
OAGM Workshop 2015 (arXiv:1505.01065) 1

Object Modelling with a Handheld
RGB-D Camera

Aitor Aldoma, Johann Prankl, Alexander Svejda and Markus Vincze
Automation and Control Institute, Vienna University of Technology, Austria

{prankl, aldoma, vincze}@acin.tuwien.ac.at

Abstract. This work presents a flexible system to reconstruct 3D
models of objects captured with an RGB-D sensor. A major advantage of
the method is that our reconstruction pipeline allows the user to acquire a
full 3D model of the object. This is achieved by acquiring several partial
3D models in different sessions that are automatically merged together
to reconstruct a full model. In addition, the 3D models acquired by our
system can be directly used by state-of-the-art object instance recognition
and object tracking modules, providing object-perception capabilities for
different applications, such as human-object interaction analysis or robot
grasping. The system does not impose constraints in the appearance of
objects (textured, untextured) nor in the modelling setup (moving camera
with static object or a turn-table setup). The proposed reconstruction
system has been used to model a large number of objects resulting in
metrically accurate and visually appealing 3D models.

1 Introduction

The availability of commodity RGB-D sensors, combined with several advances
in 3D printing technology, has sparked a renewed interest in software tools that
enable users to digitize objects easily and most importantly, at low economical
costs. However, being able to accurately reconstruct 3D object models has not
only applications among modelling or 3D printing aficionados, but also in the
field of robotics. For instance, the knowledge in form of 3D models can be
used for object instance recognition, enabling applications such as autonomous
grasping or object search under clutter and occlusions.

While numerous reconstruction tools exist to capture 3D models of environ-
ments, only a few of them focus on the reconstruction of individual objects.
This can be partially ascribed to the difference in scale between objects (e.g.
household objects) and larger environments (e.g. rooms or buildings, usually
the focus of SLAM systems), the need to subtract the object of interest from the
rest of the environment as well as other nuisances that make object reconstruc-
tion a challenging problem. For example, the requirement of full 3D models is
ignored by most reconstruction systems.

Aiming at addressing the aforementioned challenges into an integrated sys-
tem as well as at enabling recognition and tracking, we propose in this work an
integrated object reconstruction pipeline that (i) is easy to use, (ii) results in
metrically accurate and visually appealing models, (iii) does not make assump-
tions of the kind of objects being modelled1 (iv) reconstructs full 3D models by
merging partial models acquired in different sessions and (v) is able to export
object models that can be seamlessly integrated into object recognition and

1As long as they can be sensed by RGB-D sensors
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2 Object Modelling with a Handheld RGB-D Camera

Figure 1: Virtual scene recreated with some of the 3D models reconstructed by
the proposed modelling tool.

tracking modules without any additional hassle. We will release our modelling
and object perception systems to enable this.

In the remainder of this paper, we present the different modules of the sys-
tem, focusing on those with novel characteristics or that are crucial to the
robustness of the overall system. Because the evaluation of complex pipelines
like the one proposed in this paper is always a major challenge, we compare
the fidelity of the end result (i.e. 3D models) obtained with our system with
their counterparts reconstructed using a precise laser scanner. This quantitative
comparison shows that the reconstructed models are metrically accurate: the
average error ranging between one and two millimetres.

2 Related work
The proposed framework covers a broad variety of methods including regis-
tration, object segmentation, surface reconstruction, texturing and supported
applications such as object tracking and object recognition. In this section we
focus on related work of the core methods necessary for object modelling: cam-
era tracking, point cloud registration and surface modelling.

Using interest points is one of the most popular ways of finding correspon-
dences in image pairs enabling the registration of RGB-D frames. For example
Endres et al. [4] developed a Visual SLAM approach which is able to track the
camera pose and register point clouds in large environments. Loop closing and a
graph based optimization method are used to compensate the error accumulated
during camera tracking. Especially for re-localization we also rely on interest
points. In contrast to Endres et al. [4] we develop a LK-style tracking approach
which is able to minimize the drift, enabling to create models for tracking and
recognition without the necessity of an explicit loop closing.

Another type of methods is based on the well established Iterative Closest
Point (ICP) algorithm [6, 5, 11]. Huber et al. [6] as well as Fantoni et al. [5]
focus on the registration of unordered sets of range images. In [11] the authors
propose a robotic in-hand object modelling approach where the object and the
robotic manipulator are tracked with an articulated ICP variant.

While the above systems generate sparse representations, namely point clouds,
the celebrated approach of Izadi et al. [8] uses a truly dense representation based
on signed distance functions. Since then, several extensions have appeared.
While the original Kinect Fusion [8] relies on depth data Kehl et al. [10] intro-
duce a colour term and is like our proposal able to register multiple modelling
sessions. However, [10] relies on sampling the rotational part of the pose space
in order to provide initial approximations to their registration method. Instead,
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Figure 2: Pictorial overview of the proposed object modelling pipeline.

we use features and stable planes to attain initial alignments effectively reduc-
ing computational complexity. A direct approach for registration is proposed in
Bylow et al. [3]. They omit ICP and directly optimize the camera poses using
the SDF-volume. Furthermore, the first commercial scanning solutions such as
ReconstructMe, itSeez3D and CopyMe3D became available.

In summary, we propose a robust and user-friendly approach which is flexible
enough to adapt to different user requirements and is able to generate object
models for tracking and recognition.

3 System overview
Approaches for object modelling typically involve accurate camera tracking, ob-
ject segmentation and, depending on the application, a post-processing step
which includes pose refinement and eventually surface reconstructing and tex-
turing. Concerning camera tracking, we use a visual odometry based on tracked
interest points. If the object itself is texture-less, we rely on background tex-
ture (e.g. by adding a textured sheet of paper on the supporting surface) in
order to successfully model these kind of objects. The camera positions are
refined by means of bundle adjustment as well as an accurate multi-view ICP
approach. Segmentation of the object of interest from the background is at-
tained by a multi-plane detection and a smooth clustering approach offering
object hypotheses to be selected by the user. Alternatively, a simple bounding
box around the object can be used to define a region of interest from which the
object is easily singled out from the background. If a complete model (i.e. in-
cluding the bottom and self-occluded parts) is desired, a registration approach is
proposed to automatically align multiple sequences. Finally, our system includes
a post-processing stage to reduce artefacts coming from noisy observations as
well as a surface reconstruction and texturing module to generate dense and
textured meshes. A schematic representation of the modelling pipeline is de-
picted in Figure 2. The individual steps including novel aspects of the system
are explained in more detail in the following sections.

3.1 Registration and segmentation

A key component for the reconstruction of 3D models is the ability to accurately
track the camera pose with respect to the object of interest.

The proposed approach combines frame by frame tracking based on a KLT-
tracker [13] and a keyframe based refinement step. Once a keyframe is created,
normals are estimated and in combination with the pose hypothesis a locally
correct patch warping (homography) from the keyframe to the current frame
is performed. The patch location is then refined in an additional KLT-style
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Figure 3: Camera tracking including a frame by frame visual odometry and a
projective patch refinement from keyframe to frame.

refinement step. Keyframes are stored in case the camera motion is lager than
a threshold. Finally, the camera pose is estimated using the depth information
from the organized RGB-D frames. Fig. 3 depicts the tracking approach, where
T indicates the pose transformation computed from tracked points.

This camera tracking framework is already capable of modelling complete
scenes in real-time. If one wants to reconstruct individual objects an additional
manual interaction is necessary. As already mentioned, we provide two options
to segment objects, namely an interactive segmentation approach which relies
on multi-plane detection and smooth object segmentation, and segmentation
based on a tracked region of interest (ROI).

The result of this stage is a set of indices I = {I1, ..., Ini}, Ik indicating
the pixels of Kk containing the object of interest. An initial point cloud of the
object can be reconstructed as P =

⋃
k=1:n T

k
(
Kk[Ik]

)
where K[·] indicates

the extraction of a set of indices from a keyframe.

3.2 Multi-view refinement

While the visual odometry presented in Section 3.1 has proven to be sufficiently
accurate for the envisioned scenario, the concatenation of several transforma-
tions inevitably results in a certain drift in the overall registration. Aiming
at mitigating this undesirable effect we provide two alternative mechanisms to
reduce the global registration error. On one hand, the framework allows to
perform bundle-adjustment in order to reduce the re-projection error of cor-
respondences used during camera tracking. On the other hand, the system
is equipped with the multi-view Iterative Closest Point introduced in [5] that
globally reduces the registration error between overlapping views by iteratively
adapting the transformation between camera poses. While multi-view ICP is
considerable slower than bundle-adjustment, its application is not constrained
to objects with visual features and due to its dense nature, results in more
accurate registrations.

4 Post-processing

The methods presented so far have been designed to be robust to noise and
sensor nuisances. However, such artefacts are present in the data and a post-
processing stage is required to remove them in order to obtain a visually appeal-
ing and accurate model. The techniques within this section provide a pleasant
reconstruction by removing these artefacts from the underlying data. Figure 4
visualizes the improvement on the final reconstruction after the post-processing
stage. Please note, that the methods herein, do not change the alignment results
obtained during the registration process.
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Figure 4: Effects of the post-processing stage on the reconstruction results.

4.1 Noise model
In [12], the authors study the effect of surface-sensor distance and angle on the
data. They obtain axial and lateral noise distributions by varying the afore-
mentioned two variables and show how to include the derived noise model into
Kinect Fusion [8] to better accommodate noisy observations in order to recon-
struct thin and challenging areas.

In particular, for object modelling, surface-sensor angle is more important
than distance, since the later can be controlled and kept at an optimal range
(i.e., one meter or closer). Following [12], we observe that:
• Data quickly deteriorates when the angle between the sensor and the sur-
face gets above 60 degrees.

• Lateral noise increases linearly with distance to the sensor. It results in
jagged edges close to depth discontinuities causing the measured point to
jump between foreground and background. Observe the white points on
the left instances of reconstructed models in Figure 4 coming from the
plane on the background where the objects are standing.

From these two observations, we propose a simple noise model suited for
object modelling that results in a significant improvement on the visual quality
of the reconstruction. Let C = {pi} represent a point cloud in the sensor refer-
ence frame, N = {ni} the associated normal information and E = {ei}, ei being
a boolean variable indicating whether pi is located at a depth discontinuity or
not. wi is readily computed as follows:

wi =
(

1− θ − θmax
90− θmax

)
·

(
1− 1

2exp
d2
i
σ2
L

)
(1)

where θ represents the angle between ni and the sensor, θmax = 60◦, di =
||pi−pj ||2 (pj being the closest point with ej = true) and σL = 0.002 represents
the lateral noise sigma. Lateral noise is almost constant up to a certain angle,
θ−θmax

90−θmax = 0 if θ < θmax. Because the selected keyframes present a certain
overlap, we improve the final point cloud by averaging good (based on the noise
model weights) observations that lie on the same actual surface as well as by
removing inconsistent observations.

5 Multi-session alignment
In this section, we discuss the proposed techniques to automatically align multi-
ple sessions into a consistent 3D model. Please note that since the configuration
of the object has been changed with respect to its surroundings (e.g. support-
ing plane), this process needs to rely solely on the information provided by the
object.

Let P1:t be a set of t partial 3D models obtained by reconstructing the same
object in different configurations. The goal now is to find a set of transformations
that align the different scans, P1:k, into the coordinate system of (without loss
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Figure 5: Examples of successful alignments between sessions by means of stable
planes. The objects do not present enough unique features matchable across
sessions to enable registration using features.

of generality) P1. For simplicity, let us discuss first the case where t = 2. In this
case, we seek a single transformation aligning P2 to P1. To obtain it, we make
use of the initial alignments, either provided by a feature based registration [1] or
by exploiting stable planes of objects in combination with ICP [2]. Each initial
alignment is then refined by means of ICP. Because several initial alignments can
be provided, we need to define a metric to evaluate the registration quality. The
transformation associated with the best registration according to this criteria,
will be then the sought transformation. This quality criteria is based on two
aspects: (i) amount of points causing free space violation (FSV) and (ii) amount
of overlap. Recall from [7] that the FSV ratio between two point clouds is
efficiently computed as the ratio of the number of points of the first cloud in
front of the surface of the second cloud over the number of points in the same
surface. Intuitively, we would like on one hand to favour transformations causing
a small amount of free space violations (indicating consistent alignments) and
on the other hand, to favour alignments that present enough overlap to compute
an accurate transformation.

If t ≥ 3, we repeat the process above for all pairs (Pi,Pj)i>j . Then, we create
a weighted graph with k vertices and edges between vertices including the best
transformation aligning (Pi,Pj) together with the computed quality measure.
Then, a unique registration of all partial models is obtained by computing the
MST of the graph and appropriately concatenating the transformations found
at the edges of the tree when traversing from Pi to P1. After all partial models
have been brought into alignment, the multi-view refinement process as well
as the post-processing stage previously described may be executed for further
accuracy. Figure 5 shows two examples where the objects do not have enough
features to be matched across sessions (due to its repetitive structure) that are
however correctly aligned using stable planes and ICP.

6 Experimental results

In addition to the qualitative results shown throughout this work, this section
evaluates the accuracy of the reconstructed models with respect to models of the
same objects acquired with a precise Laser Scanner [9]. We assess the quality
of our reconstructions by comparing the reconstructed 3D models with their
counterparts from the KIT Object Models Web Database [9]. To do so, we use
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Figure 6: Distance from reconstructed point clouds against laser scanner model.
Distance (µ± σ): 2.16 ± 1.53mm

the CloudCompare software2 in order to interactively register both instances of
the objects and to compute quality metrics. In particular, the error is assessed
by computing statistics regarding the closest distance from the reconstructed
point cloud to the mesh provided by [9]. Figure 6 shows the accuracy statistics
of a reconstructed object. The average error as well as the standard deviation
indicate that the quality of the models lies within the noise range of the sensor
at the modelling distance. Moreover, the error distributions are comparable
to those reported by [10] that uses a similar evaluation metric. Table 1 shows
further accuracy statistics.

mean distance [mm] σ [mm]
spray can 2.16 1.53
box 1.82 1.44
toy car 1.71 1.96

Table 1: Comparison with laser scanner models.

7 Conclusion

In this paper we have presented a flexible object reconstruction pipeline. Unlike
most of the reconstruction and modelling tools out there, our proposal is able to
reconstruct full 3D models of objects by changing the object configuration across
different sessions. We have shown how the registration of different sessions can
be carried out on featureless objects by exploiting the modelling setup where
objects lie on a stable surface. Another key functionality of our proposal is the
ability to export object models in such a way that they can directly be used
for object recognition and tracking. We believe that these tools will facilitate
research in areas requiring object perception (e.g. human-object or robot-object
interaction, grasping, object search as well as planning systems).
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