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Abstract— We propose a new idea for life-long mobile robot
spatio-temporal exploration of dynamic environments. Our
method assumes that the world is subject to constant change,
which adds an extra, temporal dimension to the explored space
and makes the exploration task a never-ending data-gathering
process. To create and maintain a spatio-temporal model of
a dynamic environment, the robot has to determine not only
where, but also when to perform observations. We address
the problem by application of information-theoretic exploration
to world representations that model the environment states’
uncertainties as probabilistic functions of time.

We compare the performance of different exploration strate-
gies and temporal models on real-world data gathered over the
course of several months and show that combination of dynamic
environment representations with information-gain exploration
principles allow to create and maintain up-to-date models of
constantly changing environments.

Index Terms— mobile robotics, spatio-temporal exploration

I. INTRODUCTION

As robots gradually leave the well-structured worlds of
factory assembly lines and enter natural, human-populated
environments, new challenges appear. One of the first prob-
lems was to operate in less structured and more uncertain
environments. This challenge gave birth to the field of
probabilistic mapping, which enables the representation of
incomplete world knowledge obtained through noisy sensory
measurements [1]. Initially, the environment models had to
be created during a human-guided procedure, but later, the
combination of probabilistic mapping and planning methods
allowed the robots to create the environment models by them-
selves by means of autonomous exploration [2]. However, as
robots became gradually able to operate autonomously for
longer periods of time, a new challenge appeared – that the
natural environments are subject to change.

These changes manifest themselves through sensory mea-
surements – every perceived environment change causes the
sensory data to disagree with the original model obtained
during the exploration phase. Although the probabilistic map-
ping methods can deal with the conflicting measurements,
their approach is rooted in the idea that these are caused by
inherent sensor noise rather than by structural environment
change. Thus, these conflicting measurements are generally
treated as outliers caused by unwanted noise. This has a
negative impact on the ability of the mapping methods to
deal with environment dynamics and provide support for
long-term mobile robot autonomy.
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Fig. 1. Spatio-temporal occupancy grid of the Brayford office of the
Lincoln Centre for Autonomous Systems. The static cells are in green and
cells that exhibit daily periodicity are in red.

Recently, some authors proposed to exploit these conflict-
ing measurements in order to obtain information about the
world dynamics and proposed representations that model the
environment dynamics explicitly. These dynamic representa-
tions have shown their potential by improving mobile robot
localization in changing environments [3], [4], [5], [6].

Similarly to traditional robotic mapping, introduction of
spatio-temporal mapping naturally requires spatio-temporal
exploration. Unlike the classic exploration strategies, where
the finite size of the explored space causes the exploration
task to be finite, exploration of dynamic environment is never
finished. Rather, the spatio-temporal exploration becomes
a part of the robot’s daily routine that has to be carried
out along with other tasks that the robot is required to
perform. A typical spatio-temporal exploration routine would
consist of repeated observations of different locations spread
throughout the robot’s operational time.

We present a novel exploration method that integrates
sensory data captured at different times and locations into
a dynamic spatio-temporal model and uses the model to de-
termine where and when to perform future observations. We
show that application of information-theoretic planning prin-
ciples to environment models that represent uncertainties of
environment states in the frequency domain results in an in-
telligent and continuously improving exploratory behaviour,
which evolves as the environment knowledge becomes more
refined over time. The proposed method allows the mobile
robot to create, maintain and refine its environment models
as a part of its daily routine, which enables efficient long-
term operation in changing environments. To demonstrate
the advantages of the approach presented, we perform an
experimental evaluation of its performance on two datasets
collected over a period of several months.



II. RELATED WORK

In order to explore the environment in an efficient way,
the robot has to be able not only to create maps from its
sensory inputs, but also to use the map to plan its path so that
it can reach previously unknown areas of the environment.
Therefore, mobile robot exploration is an iterative process in
which the robot integrates its real world observations into its
world model, interprets the world model to determine which
parts of the environment are unknown, and plans a path to
visit and observe these unknown areas. Therefore, an efficient
exploration system consists of three essential components:
mapping, goal generation and path planning. For the purpose
of spatio-temporal exploration, we have to use mapping
methods that allow to represent dynamic environments and
goal generation methods that can determine not only the
position, but also the times of observations. Moreover, the
planning has to take into account the time domain – i.e. it
has to schedule the observations in such a way that the robot
can perform its other tasks as well.

A. Exploration methods

One of the earliest and well-known methods is frontier-
based exploration [7]. These approaches [8], [9], represent
the environment as an occupancy grid which is processed
to obtain boundaries (frontiers) between the known and un-
known parts of the environment. The robot movement is then
planned so that these frontiers are visited and removed. The
advantage of this approach is its scalability – the frontiers
can be distributed among a number of robots that can explore
the environment in a cooperative manner [10].

Another class of exploration methods is based on the
notion of entropy. These methods generate a set of candidate
observations and estimate the amount of information these
are expected to provide. The information gain is calculated
as a reduction of entropy of the environment model, which
requires a probabilistic representation of the environment
states.

An example of an information-gain-based approach that
integrates localization, mapping and exploration is presented
in [2]. The method uses a Rao-Blackwellized particle filter to
build the map of the environment and an entropy estimation
method to plan the next location to be visited by the robot.

However, the candidate observations are not evaluated
simply by their information gain. Rather, the evaluation takes
into account other criteria, such as the time to reach the
position [11]. An advantage of these methods is that they do
not only attempt to cover the entire environment as quickly as
possible, but also plan re-observations of previously visited
locations to increase the quality of the resulting map [12].

B. Dynamic environment representations

As soon as robots had attained the ability to operate for
longer time periods, the effects of the environment changes
had to be taken into account. The first approaches were aimed
at short-term dynamics. These methods identify moving
objects and remove them from the environment represen-
tations [13], [14] or use them as moving landmarks [15]

for self-localization. However, some dynamic objects do not
move at the time of the mapping session and so the robot
needs long-term observations to identify them. [16] propose
to process several 3d point clouds of the same environment
obtained over a period of several weeks to separate movable
objects and refine the model of static environment structure
at the same time.

Other approaches do not attempt to explicitly identify
movable objects, but rely on less abstract environment repre-
sentations. [17] and [18] represent the environment dynamics
by multiple temporal models with different timescales, and
[19] use a ranking scheme that allows to identify envi-
ronmental features that are more likely to be stable in
long-term. Churchill and Newman [3] propose to cluster
similar observations at the same spatial locations to form
‘experiences’ which are then associated with a given place
and show that this approach improves autonomous vehicle
localization. The authors of [5] represent the states of the
environment components (cells of an occupancy grid) with
a hidden Markov model and show that their representa-
tion improves the localization robustness as well. Kucner’s
method [20] learns conditional probabilities of neighbouring
cells of an occupancy grid to model typical motion patterns
in dynamic environments. Another team proposed a method
that can learn appearance changes based on an across-seasons
dataset and use the learned model to predict the environment
appearance for a given time [6].

Finally, [21] proposes to represent the environment dy-
namics in the spectral domain and apply this approach to
image features to improve localization [4], to occupancy
grids to reduce memory requirements [22] and to topological
maps to improve path planning [23] and robotic search [24].

While being applicable to most environment models used
in mobile robotics, the aforementioned method suffers from
a major drawback that is caused by its reliance on the tradi-
tional Fast Fourier Transform (FFT) method, which requires
that the environment observations are taken on a regular and
frequent basis. This means that the robot’s activity has to
be divided into a learning phase, when it would frequently
visit individual locations to build its dynamic environment
model, and a deployment phase when it would use its model
to perform useful tasks. This division means that while the
robot can create dynamic models which are more suitable for
long-term operation, it cannot maintain them. Thus, the robot
does not adapt to dynamics that were not present during the
learning phase which leads to deterioration of its efficiency
over time.

III. SPATIO-TEMPORAL EXPLORATION

The primary purpose of robotic exploration is to auto-
mously acquire a complete and precise model of the robot’s
operational environment. To explore efficiently, the robot has
to direct its attention to environment areas that are currently
unknown. If the world was static, these areas would simply
correspond to previously unvisited locations. In the case
of dynamic environments, visiting all locations only once
is not enough, because they may change over time. Thus,



dynamic exploration requires that the environment locations
are revisited and their (re-)observations are used to update a
dynamic environment model. However, revisiting the individ-
ual locations with the same frequency and on a regular basis
is not efficient because the environment dynamics will, in
general, not be homegeneous, (i.e. certain areas change more
often and the changes occur only at certain times). Similarly
to the static environment exploration, the robot should revisit
only the areas whose states are unknown at the time of the
planned visits. Thus, the robot has to use its environment
model to predict the uncertainty of the individual locations
over time and use these predictions to plan observations that
improve its knowledge about the world’s dynamics.

To tackle the problem of predicting environment uncer-
tainty over time, we propose to model the probabilities and
entropies of the environment states as functions of time.
While the main idea lies in the fact that some of the
environment’s mid- to long-term dynamics are periodic [21],
the underlying mathematical representation had to be refor-
mulated. Unlike the method [21] that requires frequent and
regular environment observations, the method proposed in
this paper allows to incrementally and continuously update
the spatio-temporal model from sparse observations taken
at different locations and times. This eliminates the need
for a separate training and deployment phase, and allows
integration of spatio-temporal exploration into the robot’s
daily routine. Thus, the robot can continuously refine its
internal environment model and improve its efficiency from
the experience gathered over long periods of time.

A. Problem definition

Let us represent the environment as a set S of n discrete
non-stationary independent binary states si(t) that are ob-
servable by a mobile robot through its sensors. The states
si(t) might represent the occupancy of individual cells in an
occupancy grid, the traversability of edges in a topological
map, the visibility of environmental features, etc. Since these
states are dynamic and the robot cannot observe all the
states all the time, it maintains an internal environment
model that we denote as a set S ′, where each element s′i(t)
corresponds to the real-world state si(t). To represent the
fact that the currently unobserved states are uncertain, we
associate each state with a probability value pi(t) such that
pi(t) = P (si(t) = 1). We refer to the probability function
pi(t) and the way it is calculated from the past observations
of si(t) as a temporal model.

Let us define a location as a set of environment states
that can be observed simultaneously, i.e. a location Lj is
a subset of S such that by visiting location Lj at time t,
observations of the states that belong to Lj are obtained.
Given that the robot location at time t is l(t), the states of
the robot’s internal environment model are

s′i(t) =
si(t) if si ∈ Lj and l(t) = j
pi(t) ≥ 0.5 otherwise. (1)

The purpose of the exploration process is to obtain and
maintain as faithful an environment model as possible, i.e. to

minimize the difference of the states of the real environment
S and its model S ′. Technically, this corresponds to mini-
mization of the model error ε(T ) calculated as the difference
of real and estimated states over the time period [0, T ) as

ε(T ) =
1

T

T−1∑
t=0

n∑
i=1

|s′i(t)− si(t)|. (2)

Although the reduction of the error ε(T ) can be partially
achieved by visiting the relevant locations as often as pos-
sible, the robot has to perform other tasks and the number
of observations is typically limited. Thus, the robot has to
carefully plan where and when to perform observations
so that it obtains the relevant data to create, maintain and
refine its spatio-temporal models of the environment. From
a technical point of view, the robot has to use its internal
temporal models pi(t) to determine a sequence of locations
l(t). We refer to the way the robot plans the sequence of l(t)
from the pi(t) as its exploration strategy.

IV. SPATIO-TEMPORAL MODELS

The underlying spatial environment representations that
we will use to test our approach are occupancy grids,
topological and feature-based maps. The elementary states
of these models represent the occupancy of individual cells,
the presence of people at the particular areas and the visibility
of image features. Unlike in classic environment models
that represent the probabilities of the elementary states s(t)
by constant values p, we represent the probability of each
elementary state as a function of time p(t). In particular, we
model each p(t) as a combination of harmonic functions that
correspond to hidden periodic processes in the environment.

A. Spectral maps

The idea of identifying periodic patterns in the measured
states and using them for future predictions was originally
presented in [21]. These methods process the sequences
of the measured state s(t) by the Fast Fourier Transform
(FFT) to obtain the corresponding frequency spectrum s(ω)
and extract its most prominent spectral components s′(ω).
Then, they employ the Inverse Fast Fourier Transform (IFFT)
method to recover a sequence of state probabilities pi(t),
which can be used for anomaly detection [21] or state
prediction [4]. However, the reliance of these methods on
the Fast Fourier Transform (FFT) algorithm makes their real-
world application impractical. First, the FFT method can
transform only the complete sequence of a state s(t) or its
full spectral representation s(ω). Thus, updating the spectral
representation with new measurements or prediction of a
single probability requires to recalculate the entire sequence
of observations, which becomes computationally expensive
as the observations accumulate. Most importantly, the FFT
algorithm requires that the environment observations are
taken on a regular basis which is contrary to the idea of
spatio-temporal exploration.



B. Frequency map enhancement (FreMEn)
Similarly to the aforementioned spectral representation,

our method still aims to identify the periodic patterns of the
environment states and use them for predictions. Unlike the
spectral maps, the method proposed here allows to update
the underlying dynamic models incrementally from sparse,
irregular observations. The proposed method represents each
state by a number of performed measurements n, its mean
value µ, and two sets A, B of complex numbers αk and βk
that correspond to the set Ω of periodicities ωk that might
be present in the modelled environment. Initially, the mean
value µ is set to 0.5 and all αk,βk are set to 0, which
corresponds to a completely unknown state.

1) Addition of a new measurement: Each time a state s(t)
is observed at time t, we update its representation, i.e. the
number of measurements n, the mean µ and values of A, B,
which are actually a sparse spectral representation of s(t),
as follows:

µ ← 1
n+1 (nµ+ s(t) ),

αk ← 1
n+1 (nαk + s(t)e−jtωk ) ∀ωk ∈ Ω,

βk ← 1
n+1 (nβk + µe−jtωk ) ∀ωk ∈ Ω,

n ← n+ 1.

(3)

The proposed update step is analogous to incremental aver-
aging – the absolute values of |αk−βk| actually correspond
to the average influence of a periodic (with a frequency of
ωk) process on the values of s(t). Note that the size of
the representation of the state (i.e. the number of elements
in A, B) is independent of the number of observations,
which means that the memory requirements of the proposed
representation do not grow over time. Note also that the if
the times of observations t and frequencies ωk were equally
spaced, i.e. t = i∆t and ωk = i∆ω , then (3) corresponds to
the traditional Discrete Fourier Transform.

2) Performing predictions: To predict the value of state
s(t) for a future time t, we first create a set C consisting of
γk = αk−βk and then sort it descendingly according to the
absolute values |γk|. Then, we extract the first m elements γl
along with their corresponding frequencies ωl and calculate
the state’s probability over time as

p(t) = ς(µ+

m∑
l=1

|γl|cos(ωkt+ arg(γl))), (4)

where ς(.) ensures that p(t) ∈ [0, 1]. The choice of m
determines how many periodic processes are considered for
prediction. Setting m too low would mean that we omit to
take into account some environment processes that actually
influence the state, while setting m too high might include
components of C that are caused by sensor noise. In both
cases of m being too low or too high, the prediction of p(t)
would lose accuracy. To estimate the optimal value of m, one
can compare the predictions performed by (4) to the actually
measured values by means of (2), and select the value of m
that minimizes the prediction error ε.

One of the main advantages of the proposed representation
is that the state is modelled probabilistically. This allows to

calculate the time intervals when the particular states are
uncertain, which is crucial to direct the robot’s attention
during the exploration.

C. Alternative temporal models

To evaluate the proposed approach for temporal modelling,
we will compare it with three other methods that allow to
handle changing environments.

The most popular way to deal with uncertainty of the
environment states is based on Bayesian filtering, which
updates the environment states based on the sensor noise
characteristics. Since the typical measurement rate of the
robot sensors exceeds the mid- to long-term environment
dynamics we are concerned with, the Bayesian update
scheme causes the probabilities of the observed states to
quickly converge towards the latest observed values. Thus,
the traditional Bayesian filtering tends to reflect the latest
state measurements and acts as a short-term memory (SM).

Another way to reflect the uncertainty of the observed
states in the long-term is to implement a long-term memory
(LM). Our long-term memory model calculates the probabil-
ity of a given state simply as an arithmetic mean of all its
past observations.

Both of the memory-based models are actually static –
the probabilities of the modelled states change only when
these are directly observed by the robot. An alternative,
representation of the environment dynamics might simply
assume that the states exhibit daily periodicity and model the
probability of an event at a given time of a day by means of
Gaussian Mixture Models (GM).

V. EXPLORATION STRATEGIES

As noted in Section III-A, an exploration strategy is de-
fined as a process that determines when and which locations
to visit. One has to assume that a real mobile robot has to
perform other tasks as well and it can spend only a fraction of
the total time on actual exploration. We refer to this fraction
as the exploration ratio e, e.g. e = 0.2 means that the robot
can spend 20% of its operational time on exploration.

Thus, given an exploration ratio e and a set T of time in-
tervals [ts, ts+1), the exploration algorithm has to determine
a sequence l(ts) of locations to visit. To represent situations
where the time slot [ts, ts+1) is allocated to an unrelated
activity, the value of l(ts) is set to zero, whereas a non-zero
value of l(ts) signifies the location to be observed during
[ts, ts+1).

A. Information-gain strategies

The information-gain strategies take into account the ex-
periences the robot has gathered so far to plan when and
which location to visit. These strategies attempt to reduce
the uncertainty of the environment models by planning the
observations that maximize the potential information gain.
To estimate how much information is gained by a particular
observation, we will use the notion of entropy. We assume
that direct observation of particular states at a given time



reduces the entropy of these states to zero. Thus, the infor-
mation gained by a particular observation can be estimated
as the sum of the entropies of the states observed at a given
location as

I(L, t) = −
∑
i∈L

(pi(t)log(pi(t)) + (1− pi(t))log(1− pi(t))).

(5)
The Greedy strategy calculates the potential information
gains for all given time slots and locations, then assigns the
best location to visit at each time slot. Then, it selects a
subset T ′ of time slots with the highest information gain such
that e = |T ′|/|T |. The remaining time slots are assigned
for exploration-unrelated tasks. Thus, this strategy maximizes
the potential information gain obtained over the time slots
in the set T .

The Monte Carlo strategy chooses the locations randomly,
but the probability of selecting a given location at a given
time is proportional to the estimated information gain. At
first, it estimates the I(l, ts) for all given time slots and
locations and sums these values to I ′. Then, it calculates
the value of I(0, ts) = I ′(1− e)/(ne). Finally, it calculates
the probabilities of each l(ts) as

P (l(ts) = j) =
I(j, ts) + ι∑
i∈L I(i, ts) + ι

. (6)

Here, the value of I(0, ts) does not represent actual informa-
tion gain, but is added to ensure that the exploration ratio e is
satisfied by ensuring sufficient chance of assigning the time
slots to exploration-unrelated tasks. The positive constant ι
ensures that the locations will be occationally visited even at
times when the spatio-temporal model predicts their state
with absolute certainty. This allows to detect unexpected
changes of environment dynamics.

B. Uninformed strategies

For comparison purposes, we include strategies which
select the places to visit regardless of the environment
dynamics. These calculate the sequence of visits l(ts) simply
from the values of the ratio e, number of locations n and
number of time slots m.

The Round-Robin strategy visits all areas of the environ-
ment with the same frequency, interleaving the observations
with other tasks so that the exploration ratio e is satisfied.

The Random strategy also attempts to visit all areas
with the same frequency, but the sequence of l(ts) is not
deterministic, but random. The probability of a given slot
being assigned to a non-exploration task is equal to 1−e and
the probability of visiting the individual locations is uniform
and equal to e/n.

VI. EVALUATION DATASETS

To evaluate the ability of the various temporal models
and exploration strategies, we performed a comparison on
two datasets gathered over several weeks. The first, ‘Aruba’
dataset was gathered by a team of the Center for Advanced
Studies in Adaptive Systems (CASAS) to support their
research concerning smart environments [25]. The second,

‘Brayford’ dataset was created at the Lincoln Centre for
Autonomous System Research (LCAS) for their research on
long-term mobile robot autonomy [4]. The aforementioned
datasets were processed so that the dynamics of these envi-
ronments are represented as visual-feature-based, topological
and metric maps.

A. The Aruba dataset

The ‘Aruba’ dataset consists of maps capturing 16 week
long dynamics of a large apartment that was occupied by
a single, house-bound person who occasionally received
visitors. An occupancy grid and a topological map were
created for every minute of a 16 week long period – the re-
sulting dataset contains over 160 000 metric and topological
maps. Since the original dataset [25] is simply a year-long
collection of measurements from 50 different sensors spread
over an eight-room apartment, these maps had to be created
by means of simulation.

First, we processed the events from the original dataset’s
motion detectors to establish the location of the people in the
flat for every minute of the 16 weeks. Then, we partitioned
the flat into ten different areas, where eight areas represent
the rooms and two correspond to corridors. This allowed us
to created a topological map that indicates the presence of
people in these locations. To obtain the metric representation,

Fig. 2. Aruba environment simulation.

we created a simulated environment with the same structure
as the ‘CASAS’ apartment, see Figure 2. Then the simulation
was provided with a sequence of person locations recovered
in the previous step. As a result, the simulated environment
contains physical models of people at locations provided by
the real-world dataset, and thus it reflects the dynamics of
the real apartment. A virtual, RGB-D camera equipped robot
was also introduced into the virtual environment. Every time
the configuration of the simulated environment (i.e. locations
of the people) changed, the robot used its 3D sensors to
create occupancy grids of the flat’s individual rooms. Thus,
we obtained occupancy grids that reflect the real environment
dynamics minute-by-minute for 16 weeks.

B. The Brayford dataset

The Brayford dataset was originally collected for the pur-
pose of benchmarking long-term mobile robot localization
algorithms in dynamic environments [4]. This time, the data



collection was performed by a humanoid-like robot equipped
with an RGB-D camera in a large, open-space office of the
Lincoln Centre for Autonomous Systems. The robot was
set-up to obtain RGB-D images of eight designated areas
every 10 minutes for a period of one week. Representative
examples of the captured images are shown in Figures 3
and 1. While the high-level environment model of this dataset

Fig. 3. Examples of Brayford dataset images.

contains information about people presence at the individual
locations, the states of the low-level model represent the
visibilities of visual features [26]. The resulting dataset
contains more than 8000 feature-based and 8000 semantic
maps collected over a period of one week.

VII. EXPERIMENTAL RESULTS

We assume that the aforementioned datasets reflect the real
state of the environments they have been captured in and thus
we use the sequence of the observations in the datasets as
ground truth. To evaluate how the various temporal models
and different exploration strategies affect the robot’s ability
to create and update its internal environment models, we
emulate the exploration process using the datasets gathered.
We assume that the exploration can be performed only half of
the robot’s operational time (i.e. e = 0.5) and that a single
observation takes 10 minutes including the time to move
between locations.

This exploration procedure corresponds to the situation
when the robot updates its spatio-temporal model and gen-
erates a new observation schedule every midnight. The
robot starts with an empty environment model that has all
probabilities constant and equal to 0.5.

First, the entropy functions of the individual locations are
calculated and 72 observations for the following day are
scheduled. Then, these 72 observations are retrieved from
the given dataset and the temporal models of the environment
states are updated. The updated temporal models are used to
recalculate the spatio-temporal entropy and the next day’s
observation schedule is generated. These steps are repeated
for every day of the given dataset.

A. Evaluating environment model error

To compare the performance of the temporal models and
exploration strategies described in Sections IV and V, the
resulting world model is compared to the actual dataset
by Equation 2, which estimates the environment model
error. Since there are 4 temporal models and 4 exploration
strategies, each comparison consists of 16 numbers that
characterize the ratio of incorrectly estimated states to the

total number of environment states. One dataset evalua-
tion consist of two comparisons, each corresponding to the
given environment representation. The results of the ‘Aruba’

TABLE I
THE ARUBA DATASET RESULTS: MODEL ERRORS ([%]) FOR DIFFERENT

EXPLORATION STRATEGIES AND TEMPORAL MODELS

Spatio-Temporal model
People presence Occupancy grids

Static Dynamic Static Dynamic
Strategy SM LM FT GM SM LM FT GM

Round-Robin 9.9 9.7 6.5 7.5 11.6 11.0 7.4 8.8
Random 8.0 9.5 9.2 7.5 9.0 10.2 10.8 9.1
Greedy 9.8 8.7 7.0 9.4 21.0 13.0 8.8 8.3
Monte Carlo 9.9 8.9 5.8 6.4 11.1 10.2 6.3 8.7

dataset summarized in Table I show that the exploration
method which combines the Frequency Map Enhancement
and Monte Carlo exploration strategy reduces the model error
by more than 40%. Since more than 99% of the cells in
the ‘Aruba’ occupancy grids represent empty space or static
objects, the model error (2) is calculated for the cells that
change their occupancy at least once.

TABLE II
THE BRAYFORD DATASET RESULTS: MODEL ERRORS ([%]) FOR

DIFFERENT EXPLORATION STRATEGIES AND TEMPORAL MODELS.

Spatio-Temporal model
People presence Visual features

Static Dynamic Static Dynamic
Strategy SM LM FT GM SM LM FT GM

Round-Robin 20.3 23.7 17.9 21.1 19.0 23.8 9.9 20.8
Random 19.3 23.8 23.4 23.5 13.4 24.0 23.7 21.9
Greedy 21.7 22.5 21.1 20.4 21.8 24.0 15.8 19.5
Monte Carlo 21.3 23.5 16.7 19.6 19.0 23.8 9.2 16.4

The model errors of the ‘Brayford’ dataset as shown in
Table II again indicate that the most faithful environment rep-
resentation is based on Frequency-enhanced temporal models
(see Section IV-B), which are obtained through Monte Carlo
exploration. The improvement is more prominent in the case
of visual feature-based maps. The reason for this might be
caused by the fact that the visual features’ visibility tends to
follow more regular patterns than the working habits of the
office researchers.

B. Exploration vs. Exploitation

In the above experiments, the robot exploration ratio e
was set to 0.5. Thus, the robot could spend 50% of its time
gathering data about its operational environment. However,
such a ratio is unrealistic – the robot has to spend some
time replenishing its batteries and we have to assume that
it has to perform other tasks as well. Moreover, we have to
assume that the purpose of the robot is not in creating precise
environment models, but to perform useful tasks. Thus, the
exploration task it just an instrument to obtain and maintain
knowledge which improves the robot’s performance. If the
robot would spend too much time on exploration, it would



Monte Carlo
Random
Greedy

RoundRobin

 0

 5

 10

 15

 20

 25

 0  20  40  60  80  100

M
o

d
er

 e
rr

o
r 

[%
]

Exploration ratio [%]

Environment model error vs. exploration ratio

Fig. 4. Exploration vs. exploitation analysis: The influence of the fraction of
time spend with exploration on the performance of the individual exploration
strategies.

not be able to exploit the obtained knowledge in its everyday
activities.

Thus, the exploration versus exploitation dilemma means
that the robot has to find a balance between the time spent
exploring and the quality of its internal model. We evaluate
the efficiency of the individual exploration strategies with
different exploration ratios on the Aruba dataset semantic
map. We combine the Frequency Map Enhancement models
with four different exploration strategies, fix the exploration
ratio to a value between 0 and 1, and let the robot explore the
Aruba environment for two consecutive weeks. The resulting
error of the model obtained is shown in Figure 4. The
results indicate that if the fraction of the time that the robot
can spend on actual exploration is low, the dynamic mod-
els might make wrong assumptions about the environment
changes and perform worse than their static counterparts –
this is especially notable with the Greedy and RoundRobin
strategies. However, this effect can be mitigated by a proper
exploration strategy – the graph shows that Monte Carlo
strategy improves the model even if the robot cannot spend
too much time on exploration.

Note, that the initial model error is 10% – this is caused by
the fact that the semantic map of the Aruba flat represents the
presence of people in 10 different areas and the flat has only
one inhabitant. Without any observations, the robot simply
assumes that the flat is empty, which results in 10% error.

C. Qualitative evaluation

To allow an insight into the robot’s actual exploratory be-
haviour, we interpret the data gathered during the exploration
of the ‘Aruba’ topological map. Here, the robot’s task was
to create spatio-temporal model of person presence in the
individual rooms of a small apartment. For the purpose of
this explanation, let us focus on the dynamics of the three
rooms only – the bedroom, the kitchen and a storage room.
Let our robot use the best-performing exploration method
that combines the FreMEn temporal models and the Monte
Carlo exploration strategy. Applying the proposed spatio-
temporal exploration method to this dataset produced the
behaviour in Figure 5. The top part of Figure 5 shows the
real state of the environment – the three binary functions
si(t) represent the room’s occupancies over time. The second
part shows the robot’s internal model of the environment,

Other

Storage

Bedroom

Kitchen

1 2 4 5

S
ch

e
d

u
le

Time [days]

Storage

Bedroom

Kitchen

G
rd

.t
ru

th

Semantic map - people presence in individual rooms

 0

 1

P
ro

b
a
b

ili
ty

Kitchen
Bedroom
Storage

 0

 1

E
n
tr

o
p

y Kitchen
Bedroom
Storage

Fig. 5. Spatio-temporal exploration behaviour: The robot uses its proba-
bilistic world model (second row) and spatio-temporal entropy estimates
(third row) to schedule its observations (bottom graph) and learn the
environment dynamics (top). As the environment knowledge improves over
time, the scheduled observations provide more information which allows
for further refinement of the environment model.

i.e. the probabilities pi(t). The third graph displays the
information that is expected to be obtained by visiting these
three locations at a given time. Finally, the bottom graph
shows which locations have been visited at a particular time –
we assume that the exploration ratio e = 0.5, which reflects
the situation where the robot has to spend half of its time
on its charging station. Now let us explain how the robot’s
understanding of the environment changes over time and how
this affects its exploratory behaviour day by day.

1) Day one: Initially, the robot has no knowledge of the
environment and therefore the probabilities pi(t) of the world
states s(t) are equal to 0.5. This means that the expected
information gain from visiting any of the three rooms equals
1 bit at any time of the first day. Thus, the robot has no
room or time preference when scheduling the first day’s
observations.

2) Day two: After performing the first day’s observations,
the environment models provide enough evidence that the
three rooms are not occupied with the same probability. This
is reflected in the second day’s environment model, see the
probability functions pi(t) of the second day in Figure 5.
Thus the robot expects to gain more information by visiting
the bedroom and kitchen than by going to the storage room.
This is reflected by the second day’s observation schedule –
the last row of Figure 5 shows that the first two rooms are
visited more often.

3) Day three: The additional observations obtained dur-
ing the second day provide information about the rooms’
dynamics: the robot assumes that the bedroom has a daily
periodicity that the kitchen is visited five times per day. This
causes the expected information gain to be time-dependent –
the third day of the third row of Figure 5 shows that evening
and morning observations of the bedroom will provide more
information than in the afternoon. This fact is rather intuitive:
visiting the room at the time of its state transition allows to
refine the room’s state periodicity. Thus, on the third day,
the bedroom is visited mostly in the evening and morning,
while the afternoon visits are scheduled to the kitchen.



4) Days four and five: Based on the data gathered during
the third day, the robot modifies its hypothesis about the
periodicity of activities in the kitchen and assumes that it is
visited three times per day. During the following days, the
robot tends to visit the kitchen and bedroom, and checks the
storage room only occasionally. While the kitchen is visited
mostly in the early afternoon, the bedroom is visited late
evenings and mornings, which allows to refine the robot’s
model of the person’s daily habits.

This example indicates that the combination of a proba-
bilistic temporal model with an information-based strategy
not only allows the robot to obtain knowledge about the
environment dynamics, but the observations are scheduled in
a seemingly logical way: At first, all the locations are visited
often and with the same frequency. As the spatio-temporal
environment model become more refined, the robot tends to
visit the particular locations only at times when their states
are uncertain.

VIII. CONCLUSION

In this paper, we presented a method for life-long spatio-
temporal exploration of dynamic environments. We assume
that the robot’s operational environment is undergoing con-
stant change, which requires a method that can model and
predict these variations. The purpose of spatio-temporal
exploration is not only to obtain the environment structure
and keep it up-to-date with any changes, but also to allow
the robot to observe and understand the world dynamics.

We hypothetise that the problem of spatio-temporal ex-
ploration can be tackled by combining information-gain-
based exploration strategies with probabilistic dynamic en-
vironment models. To verify our approach, we compare the
performance of four exploration strategies and four temporal
models on real-world data gathered over the course of
several months. We show that the combination of spectral-
based temporal models with information-gain-based Monte
Carlo planning results in an intelligent exploration behaviour
that improves as the environment knowledge becomes more
refined.

Analysis of the robot behaviour shows that when intro-
duced to a new environment, the robot prefers to explore
unknown locations. After it has obtained the spatial models,
it starts to revisit these locations in order to learn about their
dynamics. Finally, the learned dynamics allow the robot to
determine which locations to visit at which times.

The evaluations performed in this paper involved several
assumptions to simplify the problem. The first assumption
was that the time the robot spends moving to a particular
location is negligible compared to the time it takes to
make an observation. The second assumption was that the
observations locations were predefined and fixed in time.
While these assumptions were needed for validation purposes
in this work due to the known difficulties of ground-truthing
when comparing exploration strategies, our future work will
involve relaxing these assumptions to achieve a more general
and more autonomous spatio-temporal exploration method.
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