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• The Asymmetric Distance removes outliers inside the curve and finds the concave hull.
• Estimates the unknown required degrees of freedom by Error-Adaptive Knot Insertion.
• Handle deep and narrow concavities by Concavity Filling.
• High robustness, and compression rates up to a factor of 300 are reported.
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a b s t r a c t

This paper presents an algorithm for robustly approximating the boundary of a domain, latent in a planar
set of scattered points, by a B-spline curve. The algorithm is characterized by three key features: First,
we propose a distance measure, called the Asymmetric Distance (AD), which allows for handling outliers
inside the curve and finding the outer boundary or concave hull by specifying very natural parameters like
smoothness and accuracy. Second, we provide a solution to the problem of unknown required degrees of
freedom by Error-Adaptive Knot Insertion (EAKI). During the iterations of our re-weighted least-squares
formulation, we check for regions of high error on the curve and locally increase the degrees of freedom if
necessary. Third,we present amethod to handle deep and narrow concavities, called Concavity Filling (CF).
The curve is examined for areas of large distances to the closest data points. In these regions, we explicitly
strap the curve to internal points to force it to bend inwards and fill the concavity. Compared with the
state of the art, our method shows fundamental improvement in terms of robustness and applicability to
real-world data. For 3D reconstruction of organized and unorganized point clouds, prevalent in robotic
RGBD perception, we achieve higher robustness compared to state-of-the-art methods and compression
rates up to a factor of 300. We have integrated our code into the Point Cloud Library (PCL) and created a
tutorial that guides through the steps of the algorithm (see footnote 1).

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Motivation

While B-spline curves have been acknowledged as a multi-
purpose tool in computer graphics and geometric modeling for
decades, their potential seems to remain partially unexplored in
computer vision and robotics perception. One of their earliest
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accounts in this realm is given in the seminal work by Kass et al.
on Active Contours [1]. ‘‘Continuous’’ representations are critical
to the active contour model as they endow a disconnected set of
points with a topology. From the topology emerges a meaningful
notion of distance between points, enabling the definition of
differential operators. Indeed, an important ingredient in any
numerical active contour scheme – be it for segmentation, tracking
and reconstruction or similar purposes – is stable estimation of
inner-geometric properties of the evolving curve, such as tangent
field and curvature. Roughly two decades later, with the advent
of RGBD sensors, such as Microsoft’s Kinect, a surge of interest
in geometric vision has opened new opportunities: RGBD sensors
are capable of producing dense depth maps at a rate of 30 frames
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Fig. 1. Reconstruction of an organized segmented [3] point cloud with B-spline curves and surfaces (OSD dataset [4]). The parametric domain of the surface and the curve
is a sub-set of the image space. As a consequence, direct evaluation of the physical coordinates, and thus texture mapping becomes a trivial assignment operation. The
wire-frame meshes show the B-spline surfaces trimmed by the B-spline curves evaluated using our approach. (From left to right: point cloud, textured meshes, meshed and
trimmed B-spline surfaces. Top: full view. Bottom: close-up view.)
Fig. 2. Reconstruction of an unorganized segmented point cloudwith B-spline curves and surfaces (Office 1 in Table 1). The parametric domains of the curves and surfaces lie
in the respective eigenspaces of the point cloud segments. From left to right: point cloud, textured meshes, meshed and trimmed B-spline surfaces. Top: full view. Bottom:
close-up view.
per second. While this redundancy is desirable to some extent, it
also poses challenges in terms of memory consumption. Thanks to
their unmatched approximation power, spline surfaces have the
ability to compress point-based models by orders of magnitudes
without compromising accuracy and additionally provide visually
appealing representations, cf. Figs. 1–3. In this examples, curves
are needed to trim excess material along occlusion boundaries. As
recently argued in [2], parametric models hold great promise in
solving visual inference problems by isogeometric finite-elements
analysis, where a common spline basis is used for geometric
modeling and the analysis of partial differential equations (PDEs).
B-spline curves in particular may prove useful for application
in boundary-elements analysis, which converts certain types of
PDEs on planar domains to integral equations on the respective
boundary and thus offers significant reduction of computational
complexity.

Despite their relevance, spline curves remain rather exotic
entities within the field of computer vision and point cloud
processing. This can largely be attributed to the difficulties of their
construction frompoint sets,whichnaturally arise from the regular
lattice of digital images. Data is often incomplete or suffers from
heavy noise and clutter. In low-level vision and image processing,
the points typically coincide with the regular image lattice, whose
natural topology they inherit as in Fig. 1. This is no longer the case
in applications such as the one shown in Figs. 2 and 3 where – as a
consequence of projection – data is scattered to subpixel locations
and the neighborhood relations are not easily accessible anymore.
Meanwhile, it seems there is still no generic approach that can
deal with all of the aforementioned problems without resorting to
substantial manual user input or non-generic preprocessing.

Our goal is to infer the geometry of some simply connected
domain, whose boundary interpolates most of a given point cloud,
exhibiting most or all of the properties discussed above. The
outcome shall have the form of a parametric B-spline curve.
Owing to the non-linearity of the problem at hand, curve-fitting
methods are usually iterative in nature. While this does require
an initial guess, our method is largely independent from it. The
only assumption we make is that the domain enclosed by the



T. Mörwald et al. / Robotics and Autonomous Systems 76 (2016) 141–151 143
Fig. 3. Stanford bunny: Reconstruction of a single view from the range sensor, by fitting a B-spline surface to an unorganized point cloud (left) and a B-spline curve on
the parametric domain of the surface using our approach (mid-left), which is used for trimming the surface (mid-right). The method of [5] is not designed to correctly
approximate the contour (right). The data was taken from the Stanford 3D Scanning Repository.
initial curve contains the vast majority2 of the unknown domain
as a subset. Other authors have described a series of complications
while evolving the starting curve towards the best approximation:

• Overshooting: The evolving curve is attracted by spurious data
in the interior of the true solution. As a remedy, we suggest a
change in the instantaneous3 Riemannian metric of the plane.
Our metric distinguishes itself from those described in [6,5,7],
because it exhibits asymmetry w.r.t. the trace of the curve. Our
Asymmetric Distance (AD) is formally introduced in Section 2.1.

• Concavities: While dealing with the overshooting problem,
care has to be taken not to confuse clutter in the interior
with deep and narrow concavities, which are actually part
of the true shape. To our best knowledge, no curve fitting
method exists which can recover complex shapes and deep
and narrow concavities without manual initialization or an
additional initialization algorithm like quad-tree cell partition
in [5] or the chord-length parametrization method [8,9]. We
address the issue in Section 2.3 by a generic technique which
we dub Concavity Filling (CF).

• Undersampling: Only in the presence of the true solution,
correspondence between points on the solution curve and the
data points becomes apparent. This correspondence, however,
is critical to choosing a resolution of the approximant, which
is appropriate for the given data. As shown in Section 2.2,
our Error-Adaptive Knot Insertion (EAKI) approach automatically
adjusts the number of degrees of freedoms (NDOF) of the B-
spline curve to facilitate the spectral properties of themeasured
point cloud. This leads to a locally optimal resolution and allows
for a trivial initialization.

The remainder of this paper is organized as follows. A discussion
of further related work is found in Section 1.2 followed by a more
detailed description of three establishedmethods in the beginning
of Section 2. Further we will shortly discuss the problems of fitting
B-splines and introduce our solutions AD, EAKI and CF. Section 3
presents an exhaustive experimental validation of our method in
comparison with those deemed current state of the art.

1.2. Other related work

Our approach extends [5] by modifying the squared distance
proposed therein. Through the data-dependent metric, our ap-
proach naturally relates to the literature on robust statistics, in
particular, the Gauss–Newton algorithm for re-weighted least-
squares (RWLS) problems. The subtle difference is that we cir-
cumvent classification customarily performed in RWLSmethods to

2 But – as seen in Fig. 8 – not necessarily all.
3 We call the metric instantaneous because it depends on the shape of the curve

at the current iteration.
separate inliers from outliers. Classification requires robust esti-
mates of the data variance, e.g. by the median of absolute devia-
tions. The latter generalizes to dimensions greater than one only
with severe technical difficulties which is why we avoid it in the
present paper. Furthermore, we overcome the problem of specify-
ing the degrees of freedommanually and increase the NDOF during
optimization, similar to [10]. It is conceptually much simpler and
thus easier to implement. Implicit B-spline models are proposed
in [11–13] to infer the zero set of a bivariate tensor-product B/T-
spline function. Fitting B-spline curves to point clouds in the pres-
ence of obstacles is introduced in [14,15], where an optimization
problem subject to an inequality constraint is solved. Hu et al. [16]
present a method that takes advantage of both algebraic and geo-
metric distanceminimization and therefore avoids additional con-
straints. Often it is necessary to modify an existing curve fitting
method to apply to a problem with certain characteristics, such
as noise, outliers, unknown NDOF and so forth [17–19]. This pa-
per builds on our previous work on using B-spline surfaces for
image segmentation [3,4,20] and on exploiting the implicit
smoothing properties of B-spline curves for boundary refinement
of closed regions [21].

2. Approach

2.1. Asymmetric weighting

Assume we are given a set {pi} ⊂ R2, i = 1, 2, . . . ,m, of m
unorganized, scattered points in the plane with considerable non-
uniformly distributed noise and heavy clutter. The task is to find
the continuous planar curve that best approximates the data. A
commonway to represent continuous curves is by B-splines, often
used in computer graphics, CAD/CAM, computer vision, and image
processing. According to [22, Ch. 3.2], a B-spline curve is defined as

c(t) =

n
j=0

ϕj(t)bj (1)

where ϕj are the basis functions, bj are called control points, and t
is the curve parameter from a compact real domain or its periodic
continuation. The periodicity carries over to the trace of all curves
considered in this paper. The properties, and in particular the
support, of the basis functionsϕi of polynomial degree p is uniquely
determined by the value of the knot vector ξ = (ξ1, . . . , ξk,
. . . , ξn+p+1) ∈ Rn+p+1. We denote differentiations w.r.t. the curve
parameter by apostrophes. Hence, c′(t) is the tangent vector at t ,
and c′′(t) the curvature vector. The best approximation of the point
cloud {pi} is characterized by a (global) minimizer of the objective
function

f (bj) :=

m
i=1

e2i + fs(bj) (2)
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Fig. 4. Reconstruction of an organized point cloud subject to heavy noise and clutter. From left to right: point cloud, texturedmeshes,meshed and trimmed B-spline surfaces.
Fig. 5. From left to right: iso-value curves for PD, TD and SD.
w.r.t. the control points bj, where ei is an error term describing
the distance between the data points and the curve. Let di be the
vector pointing from c(ti) to pi. The footpoint ti, with c(ti) being the
closest point to pi, can be determined by Newton’s method. The
Point Distance (PD) is defined as

ePD,i := ∥di∥. (3)

The second term of Eq. (2) is necessary to obtain a regular,
i.e., visually satisfying solution, which for our method is defined
as

fs(bj) =


ws∥c′′(t)∥2dt. (4)

Here, ws ∈ R≥0 is a scalar weighting factor.
Blake and Isard [7] observed that utilizing the following Tangent

Distance (TD) in place of the PD leads to significantly faster
convergence:

eTD,i := dT
i ni, (5)

where ni is the unit normal vector. Note that we pick the
orientation of the curve that makes all normal vectors point
outwards. The drawback of the TD, as shown in [5], is that the
method is less robustwith respect to localminima. ThereforeWang
et al. [5] introduced the Squared Distance (SD) term to benefit from
both, the robustness of the PD and fast convergence of the TD:

e2SD,i :=


di

di − ρi


dT
i ti
2

+

dT
i ni
2

if di < 0,
dT
i ni
2

if 0 ≤ di < ρi,

(6)

where ti = c′(ti) is the tangent vector at ti. Here, ρi = ∥c′′(ti)∥,
and di = dT

i ni is the signed distance between pi and the curve, i.e.,
di < 0 if pi is on the opposite side of ni and di ≥ 0 if they are on
the same side. Fig. 5 illustrates the three distance measures PD, TD
and SD. For a more detailed discussion let us refer to the paper of
Wang et al. [5]. Our experiments suggest the superior performance
of the SD. For the remainder of this paper, we thus choose ei = eSD,i
unless stated otherwise.

As depicted in Fig. 4, segmentations are often subject to heavy
clutter and outliers at the boundary as well as inside. Figs. 2 and
3 shows examples where the point cloud is not organized and a
boundary other than the convex hull cannot be defined properly.
To this end,we propose to augment the original distance by a scalar
function wa which weights points inside the boundary less heavy
than points outside:

wa(d) :=


e−

d2

σ2 if d < 0
1 if d ≥ 0

(7)

where σ defines the width of the transition of the weighting
function with respect to the signed distance. The lack of symmetry
is illustrated in Fig. 6. Eq. (2) then translates into

f (bj) =
1
2

m
i=1

wa(di)e2i + fs(bj). (8)

During optimization, the curve is forced towards the outer
boundary points, while points in the interior are largely ignored.
This applies also to points which are part of a concavity. But
fortunately, the half bell-shaped function wa iteratively closes the
gap between the curve and the data points. This is different tomost
other approaches like [22,7,5], where all points are treated equally.
Fig. 7 demonstrates the effectiveness of the weight function.

2.2. Error-adaptive knot insertion (EAKI)

In real world applications, the number of degrees of freedom
the boundary approximation should have is usually unknown. Ini-
tialization typically requires user interaction. Automatic estima-
tion schemes such as mentioned in Section 1.2 are rarely generic
enough to handle a sufficiently large class of problems. In [10],
knots are inserted or removed depending on the distance between
neighboring knots. In our opinion, this is quite counter-intuitive,
since segments where a low resolution of the curve already fits
large parts of the contour do not require refinement. Our meth-
ods automatically adapts the NDOF by iteratively inserting knots to
the B-spline curve at points where the error is above the accuracy
specified by the user. More precisely, at each step of the fitting it-
eration, we measure the distance from every curve point c(ξ̄k) to
the closest point of the point cloud, where ξ̄k := (ξk + ξk+1)/2,
k = 1, . . . , n+p, are themidpoints of two adjacent elements of the
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(a) Asymmetric distance function. (b) Iso-value curves of wa(di)e2i for PD.

Fig. 6. Asymmetric Distance: Weighting function wa(di) (red) and the resulting asymmetric distance (AD) term wa(di)e2i (green) for fitting the point pi attached to the
footpoint of the B-spline curve c(t) (blue). Two opposing points p1 and p2 lie on the same iso-value curve even when the Euclidean distance of p2 is higher. In other words, a
point p3 outside the curve, with the same Euclidean distance from c(ti) as a point p2 inside, causes a much higher error. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Fig. 7. (left) Typical problem when adding some clutter inside the boundary of
a dataset such as Fig. 10 of [5]. (right) Solving the problem using the asymmetric
distance (AD) of our approach. Red: point distance [22]. Green: tangent distance [7].
Blue: squared distance [5]. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

knot vector ξ. If the distance exceeds the accuracy specified by εa,
a new knot is inserted at ξ̄k. The fitting approach procedure makes
the knot distribution non-uniform; it particularly tends to increase
the resolution in knot spans of high curvature. This behavior is il-
lustrated in Fig. 8.

2.3. Concavity Filling (CF)

Noise at the boundary and sharp turnsmay erroneously lead the
fitting process to stagnate because the AD term de-weights data
points inside the boundary too severely (Fig. 9). Increasing σ might
be a remedy in some cases but causes problems when neighboring
boundaries are close to each other.

Instead we iterate through the midpoints ξ̄k of the knot spans
(see Section 2.2) and for each c(ξ̄k), we strap it to its nearest neigh-
bor within the set of data points {pi}. The key idea is that thereby,
the nearest neighbor of c(ξ̄k) is not understood in the sense of the
Euclidean metric but a curve-dependent, instantaneous distance
function dc : R2

→ R≥0. With slight abuse of earlier notation, we
set dk = p − c(ξ̄k) and nk = n(ξ̄k). Now we are in the position to
define

dc,k(p) :=


0, if ∥dk∥ = 0,
∞, if nT

kdk ≥ 0, ∥dk∥ ≠ 0,
∥dk∥

2

|nT
kdk|

, if nT
kdk < 0, ∥dk∥ ≠ 0.

(9)

The shape of the level sets of a typical dc,k are shown in Fig. 10(a).
Strapping the evolving curve to the obtained nearest neighbors is
achieved by enhancing Eq. (8) with the following energy:

fc(bj) :=

n+p
k=1

wc∥p∗

c,k − c(ξ̄k)∥2 (10)

where wc ∈ R≥0 and

p∗

c,k = arg min
p∈{pi}

dc,k(p). (11)

As we are minimizing Eq. (10), the curve is strapped to data points
pi behind the sharp turn. At the same time, CF ignores curve el-
ements respectively knot spans that are already interpolating, as
indicated in Fig. 10(b). Once the curve at c(ξ̄k) is close enough to
some pi, i.e. dc,k(pi) < σ , the iteration will be governed again by
the influence of the AD term. Combining Eqs. (4), (8), and (10), we
finally obtain the objective function

f (bj) =

m
i=1

wa(di)e2i +


ws∥c′′(t)∥2dt

+

n+p
k=1

wc∥p∗

c,k − c(ξ̄k)∥2. (12)

3. Experimental evaluation

3.1. Implementation

We have created a C++ implementation of our curve fitting
algorithm based on the openNURBS library.4 All of our code is
available within the Surface module of the Point Cloud Library. A
tutorial guiding through the steps of creating the Stanford bunny
example can be accessed at the PCL tutorial pages.5 An outline of
our approach is shown in Algorithm 1. For initialization we simply
calculate the bounding circle of the point cloud and set the four
initial control points of the closed periodic B-spline curve to lie on
this circle while being shifts of π/4 apart (see Fig. 8 left).

Suppose that the two nearest-neighbors problems have been
solved so that the obtained footpoints ti and strapping points
p∗

c,k are known and fixed. In that case, minimization of Eq. (12)
reduces to a weighted linear least-squares problem. We assemble

4 http://www.rhino3d.com/opennurbs.
5 http://pointclouds.org/documentation/tutorials/bspline_fitting.php.

http://www.rhino3d.com/opennurbs
http://pointclouds.org/documentation/tutorials/bspline_fitting.php
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Fig. 8. EAKI: Control points (red) are iteratively inserted, automatically adapting the curve (blue) to the required degrees of freedom of the outline of the Chinese character
tian. From left to right: Initial curve, 10, 15 and 30 iterations with 4, 61, 73 and 82 control points respectively. Note the simple initialization and the iterative increase of
the NDOF by knot insertion, while the AD term fastens the curve to the data points. The green ellipses highlight the resolution of control points at regions of high curvature
(solid line) and low curvature (dashed line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Handling of sharp turns.Without (left) andwith (right) concavity filling (CF).

Algorithm 1 Curve fitting algorithm.
1: initialization
2: while !terminated do ◃ Termination
3:
4: for all points pi do ◃ Parametrization
5: find footpoint ti for pi using Newton’s method
6: end for
7:
8: for all midpoints ξ̄k of spans in ξ do ◃ CF Eq. (11)
9: find closest point p∗

c,k of c(ξ̄k)
10: end for
11:
12: min

bj
f (bj) ◃ Eq. (16)

13:
14: for all midpoints ξ̄k of spans in ξ do ◃ EAKI
15: find closest point pi of c(ξ̄k)
16: if ∥pi − c(ξ̄k)∥2 > εa then
17: insert new knot at ξ̄k
18: end if
19: end for
20:
21: end while

the corresponding residual vectors as follows: Denote by 8 ∈

Rm×n the matrix that contains the values of the n basis functions
bj, one row for each footpoint ti. The matrix B ∈ Rn×3 shall gather
the unknown control points, also one per row. Analogously, at each
iteration, we need to assemble matrices P ∈ Rm×3, N ∈ Rm×3, and
T ∈ Rm×3 respectively from the data points pi, normals ni, and
tangent vectors ti. The (unweighted) residual of the data term for
the PD is then given as

r = 8B − P. (13)

The residual vectors arising from TD and SD are constructed
in a similar manner. The second term of Eq. (12) responsible for
smoothing is applied not to the curve directly, but instead to
the control points. This is a reasonable approximation for Eq. (4),
since the curvature vector c′′(t) results from the arrangement of
the control points as they are fitted to the data points. With the
second-order centered-differences operator R = ((rij)),

rij =


−1, if i = j
1
2
, if i = j + 1 or i = j − 1

0 else,

(14)

the approximate discrete curvature residual becomes rs = RB. The
residual of the CF term in Eq. (12)

rc = 8cB − Pc (15)

is derived analogously to Eq. (15) but 8c ∈ R(n+p)×n is now
constructed from the values of the basis functions at the knot span
centers ξ̄k, and Pc ∈ Rn+p

× 3 stacks the strapping points p∗

c,k
defined in Eq. (11). FromEqs. (13), (15) and rs = RB combinedwith
their respective weights, we obtain the following overdetermined
sparse linear systemdiag(wa(di))8

wsR
wc8c


B =

diag(wa(di))P
0

wcPc


. (16)

The solution of the Gaussian normal equation of (16) coincides
with the solution of the original least-squares problem. In
Algorithm 1 the optimization loop terminates if the incremental
change of control points falls below a certain threshold.

3.2. Results

We evaluate the performance of our method with respect
to three indicators: First, we compare it to state-of-the-art
methods based on PD, TD and SD. Second, we demonstrate the
robustness with respect to noise and point density by creating an
artificial example with varying point distribution and keeping the
parameters for curve fitting fixed. Third, we provide a quantitative
evaluation reporting numbers on accuracy, speed and compression
rate when applying our algorithm to the task of 3D reconstruction
of point clouds.
Comparison. We qualitatively compare to the established methods
based on PD, TD, and SD. A quantitative comparison is all but
impossible since the former are not designed for treating clutter
inside the boundary and rely on proper initialization schemes
to obtain good solutions. However, as we want to point out the
significance of our approach in realworld scenarios, we show cases
where the bare PD, TD, and SD are insufficient unless combined
with the proposed asymmetric weighting function. Fig. 7 shows
how outliers force the curve to evade the true boundary. This kind
of noise is typical for segmented point clouds from Kinect-like
sensors caused by illumination highlights, reflections and slanted
surfaces, as shown in Fig. 4.
Robustness. We are using the same set of parameters for a certain
type of point data (e.g. unorganized point clouds) and do not need
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(a) Iso-value curves of dc . (b) Affected curve elements.

Fig. 10. Concavity Filling: (a) Iso-value curves for finding the closest point to the curve at point c(ξ̄k)w.r.t. the outward pointing normal vector nk . Note that with the distance
metric dc,k , the point pi is closer than the point right above c(ξ̄k) and therefore used for fitting the curve along the knot span containing ξ̄k . (b) Only curve elements with no
support from data points (green) are strapped to their closest point w.r.t. Eq. (10). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Fig. 11. Robustness when fitting the Chinese character tian, without changing the parameters but the distribution of the data points. Point distance dn increases from left
to right, noise increases from top to bottom. The resulting curve is shown in blue after 40 iterations. (σ = 0.0002, εa = 0.015, ws = 0.5, wc = 1.0). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Fitting of the difficult case in the lower-right of Fig. 11 (σn = 7.5e−3 , dn = 7.5e−3) with changed parameters (σ = 0.0002, εa = 0.017, ws = 0.5, wc = 1.0, 40
iterations).
Fig. 13. Reconstruction: The curve is fitted to a point cloud (left) in the parametric domain of a B-spline surface (middle) which allows for trimming it (right).
Table 1
Evaluation results for point cloud reconstruction. From left to right: number of data points (#Pts), number of control
points (#CP), mean error (ME) in milimeter or pixels (marked with ∗), computation time (t) in seconds and compression
rate (CR). Index c indicates curve- and s surface measures.

#Pts. #Seg #CPc #CPs MEc MEs tc ts CR

Office 1 285k 77 1254 693 7.1 6.4 7.5 0.6 130
Kitchen 1 594k 166 2628 1494 8.5 8.1 14.3 1.2 127
Kitchen 2 742k 184 3045 1656 8.6 8.2 18.4 1.5 140
Living 1 985k 448 6074 4032 9.8 10.1 37.4 3.8 85
NYU 935 219k 31 675 279 3.7∗ 8.5 14.5 0.4 209
NYU 1314 217k 20 409 180 3.2∗ 7.3 8.3 0.4 334
NYU 1315 201k 32 542 288 3.8∗ 8.5 11.9 0.4 218
OSD 51 182k 18 393 162 0.6∗ 1.8 7.9 0.4 299
OSD 59 180k 45 842 408 0.6∗ 1.5 15.1 0.4 130
OSD 61 178k 45 812 405 0.6∗ 1.6 12.7 0.4 131
to adjust them for each capture. To get a better impression of the
variance the algorithm can handle with one set of parameters we
have created a toy example, where we fit a curve to the outline of
the Chinese character tian. Fig. 11 shows the results with changing
point density and noise. Our method fails if the parameter for
accuracy for EAKI εa is lower then the distance between some
adjacent points which follows from the fact that fitting a concave
boundary is an ill-posed problem. In other words EAKI and CF
treat the gaps between points as concavities and try to fill them.
However, changing the parameter εa changes this behavior and
leads to a satisfying solution (Fig. 12).
Efficiency for 3D reconstruction. To demonstrate the efficiency in
terms of run-time and data compression, we evaluated several
single-view RGBD shots (organized point clouds) as well as full
3D scans of rooms (unorganized point clouds). We segmented the
point cloud into piecewise smooth regions. For each of the seg-
ments, we compute the eigenspace and define the planar domain
for the B-spline curve as the subspace spanned by the eigenvec-
torswith the two highest eigenvalues. All points of the segment are
projected onto this plane and a bounding curve is computed using
our algorithm. For an accurate surface representation, we fit a B-
spline surface to these points,with its parametric domain being the
bounding box enclosing the projected points. Trimming and trian-
gulation within the eigenspace becomes a trivial operation by uni-
formly triangulating the bounding box and subsequently cutting
off vertices outside the B-spline curve (see Fig. 13). Table 1 shows
mean errors, computation times and compression rates with re-
spect to the raw 3D point cloud. Please note, that the numbers
listed depend on the choice of parameters, i.e. by raising the pa-
rameter for accuracy, the error rates but also the compression rates
drop, since more control points are required. Consequently the
computation time increases, since more iterations are needed un-
til convergence but also due to the higher number of parameters



T. Mörwald et al. / Robotics and Autonomous Systems 76 (2016) 141–151 149
Fig. 14. Reconstruction of organized segmented point clouds with B-spline curves and surfaces (NYU dataset [23]).
Fig. 15. Reconstruction of organized segmented point clouds with B-spline curves and surfaces (OSD dataset [4]).
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Fig. 16. Reconstruction of unorganized segmented point clouds with B-spline curves and surfaces.
(i.e. control points). Model files (.obj), images and videos of the re-
constructed scenes are available on our webpage.6 The scenes are
shown in Figs. 14–16.

3.3. Discussion

The parameters available are defined such that they correspond
to the characteristics of the data (smoothness ws, accuracy εa,
concavity wc and transition width σ ). As demonstrated at hand of
the Berkeley data, one set of parameters is often sufficient to fit
all the curves shown in the results. When the goal is to find the
concave hull (which is generally not well-defined, cf. Fig. 3), we
need those parameters to define which distance between points
is treated as concavity (wc), how much noise should be smoothed
out (ws), and finally which points should be treated as inside (σ )
respectively as belonging to the contour.

One failure case of the proposed method is when point
clouds consist of more than one cluster, i.e., the number of
simply-connected components must be known beforehand. We
are working on a method to detect self-intersections of the B-
spline which would indicate the underlying topology. As stated
in [24], splines are not immediately suitable for representing
discontinuities. Still, one would be able to detect the locations of
these discontinuities and reduce the continuity of the spline by
knot insertion followed by a readjustment by our method.

Let us remark that although we have only shown experiments
with closed curves, our approach would also work with non-
periodic B-splines on open curves. In this case, the terms inside
and outside simply translate to left and right w.r.t. the B-spline
direction.

4. Conclusion

In this work, we have proposed an algorithm that robustly
detects and approximates the contour of planar point clouds with
B-spline curves. Due to the asymmetric distance term, our method
is robust against clutter inside the actual contour. Governed by
the contour, concavity filling forces the curve to bend inwards
if appropriate. Our mechanism for error adaptive knot insertion
provides additional degrees of freedom when filling concavities
and at sharp corners and consequently increases the overall
accuracy. We currently investigate how to estimate the required

6 http://users.acin.tuwien.ac.at/tmoerwald/?site=6.
parameters from point cloud statistics for a more convenient or
even fully automatic usage. Another direction we would like to
follow is to transfer our method from curves to surfaces. For local
knot insertion (EAKI), we would like to exploit the characteristics
of T-splines [25], to fit them to 3D point clouds.
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