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Abstract— We present a real-time visual-based path follow-
ing method for mobile robots in outdoor environments. The
approach combines an image processing method that allows to
retrieve illumination invariant images with an efficient path
detection algorithm. The method allows a mobile robot to
autonomously navigate along pathways of different types in
adverse lighting conditions using monocular vision.

To validate the proposed method, have evaluated its ability
to correctly determine boundaries of pathways in a challenging
outdoor dataset. Moreover, the method’s performance was
tested on a mobile robotic platform that autonomously navi-
gated long paths in urban parks. The experiments demonstrated
that the mobile robot was able to identify outdoor pathways of
different types and navigate through them despite the presence
of shadows that significantly influenced the paths’ appearance.

Index Terms— visual navigation, mobile robotics

I. INTRODUCTION

One of the most desired features of robotic systems is
autonomy – the capability to act without the need of human
intervention. In the case of mobile robots, the key skill is
autonomous navigation – the ability to reach a desired desti-
nation on its own. While the ability of reliable autonomous
navigation in outdoor environments has been already demon-
strated during the DARPA Grand [1] and DARPA Urban [2]
Challenges, the vehicles that achieved autonomous naviga-
tion along the desired paths were equipped with expensive
sensory and computational equipment and relied on precise
RTK-GPS systems. Their dependence on expensive sensors
and high computational demands makes wider, real-world
deployment of the aforementioned navigation methods in
small robots rather difficult.

Among other sensoric equipment, small and affordable
digital cameras are a staple in mobile robotics along with
laptops and mobile devices, which have arguably gotten
powerful enough to run most machine vision techniques
in real time. The main disadvantage of standard cameras
stems from their passive nature – the performance of visual
navigation and localization systems is heavily influenced
by illumination factors. This is a problem especially in
outdoor environments, there the (unstable and somewhat
unpredictable) illumination determines the appearance of the
scene perceived by the robot. One of the particular problems
is the presence of shadows that move as the main illuminant
of outdoor scenes, the Sun, changes its position. The pres-
ence of shadows causes problems especially to visual based

1Lincoln Centre for Autonomous Systems, University of Lincoln, UK
{tkrajnik,santos}@lincoln.ac.uk

2Faculty of Information Technology, Czech Technical University in
Prague, Czech Republic {blazicekj}@google.com

(a) Original image (b) Intrinsic image + detected path

Fig. 1: Shadow removal and path detection example.

scene segmentation, because even a single narrow shadow
cast over a surface splits it into two disjoint segments. This
is especially problematic when the mobile robot is using
monocular camera to identify traversable terrain, such as
pathways in vegetation.

We present a computationally efficient visual navigation
system that allows a mobile robot to identify and traverse
distinct pathways in outdoor environments under difficult
lighting conditions. The proposed approach combines a
photometric method, which can infer material reflectance
properties under different illumination, with a path-following
algorithm, which can guide a mobile robot along arbitrary
pathways. The image preprocessing method exploits the fact
that the Sun acts as a black body radiator and the distribution
of its wavelengths, which is determined by its temperature,
follows Plack’s law. Along with a self-calibration step, which
determines the sensitivity of the cameras color sensors to
particular parts of the Sun’s spectrum, the method can
calculate reflectances of the perceived objects in a pixel-wise
manner. This effectively removes any shadows cast over the
scene perceived by the robot’s on-board camera. After the
shadows are removed, we employ a fast image processing
method that identifies boundaries of a pathway which the
robots moves on. The positions of the path boundaries are
directly transformed to velocity and steering commands for
the robot, which is guided along the path.

While the use of intrinsic images for shadow removal
in outdoor environments is not novel, the technique has
been so far used to improve robustness of mobile robot
localization. Our method concerns visual navigation, i.e.
the robot movement is actually controlled by an algorithm
that preprocesses the camera output by the intrinsic image
approach.



II. RELATED WORK

To successfully navigate in outdoor scenarios, a mobile
robot may face several challenges, such as the different
visibility and lightning conditions or uneven terrain. Path
detection methods allow mobile robots to traverse artificial
roads as well as natural pathways. The correct detection and
planning of the trajectories based on these methods enable
mobile robots to safely navigate in outdoor environment
without using apriori given maps or environment models.
Typical path detection algorithms rely on range-finding or
vision (stereo or monocular) systems, which are influenced
by the lightning conditions.

Cristóforis et al. [3] proposed a novel real-time image-
based monocular path detection that allows to detect delim-
ited or semi-structured outdoor paths. In their method, the
images are segmented into super-pixels and each super-pixel
is classified in order to detect the navigable space and thereby
to calculate the path contour, which is used to guide the
robot. The image processing algorithm was computationally
intensive and it had to be implemented on a low-power GPU
to achieve real-time performance. The problem of shadows
cast over the pathways is dealt with by means of using
separate models for shadowed and illuminated path.

A fast ‘line-scan’ method is presented in [4], where the
robot uses a single camera to build a topological map of
pathways in outdoor environment. To increase the robustness
to illumination, the method uses only hue and saturation
channels of the HSV color space to classify the individual
image pixels. Moreover, it assumes that the hue and satura-
tion of the path pixels are provided by the robot’s operator.
Similarly to [3], the problem of shadows is addressed by
introducing separate color models for the path pixels.

Another approach to the path following problem, that also
uses a RGB-D monocular camera, is presented by Huang et
al. [5]. They combine the range-limited depth information
with (long-range) RGB imagery to create cost maps which
are subsequently used to plan the robot path. Their approach
allows to combine the reliability of the depth-based terrain
classification with the ability to detect and avoid cul-de-sacs
identified in the RGB data.

The authors of [6] not only combine range data with RGB
imagery to create maps that allow elaborate planning of the
vehicle path across the navigable terrain, but also use the
range data to provide the RGB-based terrain classification
method with samples of navigable and untraversable pixels.
This allows the RGB-based classification method to adapt
itself to different environments on-the-fly.

The paper [7], which is based on monocular sensing as
well, proposes to achieve path following by combination
of vanishing point detection and color-based probabilistic
segmentation. Their vanishing point detection closely follows
the method presented in [8], which fuses the responses of
Gabor filters applied on the image by means of particle-
filtering, and the ‘roadness’ of the image pixels is classified
by means of Gaussian Mixtures. The authors of [7] tested
their algorithm only on datasets due to its computational

complexity and report that its real-time implementation re-
quires specialized DSP- or FPGA- based hardware solutions.
Most of the aforementioned approaches either assume that
the color model of the shadowed and illuminated path is
known in advance or use additional, expensive sensors that
provide their autonomous navigation systems with range
measurements.

One of the first visual navigation approaches that was
explicitly dealing with the problems of shadows was im-
plemented for an automated harvester [9]. The system’s
purpose was to track the boundary between the cut and
uncut crop, guide the harvester along it and detect the
ends of the crop lane. Apart from being able to adapt to
slowly changing illumination due to weather changes, it had
to deal with situations where the harvester would cast a
shadow on the scene. The shadow removal was based on
a photometric method that relied on known parameters of
the crops reflectance and Sun spectrum.

The authors of [10] and [11] proposed a method of
obtaining gray-scale lighting invariant images by taking an
RGB color image and combining its channels in a way that
factors out its dependency on illumination intensity and color.
The approach was based on assumption that the camera RGB
sensors have a narrow band, the scene is illuminated by a
black body irradiant (the Sun) and that the surface reflectance
is Lambertian. The article [12] goes a step further and
presents a method of restoring the original color information
by comparing the edges found in the shadow-less invariant
image to the edges found in the original. Furthermore [13]
presents an automated self-calibration method that allows
to obtain the lighting-invariant images without the explicit
knowledge of the camera parameters.

The aforementioned Finlayson-Marchant color constancy
method (coined the ‘intrinsic image’) recently found its
application in the field of mobile robotics. In the papers [14]
and [15], the method was used to improve long-term lo-
calization of mobile robots in outdoor environments that
are subject to significant appearance changes due to varying
illumination. The paper [15] presents a system that utilizes
traditional feature-based visual localization on both standard
and intrinsic images and demonstrates the improvement of
localization robustness on off-line datasets. The article [14]
further elaborates on the method by showing that it improves
segmentation and interpretation of outdoor urban scenes.

Both of the aforementioned methods used the intrinsic
image for the problem of robotic self-localization, where the
robot has to use its sensory input and a map to determine
its true position. While the calculated position estimate
could be used to determine the robot steering, both [15]
and [14] present offline evaluation of the method on collected
datasets only. In our case, we use the intrinsic image for
the problem of reactive visual-based navigation, where the
robot’s steering and velocity is determined solely from its on-
board camera image. We show that using the intrinsic image
method allows the robot to segment the navigable areas of
the environment and use the segmentation results to steer the
robot so it stays on the intended path.



III. INTRINSIC IMAGE

The term ‘intrinsic image’ was introduced in [16], which
concerned decomposition of images into different layers,
representing intrinsic properties like shading, reflectance
or shape. One of the promising approaches that allows
to retrieve material reflectance from a single image, was
introduced by [10] and [11], who proposed addressing
the problem from a purely photometric point of view. The
aforementioned approaches are based on an assumption that
the camera RGB sensors have an infinitely narrow band, the
illumination is provided by a black body and all surfaces in
the scene are Lambertian. While it is clear that none of these
assumptions are completely satisfied, the results presented
in [12] have demonstrated feasibility of the approach for
shadow removal. Moreover, authors of [14] and [15] have
shown that the use of the aforementioned method improves
visual-based mobile robot localization.

Let us briefly review the idea of the intrinsic image
calculation as presented in [10]. Let us denote the response
of a single RGB element of the camera sensor as ρk, where
k = r, g, b corresponds to the red, green and blue channels
respectively. Then

ρk = σ

∫
E(λ)S(λ)Qk(λ)dλ, (1)

where σ is a constant factor denoting the Lambertian shading
term contributing to the overall light reflected at the sensor,
E(λ) is the illumination of the surface element perceived,
S(λ) denotes the surface reflectance function, Qk(λ), is the
spectral sensitivity of RGB sensors and λ denotes wave-
length. Assuming Planckian illuminant and infinitely narrow-
band color sensitivities given by qk, Finlayson argues that the
equation (1) can be simplified to

ρk = σE(λk)S(λk)qk. (2)

Assuming black body irradiant and using Wien’s approxima-
tion to Planck’s law allows to parametrise the spectral power
distribution solely by its color temperature T as

E(λ, T ) = Ic1λ
−5e

−c2
Tλ , (3)

where c1, c2 are constants and I characterizes the overall
light intensity. Thus, the Equation (1) can be rewritten as

ρk = σIc1λk
−5e−

c2
TλS(λk)qk. (4)

Calculating a logarithm of the red and green sensor response
relatively to the response of the blue sensor leads to the term

χr,g = log
ρr,g
ρb

. (5)

Substituting Equation (4) to (5) leads to

χr,g = log
sr,g
sb

+
λ−1r,g − λ−1b

T
, (6)

where sk = λk
−5S(λk)qk. Note that the first term is

determined only by the camera sensitivity parameters λk
and qk and surface reflectance S(λk), while the second term
depends only on the camera parameters and temperature of

the illuminant. Rewriting the Equation (6) in vector form
results in

χ′ = s+
1

T
e, (7)

where χ′ is a vector representing log-chromaticity of the
image obtained, s is a vector independent of the illuminant
and e is a vector independent of the surface. A graphical
representation of 2D log-chromaticity space modeled by
Equation (7) is shown on Figure 2. Here, the log-chromaticity
of a particular pixel (blue) is given by the surface and the
illumination properties. As the T parameter varies, the log-
chromaticity χ′ moves along a straight line given by the vec-
tor e. Correct estimation of the illuminant variation direction
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Fig. 2: Log-chromaticity space explained: the log-
chromaticity of the perceived pixels (blue) is given by the
surface reflectivity properties and color temperature of the
illuminants. Knowing the angle θ allows to project the
perceived pixel into a position on the illumination-invariant
vector (red) that characterizes the surface reflectivity. The
projected positions of the pixels constitute the grayscale
values of an intrinsic image.

e (which is determined by the camera parameters), allows
to project the log-chromaticity vector χ′ onto the vector
orthogonal to e. Theoretically, the angle θ of this orthogonal
vector can be calculated from the camera sensor sensitivities.
However, these sensitivities are not always known, because
typical camera can operate in a wide variety of settings that
significantly affect its parameters. From a practical point of
view, one can rather try to find a suitable θ by self-calibration
technique described in [13], which proposes to select the
angle θ so that the set of projected chromaticity values has
the lowest entropy.

To avoid numerical stability issues caused by potentially
small values of ρb, we follow the paper [13] and calculate
a 3D log-chromaticity space, where the responses of the
individual channels are not relative to the blue channel as in
Equation (5), but to a geometric mean of the channels, i.e.
3
√
ρb ρr ρg . Otherwise, our implementation closely follows

the aforementioned description.



IV. IMPLEMENTATION

The path following method consists of two parallel
threads. The first, ‘control’ thread is responsible for generat-
ing the steering commands that guide the robot along a given
path. The second, ‘adaptation’ thread calculates the value of
the angle θ by means of entropy minimization.

The control thread uses the latest camera image and latest
estimation of the parameter θ to calculate an intrinsic image.
The intrinsic image is then searched for a uniform segment
that is likely to represent a traversable path. Then, the
boundaries of the path are used to generate the steering
commands that keep the robot in the middle of the path
while avoiding obstacles. The ‘adaptation’ thread, that runs
with a lower priority, is used to adapt the value of the θ
according to the perceived scene.

Both algorithms are implemented in C/C++ language, use
the dc1394 library to communicate with the camera and the
Aria library to interface with the control board of the P3AT
robot, which was used for the experimental evaluation.

A. Intrinsic image calculation

After receiving the image from the camera, the invariant
image is calculated according to the description in III, see
Algorithm 1.

Algorithm 1 Invariant image calculation

1: function GETINVARIANTIMAGE(I, θ)
2: for each row of I do
3: for each column of I do
4: ρr,g,b ← I(r, g, b) remap to [0, 1]
5: ρM ← 3

√
ρr · ρg · ρb . normalization

6: χr,g,b ← log(ρr,g,b/ρM ) . 3D log-chrom.
7: ψ1,2 ← U× χr,g,b . project to 2D
8: Ii ← (ψ1 cos θ + ψ2 sin θ) . intrinsic pixel
9: end for

10: end for
11: return Ii . illumination-invariant if θ is correct
12: end function

Following the algorithm 1 line by line, we can see that
all operations are performed pixel-wise, which is compu-
tationally efficient and parallelizable. The matrix U used
for projection from the 3D log-chromaticity to a 2D log-
chromaticity space is set to the value recommended in [13].

B. Path following

Having obtained the invariant image, we can proceed to
find the path for the robot to move across. The algorithm
first performs histogram equalization of the intrinsic image,
which allows for a wider separation of the path from the
background. The equalized image is then thresholded and the
image’s pixels are classified as either ‘path’ or ‘background’.
The algorithm then scans the image line by line from the
bottom up, identifying the edges and obstacles on the path
ahead of the robot in simple pixel-wise operations. If the
width of the path detected falls below a certain threshold, the

algorithm terminates the image analysis and calculates the
robot’s steering from the average deviation of the detected
path center from the centre of the image. The forward
speed is determined from the row at which the algorithm
was terminated – the higher the row, the higher the robot’s
forward speed. To slow down the robot when taking sharp
turns, the forward speed is decreased by the absolute value
of the steering speed. The main advantage of the method,
which is summarized as Algorithm 2, is its computational
efficiency and robustness to clutter.

Algorithm 2 Path following method

1: function FINDPATH(I, τ, omax, wmin)
2: ω ← 0 . initialize steering value
3: I← histeq(I) . histogram equalization
4: I← I > τ . image thresholding
5: p[I.height− 1]← I.width/2 . last row centre
6: for Each row of I starting from (I.height− 1) do
7: gap← 0
8: for Each i right of p[line] do
9: if I[i] == 0 then . right edge of the path?

10: gap← gap+ 1
11: if gap ≥ omax then . edge found
12: right[line]← (i− omax)
13: break out of FOR loop
14: end if
15: else if pxV alue is at I.width− 1 then
16: right[line]← i
17: else
18: gap← 0
19: end if
20: end for
21: gap← 0
22: for Each i left of path[line] do
23: if I[i] == 0 then . left edge of the path?
24: gap← gap+ 1
25: if gap ≥ gapmax then . edge found
26: left[line]← (i+ omax)
27: break out of FOR loop
28: end if
29: else if pxV alue is at I.width then
30: left[line]← i
31: else
32: gap← 0
33: end if
34: end for
35: width← right[line]− left[line]
36: if width ≤ wmin then . path end reached
37: Break out of FOR loop
38: end if
39: ω ← ω + (right[line] + left[line]-I.width)/2
40: end for
41: ω ← cωω . calculate the steering speed
42: v ← cv(I.height− line)− |ω| . and forward speed
43: return v, ω . send v and ω to the robot’s controller
44: end function



C. Calculating the angle θ

To calculate a the invariant image, we have to decide on
the best angle θ. To estimate a suitable θ, we used a method
based on minimization of Shannon’s entropy of the intrinsic
image. Calculation of the Shannon’s entropy is based on
histogram, that allows to estimate the probability distribution
of the concerned variable, which is the intensity of intrinsic
image pixels. The calculation of the histogram requires to
outlying values and optimal choice of the histogram bin
width. We address the problem of outlying sample removal
simply by discarding 5% of the darkest and brightest pixels
and the bin width is determined using the Scott’s normal
reference rule [17]: The algorithm for choosing the suitable
parameter θ is described in Algorithm 3. Because of the

Algorithm 3 Entropy-based selection of θ

1: function GETBESTANGLE(I)
2: imax ← 0.95 . maximal pixel intensity
3: imin ← d0.05e . minimal pixel intensity
4: Hmin ←∞ . initialize entropy value
5: θbest ← −1 . and the corresponding angle
6: s← Iheight · Iwidth . number of pixels
7: for each θ from 0 to 180◦ do
8: o← 0 . number of outliers
9: mu← 0 . initialize mean

10: I′ ← getInvariantImage(I, θ)
11: for each i in I′ do
12: if (i ≥ imax) ∨ (i ≤ imin) then
13: o← o+ 1 . update number of outliers
14: else
15: µ← µ+ i . update the mean of inliers
16: end if
17: end for
18: µ← µ/(s− o) . calculate the mean
19: σ ← 0 . initialize std. deviation
20: for each i in I′ do
21: if (i < imax) ∨ (i > imin) then
22: σ ← σ + (i− µ)2
23: end if
24: end for
25: σ ←

√
σ/(s− o) . calculate the std. deviation

26: m← s− o . calculate number of inliers
27: h← 3.49 ·σ ·m−1/3 . Scott’s rule for bin width
28: H ← H(I′, h, imin, imax) . Shannon entropy
29: if (H < Hmin) then . if entropy H minimal
30: Hmin ← H . store the value of H
31: θbest ← θ . and store best angle θ
32: end if
33: end for
34: return θbest . return the best angle θ
35: end function

algorithm’s computational demands, it cannot process the
images at high rates and thus it runs as a separate thread
with low priority. If required, our system allows to initiate
the Algorithm 3 manually as well.

V. EXPERIMENTS

To evaluate the algorithm’s ability to deal with uneven
illumination, we have performed a serie of experiments on
the datasets and with a real mobile robot.

A. Dataset-based evaluation

For offline evaluation, we have used a dataset of over 1000
images collected in the ‘Stromovka’ urban park in Prague,
Czech Republic. These were collected by a P3AT mobile
robot equipped with a Fire-I 400 digital camera that was
tilted towards the ground in order to get a good overview of
the terrain on front of the robot. The dataset images contain a
large variety of pathways composed of cobblestone, concrete
and sand lined by grass, fallen leaves, ornamental flowers
and trees. The algorithm’s efficiency was evaluated by means
of its ability to correctly recognize that the area in front
of the robot was navigable while the surrounding areas do
not represent the path. Overall, the algorithm did well in
reducing the difference between sunlit and shadowed areas
of the pathways, which allowed for reliable segmentation of
the path. A typical example of such shadow removal can be
found on Figures 1 and 3.

Moreover, the entropy-based selection of the angle θ, that
is needed to calculate the intrinsic image, had an interesting
secondary effect. In cases when one side of the path was lined
with sand while the other with grass, which would present a
problem in color-based path-finding algorithms, the angle θ
was set in a way that the resulting intrinsic intensity values
for both foliage and sand were similar, which resulted in
reliable segmentation of the pathway. However, the entropy-
bases selection occasionally failed in cases when the intensity
of shadows was low and the scenes were cluttered. In these
cases, the entropy of the intrinsic images was affected by
the clutter more than by the shadows, which caused the
Algorithm 3 to generate a wrong value of θ, which typically
lead to failure in recognizing the path.

B. Evaluation on a mobile robot

The final test was conducted in the Stromovka park in
clear-sky, sunny weather. The park is heavily populated
by trees, which cast a lot of shadows on the pathways,
see Figure 4. However, the algorithm performed flawlessly
and the robot was able to autonomously navigate narrow
concrete and cobblestone pathways across a 350 m long
path while ignoring the shadows. After the test, we have
evaluated the results of the path detection and identified a
few images, where the path was not segmented correctly,
see Figure 4b. However, the path detection was incorrect
only in areas around the horizon, which did not affect the
steering commands send to the robot. Moreover, the effect
disappeared when the robot moved closer to the incorrectly
segmented area. During the experiment, the robot has suc-
cessfully processed approximatelly 3000 images taken by its
on-board color camera.



(a) Raw input (b) Intrinsic image (c) Equalized (d) Thresholded (e) Found path

Fig. 3: Path recognition processing stages leading to removal of shadows

(a) Concrete pathway example (b) Cobblestone path example

Fig. 4: Example images from the robot’s on-board camera
during the final experiment.

VI. CONCLUSIONS

We have presented a monocular-camera-based system ca-
pable of guiding mobile robots along outdoor pathways under
adverse lighting conditions. Our method combines the idea
of intrinsic image, which allows for efficient retrieval of
material reflectance properties in a wide range of illumination
conditions, and a reactive path-following algorithm, which
identifies boundaries of the pathway in front of the robot and
determines the robot’s steering and forward speed. During
real-world experiments, the method has proven its ability
to eliminate the effect of shadows cast over the traversable
terrain, which normally cause the standard visual-based path-
identification methods to fail.

Future work will focus on formulation of the intrinsic im-
age calculation for cheap cameras with non-ideal wavelength
sensitivity and nonlinear response to illumination. Moreover,
we will try to simplify the method to allow its deployment
on small robotic platforms with computationally constrained
hardware.
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