points in the
long planning horizon with variable δL , j between the transi-
tion points. The trajectory is obtained from the optimization
vector by applying the constant control inputs into the model
in Sect. 4.

The leader’s control problem with the obstacle avoidance
ability can then be transformed to minimization of the multi-
objective cost function FL(XL(·)) as follows:

FL(XL(·)) =
no∑

l=1

(

min

{

0,
dist (XL(·), ol)

dist (XL(·), ol) − Rhull

})2

+α

N+M
∑

j=N+1

δL , j . (11)

The first part of the function prevents the formation from
colliding with obstacles. The number of considered obsta-
cles is denoted as no, and ol denotes the l-th obstacle. Its
value is zero if all obstacles are outside the projected convex
hull, which is formed by MAVs following the leader in their
desired positions within the formation. Rhull is the radius
of the convex hull depicted in Fig. 15a. The value goes to
infinity as an obstacle approaches into the center of the hull.
This ensures that direct visibility between the robots will not
be broken by an obstacle located among them. The value
of the second term is based on an estimation of the total
time to reach the desired target region, which must be mini-
mized. The influence of the obstacle avoidance function and
the endeavour of the trajectory planning to reach the target
region in minimum time are weighted by constant α.

To ensure feasibility of the obtained solution, the opti-
mization process is subject to a set of constraints. The first
constraint,which is necessary for a convergence of the forma-
tion driving process into the desired equilibrium (the desired
target region), requires that the final transition point of the
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planning horizon is inside the target region. In addition, con-
trol inputs have to be constrained since the planning approach
for the leader must respect the constraints given by mechani-
cal capabilities of all followers. The admissible control set for
the leader can be determined by applying the leader-follower
approach for i = 1, . . . , nr as kL ,max = min(ki,max/(1 +
qi ki,max )), kL ,min =max(−ki,max/(1−qi ki,max )), vL ,max =
min(vi,max/(1 + qi kL)), vL ,min = max(vi,min(1 + qi kL)),
νL ,max = min(νi,max ), νL ,min = max(νi,min), where ki,max ,
vi,max , vi,min , νi,max and νi,min are limits on the control inputs
of the i-th follower. These restrictions must be applied to
satisfy different values for the curvature and the speed of the
robots in different positions within the formation. For exam-
ple, the robot following the inner track during turning goes
more slowly butwith a bigger curvature than the robot further
from the center of the turning, due to the fact that the follow-
ers turn around the same Instantaneous Center of Curvature
(ICC) and at the same angular speed.

The states specified by the trajectory of the leader of the
formation obtained as a result of the optimization are trans-
formed for the followers using the transformation in Eq. (10).
These desired states are used for the trajectory tracking algo-
rithm with the obstacle avoidance function, which enables
responses to events that occur in the environment behind the
actual position of the leader. The trajectory is encoded into
a vector of constant control inputs and it is used as the opti-
mization vector Xi (·) = [νi,1, vi,1, ki,1, . . . , νi,N , τi,N , ki,N ]
for the i-th follower. For themotion planning of the followers,
only the short-term horizon with a constant sampling time is
employed. The discrete-time trajectory tracking for each fol-
lower is transformed to minimization of the multi-objective
cost function Fi (Xi (·), XL) subject to set of constraints as
follows:

Fi (Xi (·), XL)

=
no∑

l=1

(

min

{

0,
dist (Xi (·), ol) − rs
dist (Xi (·), ol) − ra

})2

+
∑

j∈n̄n

(

min

{

0,
di, j (Xi (·), X j ) − rs
di, j (Xi (·), X j ) − ra

})2

+β

⎛

⎝

N
∑

j=1

∣
∣
∣
d xi, j − x j

∣
∣
∣

2 +
N

∑

j=1

(
dθi, j − θ j

)2

⎞

⎠ . (12)

The first sum penalises solutions with a distance to an
obstacle less than the detection radius rs . The penalty func-
tion goes to infinity as an obstacle approaches a distance
equal to the avoidance radius ra . If the distance between
an obstacle and the trajectory is less than ra , the solution
is considered infeasible (the obstacle proximity constraint
of the optimization is violated). In the second sum of the
cost function, the other members of the team are consid-

ered as dynamic obstacles in case of an unexpected behavior
of defective neighbors deviating from their desired posi-
tions within the formation. Function di, j (Xi (·), X j ) returns
the minimal distance between the planned trajectory of fol-
lower i and the plan of other followers j ∈ n̄n , where
n̄n = {1, . . . , i − 1, i + 1, . . . , nr }.

The last term of the cost function penalizes a growing
Euclidean distance between the desired positions d xi, j , j ∈
{1 . . . N }, obtained from the actual leader’s trajectory XL ,
and the positions of the i-th follower. Also the differences
between the desired yaw angles dφi, j , j ∈ {1 . . . N }, and
the actual yaw of follower i are penalized. The influences of
the obstacle avoidance function and the trajectory following
term are weighted by constant β. Values α = 1 and β = 1
were used in all experiments in this article, but the approach
does not require fine tuning of these parameters and the same
values can be efficiently used in different scenarios.

In addition to the constraint, which is satisfied if the dis-
tance between the trajectory corresponding to the particular
solution of the optimization and all obstacles is greater than
ra , the control inputs are constrained to satisfy the motion
constraints of the employed MAVs (limits on forward and
ascending velocities etc.).

6.1.1 Experimental evaluation of the planning technique in
flight conditions

In this section, the feasibility of results of the formation
planning approach is verified by experiments with multiple
MAVs. Two virtual obstacles, the no-fly zones depicted in
Fig. 18, are considered in the workspace to demonstrate the
obstacle avoidance ability. Three MAVs equipped with the
visual relative localization modules (Faigl et al. 2013) are
stabilized in triangular and line formations. In the triangular
formation (see Figs. 16, 17, 18, 19), an MAV with a cam-
era pointed down is flying above two other MAVs with side
looking cameras. The experiment with the line formation of
three MAVs equipped with cameras oriented to the side (see
Figs. 20, 21) is realized repeatedly to show the robustness
of the method. The formation flies twice to the target region
and back to the initial position. The initial position from the
first flight is considered the centre of the target region for
the return flight, etc. The multi-criteria optimization prob-
lems defined in Eqs. (11) and (12) were solved by sequential
programming method (CFSQP toolbox Version 2.0) in the
experiments. All MAVs are equipped with identification cir-
cle patterns for fast relative localization. The independent
motion capture system (VICON) is used as a ground truth to
evaluate the performance of the visual relative localization
during the formation driving experiments. Complete records
of the experiments are available in Multimedia (2015).

Themain purpose of the experiment was to verify the abil-
ity of the system to relatively localize MAVs in a compact
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Fig. 16 Experiment with a
triangular formation of 3 MAVs

Fig. 17 Examples of pictures
obtained by the onboard
cameras for the relative
localization (exp. in Fig 16)

Fig. 18 Trajectories of MAVs
in the experiment from Fig. 16
recorded by the VICON system.
Positions of the virtual obstacles
are denoted by the circles
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Fig. 19 Relative distances between MAV1-MAV2 and MAV3-MAV1
in the experiment fromFig. 16. The dots correspond to rawdata obtained
from the visual relative localization, and the curves are reference values
provided by the VICON motion capture system

Fig. 20 Experiment with the line formation of 3 MAVs

formation using VICON as a ground truth, and therefore,
the experiment was realized in simple laboratory conditions.
Nevertheless, the trajectory planning and formation stabi-
lization mechanisms may be efficiently employed in more
complex situations as was shown in our previous research
with Unmanned Ground Vehicles (UGVs).

See our results (Saska et al. 2009), where performance of
trajectory planning for UGV formations is shown in a com-
plex office-like environment. In Saska et al. (2013a), complex
maneuvers of the formation controlled by the MPC were
presented. Usage of the MPC-based stabilization and trajec-
tory planning in task of airport snow shoveling by fleets of
autonomous ploughs is presented in Saska et al. (2010) with
stability analyses in Saska et al. (2013b). The work in Saska
et al. (2016) is focused on testing the ability of the approach
to avoid dynamic obstacles by integration of its motion pre-
diction into the MPC trajectory planning.

The approach presented in this paper is an extension of the
methods designed for UGVs taking into account constraints
of the visual relative localization system, which is used for

Fig. 21 Relative distances between MAVs obtained by the onboard
cameras for formation stabilization. VICON data record is plotted as a
reference

stabilization of MAV formations in 3D shapes. Due to the
employed convex hull that represents the entire formation in
the planning process, the trajectory planning ability of the
system is not limited and it achieves a similar performance
as was presented for UGVs. In case of limited computational
power onboard of MAVs, where the complexity of the opti-
mization is increased by the third dimension, the applicability
of the method in real-time could be limited. In this case, the
additional planning horizon needs to be decomposed as was
proposed by the hierarchical approach in Saska et al. (2007)
for UGVs in convex environments.

6.2 Scenario 2: cooperative searching for extremes in a
field of a measured physical value

The second scenario deals with searching for locations in
a 3D environment with an extreme in a field of a measured
physical value. In particular, the investigated scenario ismoti-
vated by searching for locationswith aminimumGSMsignal
in mountain areas, which are hard to reach, but which need to
be sufficiently covered for safety reasons. Another example
can be monitoring the intensity of WiFi signal in industrial
complexes, shopping malls or large office buildings. The sig-
nal coverage and interfaces from multiple transmitters can
hardly be modelled in such complex 3D environments, and
physical measurements are therefore unavoidable. With their
fast deployment and operability,MAVs are especially appeal-
ing to provide the desired data in these large and complex
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Fig. 22 Scheme of the system
for feasible navigation of MAV
swarms stabilized by visual
relative localization based on the
FSS algorithm

areas.Moreover, swarm intelligence can speed up the process
of searching for extremes in the measured intensity and can
enable more autonomy within the system.

In the proposed system, we rely on a Fish Search School
(FSS) technique (Filho and Lima 2009), which allows us to
define the swarm motion based on the actual state of par-
ticular particles. Each particle in the FSS defines its future
movement based only on its current state and the states of
neighbors obtained by onboard systems. This is preferable to
methods such as Particle Swarm Optimization (PSO), where
the new desired positions of MAVs are determined based on
the best achieved position of a particle of the swarm so far (the
global best) and the best achieved positions of each particle
(the personal best). This requires to remember or denote these
locations in the environment. The FSSmethod can be directly
used for control of a swarm of MAVs with the proposed rel-
ative localization considering each MAV as an FSS particle.
In such a tangible FSS, MAVs may use odometry from IMU
for the short term localization in the environment during the
displacement between two consequent positions generated
by the FSS rules. The required information on the position
of neighbors is achieved by visual relative localization. Infor-
mation about the global position ofMAVs in the environment
is not necessary, as the robots are, in a matter of fact, steered
by the distribution of the measured signal intensity.

The FSS control rule is created by three simple operators:

(1) individual movement,
(2) collective-instinctive movement,

(3) collective-volitive movement that depends on a factor
describing the recent success of the swarm.

The success of the swarm is determined by the progress of
the cost function values, which are provided by the sensory
measurement in this application example (see amathematical
expression of these rules in Filho and Lima (2009)). In the
proposed tangible FSS algorithm, the optimization vector
represents the position of one MAV simply as X = [x, y, z],
in contrast to the PSO environment coverage presented in
Sect. 6.3,where the positions of all nr MAVsare encoded into
a unique optimization vector (the PSO particle). The number
of FSS particles is equal to the number of physical robots nr
in the swarm (in the PSO environment coverage algorithm
the number of PSO particles is equal to the number of virtual
MAV swarms).

A scheme of the tangible FSS algorithm is shown in
Fig. 22. The core of the motion planning and group stabi-
lization algorithm is in the Optimization Rules block, where
the FSS control rules are implemented according to Filho
and Lima (2009). The input of this block is an estimate of
the current relative positions of particles within the swarm
and values of the cost function obtained for each MAV. In
each optimization step, desired new positions of all MAVs
are computed using the FSS rules based on this information.
Then, the swarm is controlled into the newpositions using the
position control described in Sect. 4, while the localization
and motion constraints are checked on the basis of the avail-
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Fig. 23 Safety zones around a
quadrocopter

able sensor data (the Motion to the Position with Feasibility
Check blocks).

The most important part of the Sensor Data block for
swarm stabilization and inter-vehicle collision avoidance is
an estimation of relative positions of neighbors provided by
the onboard localization system. Based on this information,
the actual shape of the swarm is considered feasible if none of
the MAVs are within the safety zones of another MAV. This
means that the shape is feasible regarding the inter-vehicle
collisions and the air-flow effect from propellers of neigh-
boring MAVs. Two safety zones are considered (see Fig. 23)
for collision avoidance. Robots can temporarily (condition-
ally) enter the red outer zone, but once they reach the blue
inner zone,which is considered forbidden, they have to return
back to release from both zones before the next FSS iteration.
The concept of two zones prevents the system from oscil-
lations and deadlocks in applications with dense swarms,
where close proximities of MAV pairs and even multiple
MAVs occur frequently.

A similar concept is employed for keeping the robots
within the range of the relative localization. Again, two limits
on the maximal distance between relatively stabilized MAVs
are considered. The weaker restriction can be temporarily
broken. Both limits have to be satisfied before the next FSS
step. This approach decreases the likelihood that the swarm
evolution gets stuck if several MAVs move close to the bor-
ders of their safety zones or close to the limits of their relative
localization. Once all MAVs approach the locations obtained
by theFSS rules or reach the last feasible constellation, sensor
measurements are taken in the new positions of swarm par-
ticles. The measured values act as the cost values of the FSS
optimization. The cost function evaluation is represented by
the cost function block in the figure. The obtained cost func-
tion values and the information on the relative positions of
neighbours are used as input of theOptimization Rules block
in the new FFS iteration.

As a stopping criteria a predefined maximum number of
iterations is used in experiments presented in this article.

According to Filho and Lima (2009), the progress of the
total mass of FSS swarm and rate of the cost function values
changesmay be applied to detect termination of the searching
process or deadlocks, but these studies go beyond the scope
of this paper.

6.2.1 Experimental evaluation of the planning technique in
flight conditions

The experiment in Figs. 24 and 25 demonstrates the use
of the proposed tangible FSS method with onboard relative
localization for searching in a 3D environment. In the exper-
iments, MAVs cooperatively search for locations with the
lowest intensity of a signal transmitted from four transmit-
ters distributed in the environment at different altitudes. The
intensity of the signal is simulated in the experiment based
on known locations and the transmission power of the vir-
tual transmitters. Instead of a real measurement of the signal
strengths, the cost value for the i-th particle is then obtained
as

F(X) =
4

∑

j=1

∣
∣xi − s j

∣
∣−2

, (13)

where s j is the location of the j-th transmitter.
The progress of minimal cost value (13) “measured” by

an MAV of the group in the particular iteration is shown
in Fig. 26. The temporary increase of the cost values at the
beginning of the experiment is caused by the initial stabiliza-
tion of the group into a shape that satisfies the constraints
given by size of the MAVs and their relative localization. For
evaluation of the FSS algorithm with tangible particles (the
real MAVs), results of a simulation with dimensionless par-
ticles are also presented in Fig. 26. The simulation was run
using the same map and initial setup as in the real experi-
ment. In the simulation, the initial stabilization of the group
is not necessary, since the basic FSS method without motion
constraints is used and the cost function values decrease from
the beginning of the searching process.

The results presented in Fig. 25 show that the requirements
on the maximal relative distance between particular pairs
of MAVs (2.5 m) are kept during the experiment, and that
the neighboring MAVs are always in the view angle of the
onboard cameras. The relative distance

∣
∣xi − s j

∣
∣ is obtained

on the basis of data from the VICONmotion capture system.
In real-world deployment, knowledge of the global positions
of MAVs, denoted as xi here, would not be necessary, since
the tangible FSS technique requires only knowledge on the
positions relative to neighbors (and obstacles) and the actual
measured intensity, which can all be obtained by onboard
sensors.
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Fig. 24 Experiment with a
swarm of 3 MAVs controlled by
the feasible FSS rules

6.3 Scenario 3: environment coverage for cooperative
surveillance

The third scenario demonstrates deployment of the proposed
system in the task of cooperative surveillance (presence of
MAVs at locations of interest). This section is a summary
of the approach originally published by our team in the con-
ference paper (Saska et al. 2014a). Here, the description of
the method is put into the context of the presented control
and localization system and it is used as an example of the
system deployment in scenarios, where the trajectories of the
robots have to be purposely computed prior the mission for
their verification by the operator. In the scenario, a set of goals
(areas) is assigned to a limited number of autonomous robots
(MAVs) with the aim to find a static swarm configuration that
can guard the areas. Let us call the set of static positions of
all MAVs in the surveillance areas a swarm distribution, and
let us call the complete task of the motion of MAVs from
the initial depot into the static swarm distribution a swarm
deployment.

Again, the MAV swarm has to respect the motion, local-
ization, and sensing constraints of MAVs. These constraints

have to be applied in the final static swarm distribution and
also during the swarm deployment. In the case that the swarm
is not capable of covering the given set of locations of interest
completely, for example because of an insufficient number of
entities available or constraints on sensing, the coverage by
the team members is maximised in the searching process.
In this manner, we tackle the problem of static coverage
of a set of areas by spreading a swarm of MAVs, while
the swarm constraints are guaranteed for all obtained tra-
jectories between the initial location of the MAVs into the
achieved swarm distribution. So, we are looking for both: (1)
the feasible static shape of the swarm (locations of particular
swarm entities - the swarm distribution) and (2) a feasible
plan of motion from the initial configuration to this target
shape (trajectories for all MAVs—the swarm deployment).
This leads us to a swarm-shape optimization with the need
to keep the history (a feasible MAV movement) of swarm
shape evolution from its initial state. This can be understood
as a novel approach to multi-objective optimization, where
a motion planning technique is integrated directly into the
core of the optimization engine. The 3D pose of all MAVs in
the swarm is then encoded into a unique optimization vector
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Fig. 25 Tangible Fish Search School (FSS) optimization. MAVs
steered by FSS rules towards a location corresponding to a minimum
of a signal transmitted from multiple transmitters. (slower movement
of MAVs) a Comparison of the relative distances between MAVs cap-
tured by the onboard vision system and by data obtained by VICON b
Comparison of the relative distances between MAVs captured by the
onboard vision system and by data obtained by VICON c Comparison
of the relative distances between MAVs captured by the onboard vision
system and by data obtained by VICON d Positions of MAVs captured
by VICON during the experiment e 3D view of the positions of MAVs
captured by VICON during the experiment

as X = [x1, y1, z1, x2, y2, z2, . . . , xnr , ynr , znr ], where nr is
the number of robots in the swarm. The Particle SwarmOpti-
mization (PSO) technique (Kennedy et al. 1995) is employed
as the optimization method in this application.

A simple scheme of the proposed approach is shown
in Fig. 27. In comparison with standard optimization tech-
niques, where in each optimization step the actual solution
(or several solutions) is directly evaluated by a cost function,

Fig. 26 Progress of values of the lowest intensitymeasured by a swarm
member at the particular iteration (the cost function values) in the exper-
iment with real FSS particles and in a simulationwith basic FSSmethod
using dimensionless particles

here, the optimization vector is suited to respect the swarm
constraints before the optimization continues. In each step
of the optimization, the new shape of the swarm encoded
into the optimization vector is used as an input to a motion
planning approach, which generates collision-free trajecto-
ries connecting the desired positions with the actual state for
each single MAV. The given plan is realized in a simulation
using the trajectory tracking mechanism (Lee et al. 2010)
with theMAVmodel introduced in Sect. 4. The simulation is
run until the desired positions are reached or a violation of the
swarm constraints is detected. If a mutual collision between
MAVs is detected, the plan can often be corrected by a proper
permutation of the goals assigned to particular vehicles. This
does not influence the optimization process, since the MAVs
are considered to be identical swarm particles. Any multi-
robot coordination approach may be utilized in this phase
of the planning mechanism if the permutation of goals is
not sufficient. If a violation of the relative localization con-
straints (range, viewing angle, mutual MAV heading, etc.) is
detected, the simulation is reversed into the last state consid-
ered as a feasible swarm distribution, and the optimization
vector is replaced by this result. The achieved optimization
vector is evaluated by the cost function, and the optimization
continues in the next step from this state. An uncertainty in
the optimization (e.g. the randomly weighted vectors addi-
tion in PSO) is crucial to increase the probability that the
optimization will not end up in the same constraints viola-
tion, but it escapes from this potential deadlock.

In the experiments that are presented in this paper, the
areas of interest are polygons and circles. The set of all these
areas is represented by a square grid AoI that covers the
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Fig. 27 Scheme of the
planning system for
environment coverage by MAV
swarms stabilized by visual
relative localization

entire workspace with size of each cell 10 cm (the experi-
mental workspace is shown in Fig. 30f). The cells of AoI
that represent the areas of interest are initialized with the
value 1, while the zero cells represent regions not assigned
as areas of interest. The no-fly zones and the borders of the
operational area are denoted by the mission operator as a set
of convex polygons. These polygons are dilated and repre-
sented by the Environment Map of the same size (n,m) as
the size of the AoI matrix.

The cost function that evaluates particular solutions of
the swarm spreading problem (position of all MAVs of the
swarm) can be then expressed as

f (X) =
m,n
∑

x=1,y=1

max

(

0, AoIx,y −
nr∑

i=1

Rx,y,i
h2opt
h2i

)

, (14)

where hi is the height of the i-th MAV above the ground (the
altitude) and hopt is the altitude determined as the “optimal”
for the particular surveillance application. An MAV at lower
altitude than hopt does not gain more information per square
unit. The value of the variable Rx,y,i is 1 if the cell of the
workspace represented by the element AoIx,y is completely
observed by the surveillance sensor of the i-th MAV in its
position in the swarm and 0 in the opposite case.

Finally, we should emphasize that the proposed method
does not guarantee to find the optimal distribution of the
swarm and the optimal trajectories from the initial positions
into the found locations. What is guaranteed is the feasibility
of the solution with respect to the motion and localization
constraints. Regarding the presented relative visual localiza-
tion, it is important that the plan of the swarm distribution
in the environment satisfies constraints given by the range of
the relative localization and viewing angle of the on-board
cameras, and that it respects themutual heading of theMAVs.

6.3.1 Experimental evaluation of the planning technique in
flight conditions

The aim of the experiment in Figs. 28, 29, 30 is to demon-
strate deployment of the proposed system in a surveillance
task, where locations of interest with different priorities are
covered by a self-stabilized swarm of MAVs. The feasibility
of the plan for swarm distribution in the environment with
known sets of areas of interest, no-fly zones and initial posi-
tions of the MAVs is verified in the experiment. The plan has
to satisfy the constraints given by the range of the relative
localization, the viewing angle of the on-board cameras, the
mutual heading of the MAVs, and the movement constraints
during deployment of the system. Fig. 30 shows that a guess
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Fig. 28 Experiment with
swarm of 3 MAVs following
trajectories obtained off-line by
the proposed planning
algorithm. MAVs are denoted by
circles of different colours
(Color figure online)

Fig. 29 Pictures taken by the
onboard localization systems of
all MAVs in the same moment
(experiment in Fig. 28)
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Fig. 30 Swarm deployment in the environment to cover selected areas
of interest. (experiment in Fig. 28) a Comparison of relative distances
betweenMAVs captured by the onboard vision system and by the exter-
nal motion capture system (VICON). b Comparison of the relative
distances between MAVs captured by the onboard vision system and
by VICON. c Comparison of the relative distances betweenMAVs cap-
tured by the onboard vision system and by VICON. d Progress of the
cost function values of the best PSO particle during off-line optimiza-
tion of the swarm deployment found for the experiment in Fig. 28. e
3D view of positions of MAVs captured by VICON during the experi-
ment. f Positions of MAVs captured by VICON during the experiment,
with denoted areas of interest (blue regions) and the no-fly zone (green
rectangle extended with a safety zone due to localization and control
uncertainty) (Color figure online)

of the relative position of neighboring vehicles is continu-
ously provided during the flight, and that the limit on the
relative distances within the swarm entities (2.5 m) is kept.

Finally, we should mention that a global localization
system (such as GPS) is necessary to reach the surveil-
lance locations of the group in applications of the approach
designed for swarm deployment. In most of the scenarios
with compact MAV swarms, such positioning system has
lower precision in comparison with the relative distances
between MAVs. Therefore, the more precise onboard rela-
tive localization needs to be employed to protect the swarm
members from mutual collisions. Moreover in our approach,
such a global localization technique may be used to localize
only few robots of the group. In the experiment presented in
this section, the global position is estimated from the visual
odometry of one of the MAVs using the PX4Flow sensor,
while the entire group is stabilized using the onboard rela-
tive localization system.

6.4 Comparison of performance of the system in
scenarios 1–3

The purpose of this section was to demonstrate possibility of
deployment of multi-MAV teams in different robotic scenar-
ios and to show advantages and disadvantages of the onboard
relative localization system in different techniques of control
of MAV-groups.

In the scenario 2, outputs of the visual relative localization
system may be used directly in the FSS rules, and there-
fore, the performance of the system directly influences the
planning process. The advantage of this approach is that it
is very robust to inaccuracy of measurement of the relative
distances, but the FSS method is sensitive to drop out of the
system. Longermalfunctions of the onboard localization sys-
tem cause interruption of the searching process andmay even
lead to inter-vehicle collisions.

On the contrary, the control system is robust to a drop
out of the localization method and sensitive to inaccuracy
in measurements of the relative positions in scenarios 1 and
3. In these scenarios, the onboard visual relative localization
approach is used to unify local reference frames of theMAVs.
In case of a temporary drop out of the relative localization, the
MAVscan safely continue in theirmission based on the visual
odometry. The allowed duration of the drop out depends on
the cumulative error of the odometry, the current distance
between MAVs, the safety distance between MAVs, and the
range of the onboard localization system. If the precision of
the relative localization is low, the performance of formation
flying and swarm deployment may be even worse than if the
system relies only on the odometry of particular MAVs.

Finally, let us describe computational complexity and
communication load required by these approaches.
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The most computationally demanding is the scenario 1,
where the initial plan for the leader and also the control inputs
for the followers need to be computed with sufficiently pow-
erful PC to be able to get result between two planning steps.
In the presented experiments, the initial plan was obtained in
approximately 900ms and eachMPC step required 20-40ms.
The plan was computed on an external PC (Intel Core i7,
8GB RAM) and then wirelessly sent into MAVs. This setup
was sufficient for testing of the relative localization system,
butMAVs already may be equipped by sufficiently small and
powerful HW solutions to enable onboard computing. The
data flow is low in this application, since only few control
commands need to be sent into the MAVs in each control
step. In case of onboard computing, which is expected in
real applications, only the plan of the leader needs to be dis-
tributed within the team.

In the second scenario, the swarming algorithm is not
computationally intensive and can be run onboard on the
μ-controller. Also the data flow is very low. Only the cost
function value needs to be distributed within the team after
each measurement, which is done with low update rate.

In the third scenario, the plan is purposely computed prior
the mission to enable its verification by a human opera-
tor of the surveillance mission. Therefore, this plan may be
obtained using standard PC and then sent intoMAVs. The tra-
jectory following process is run using the onboard ATmega
μ-controller as described in Sect. 4. During the flight, no
communication is required except the initial synchronization
command.

7 Conclusion

A complex system for stabilization and control of MAV-
groups based on onboard visual relative localization has
been presented in this paper. The aim of the system is
to provide a tool for autonomous deployment of teams of
unmanned quadrocopters in real world scenarios without the
need for external localization. An onboard camera module
with a fast image processing algorithm suited for the require-
ments of the group stabilization was described together with
a simple controller using this module in the control feed-
back. As the core of the presented system, three various
planning approaches have been proposed to solve specific
multi-MAV scenarios. The common factor of these methods
is the endeavour to solve the group stabilization,motion plan-
ning and coordination tasks with the specific requirements
given by the employed vision-based relative localization. The
performance and feasibility of the motion planning meth-
ods presented here have been verified and evaluated by
experiments with a fleet of MAVs. In the experiments, the
performance of the onboard relative localization system in
particular applications has been numerically evaluated with

respect to an externalmotion capture system used as a ground
truth.

In all motion planning approaches presented in this paper,
the constraints on relative positions of theMAVs in the group
are considered to satisfy the direct visibility among them and
therefore to continuously keep the relative localization link-
ages during their motion. Nevertheless, various experiments
of the system have shown that the relative localization of
neighboring vehicles can be temporarily interrupted with-
out any negative influence on the overall system stability. In
our future work, we will integrate the possibility of temporal
disconnection of the localization linkages, due to obstacles
appearing in between ofMAVsor due to a temporary enlarge-
ment of the group size, into themotion planningmethod. This
significantly increases applicability of the system in GPS-
denied environment, where the GPS signal is blocked by
obstacles that may be present in such a high density that it
is impossible to avoid them by the entire group, and where
the temporary occurrence of the obstacles in between of the
MAVs has to be allowed.
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