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Autonomous Learning of Object Models on a
Mobile Robot

Thomas FiAulhammer!, Rares AmbrusQ, Chris Burbridge3, Michael Zillich?,
John Folkesson?, Nick Hawes?®, Patric Jensfelt2, Markus Vincze!

Abstract—In this article we present and evaluate a system
which allows a mobile robot to autonomously detect, model and
re-recognize objects in everyday environments. Whilst other sys-
tems have demonstrated one of these elements, to our knowledge
we present the first system which is capable of doing all of
these things, all without human interaction, in normal indoor
scenes. OQur system detects objects to learn by modelling the
static part of the environment and extracting dynamic elements.
It then creates and executes a view plan around a dynamic
element to gather additional views for learning. Finally these
views are fused to create an object model. The performance of
the system is evaluated on publicly available datasets as well as
on data collected by the robot in both controlled and uncontrolled
scenarios.

Index Terms—Autonomous Agents, RGB-D Perception, Object
detection, segmentation, categorization, Visual Learning, Motion
and Path Planning

I. INTRODUCTION

OBOTS operating in unstructured, real-world environ-
ments need to be able to autonomously learn about,
and adapt to, their environment. One important element of
a mobile service robot’s environment is the objects present
there. To this end we address the problem of autonomously
learning models of objects. In this article we present a novel
approach that allows a mobile robot to create 3D models of
the dynamic objects it encounters in its environment during
long-term autonomous runs, without human intervention.
Having 3D models of objects is important for various tasks
in robotics such as recognition, tracking, and manipulation. As
such, many object modelling approaches have been developed
by the computer vision community. However, most modelling
approaches must be used offline in a controlled setup, requiring
a user to define the objects of interest in advance [1]-[4].
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Equipping a mobile robot with the ability to build a model
autonomously, from detecting an unknown object to creating
a 3D model ready for re-recognition, requires all parts of
the system to be unsupervised and robust to uncontrolled
configurations of the environment.

In the remainder of the paper our work assumes a mobile
robot which is able to localise and navigate in the target
environment, and has an RGB-D camera mounted on a pan-
tilt unit (PTU) at a suitable height for observing objects of
interest in this environment. For our experimental work we
use a MetraLabs SCITOS A5 platform running ROS, with an
ASUS Xtion Pro mounted on a PTU 1.8m above the ground.
We use ROS packages to localise in a static map using adaptive
Monte Carlo localisation [5], and navigate using the dynamic
window approach [6].

The overall approach we take to autonomously learning
object models can be seen in Figure 1. The mobile robot
patrols a set of waypoints in its environment. At each location
it creates and updates a model of the static parts of that location
using its RGB-D camera (Section III). This model is then used
to detect clusters of points that have changed or moved at that
location. These clusters are then assessed for observability
by the mobile robot (Section IV), then one is selected for
additional viewing. These additional views are then used to
create a 3D model of the object that can later be re-recognized
in the environment (Section V).

The main contribution made by this article is the description
and evaluation of a mobile robot capable of detecting, mod-
elling and re-recognizing objects in everyday environments,
completely autonomously. Whilst other systems have demon-
strated one of these elements, to our knowledge we present the
first system capable of doing all of these things, all without
human interaction in normal indoor scenes. We also provide a
quantitative evaluation of our system’s components, compared
to the qualitative evaluations found for related work in the
literature. Finally, we contribute a dataset of objects captured
from a mobile robot which can be used to benchmark similar
approaches in the future, and for multi-view object modelling
and object recognition.

II. RELATED WORK

No other robot system in the literature is able to au-
tonomously segment, learn and then subsequently re-recognize
the learnt objects in normal indoor scenes. However, many
existing works address parts of the autonomous object learning
problem. In the following sections we review literature related
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Fig. 1: The learning process on the robot from start to finish for one of the uncontrolled experiments.

to the main parts of this problem, and compare them to the
approaches we are using.

A. Detecting objects from dynamics

Our system relies on detecting changes between observa-
tions of a scene in order to identify objects to learn. Herbst et
al. [7], [8] also use scene differencing to detect changes
between observations, but with an emphasis on sensor noise
modelling and online view registration for SLAM, rather than
object learning. Whilst they do build models of the changed
scene elements, these are from single views, and are not
robust for re-recognition in cluttered scenes or from alternate
views. In contrast we build models from additional, closer (less
noisy) views, and the models allow robust re-recognition. In
comparison to Herbst et al. we perform an evaluation of object
modelling and re-recognition performance, whilst they look at
measuring matched scene differences across observations.

Finman et al. [9] also use differences between RGB-D
maps to create object models. However, their work focuses
on learning segmentation methods to allow the objects to
be identified in future runs. This is fundamentally different
from our work, where we aim to build complete 3D models
of objects. Unlike [9], we compare both the quality of the
resulting model as well as the recognition accuracy of the
system, and we inspect observation differences from multiple
views rather than a single one. However, since we share some
of the goals of [9], we include an experimental comparison
between the relevant parts of our systems in Section VII.

To reiterate, despite similarity in overall aims, the related
work discussed above only solves part of the problem we
address in this article, and therefore cannot be considered for
direct comparison to our main contribution.

B. View planning

Once it detects a potential object via changes between
observations, our systems performs view planning to create
trajectories which can provide additional views of the object.
This is essential, as a single view of an object can only yield
a partial model of it (due to occlusions, unobserved surfaces
etc.). View planning for object recognition or modelling is
an active research area, with many existing approaches for
obtaining the next-best view (NBV) of an object or volume

in space. Most existing work (e.g. [4]) considers the use of a
robot arm either with an eye-in-hand configuration, or a setup
that picks up an object and manipulates it in front of a static
camera. This effectively allows the camera pose 6 degrees of
freedom, permitting any view of the object to be obtained. In
contrast, we must obtain views in a more constrained setting:
from mobile robot in an environment with obstacles. Velez
et al. [10] present an algorithm for planning the trajectory of
a mobile robot that optimises the probability of recognizing
a known object, but we cannot use any prior models as our
target objects are unknown.

Vasquez-Gomez et al. [11] combine a mobile robot and
an arm to find NBVs for object modelling using a depth
camera. Their approach accounts for the position uncertainty
of a mobile platform, and considers the distance between
consecutive views to ensure that an iterative closest point (ICP)
alignment algorithm has enough frame overlap to perform
well. Our work has a number of significant differences to
this: (a) we do not use a manipulator for arbitrary view
generation; (b) we aim to keep the object in view throughout
the trajectory, allowing accurate view registration with camera
tracking instead of ICP; (c) we consider navigation in cluttered
environments and generate complete view trajectories rather
than a finite set of view points.

C. Object modelling

Our system feeds the views obtained during the execution
of a view plan into an unsupervised 3D object modelling
process. Object modelling typically involves steps to accu-
rately track the moving camera, segment the object from the
background, and post-processing such as global camera pose
optimisation and surface refinement. Most existing methods
use an interactive approach where models are learnt either on a
turntable [1], [2] or by in-hand scanning [3], [4]. These highly
constrained setups allow: the distance of the object to the
camera to be closely controlled; objects to be easily segmented
from the background; and tracking via fiducial markers. Whilst
such constraints mean that these approaches usually achieve
very appealing object models, they are unrealistic in our
autonomous, unsupervised setting.

Stiickler and Behnke [12] proposed an efficient SLAM-
based registration method where RGB-D images are repre-
sented as a multi-resolution octree map of spatial and color
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measurements. Object models are built by selecting a volume
of interest, defined by a user as an input mask in one image,
plus the height above the support plane. In our method, the
input mask comes from the detection of dynamic clusters in
the scene and extending the point sets of these clusters with
additional points observed in subsequent views.

III. DYNAMIC CLUSTER DETECTION

The first step in our autonomous object learning process is
the segmentation of clusters of points from the environment
as candidate objects to model. For this we use the Meta-
Room method [13], which performs segmentation based on
the movement of clusters between observations. This method
makes no prior assumptions such as CAD models or the
physical features of objects. We chose this method over a
more generic mapping approach because it more efficiently
targets just detection of dynamic clusters. In [14] we show
that the clusters detected through this method can be used to
build spatial-temporal models of objects, while in the current
work we use the segmented clusters as input to an RGB-D
modelling and reconstruction pipeline.

A. Modelling the static structure

The Meta-Room method maintains a model of the parts of
the environment which appear to be static. This information
can then be used to segment clusters of points which are
seen to be dynamic. In our current system the robot performs
scheduled visits to fixed waypoints, where it maps the static
spatial structure at each waypoint using a Meta-Room. Note
that all steps in our process, up until the robot starts executing
its viewplan, occur with the robot at the waypoint where it
performs the most recent observation to update the Meta-
Room. For completeness we briefly describe the Meta-Room
method [13] here. First, we define the difference D between
two point clouds P, Q as

D=P\Q={pcP|YqeQ, |p,ql| >} (1)

where § is a distance threshold set to lcm. Given a new
observation B acquired at a waypoint, and the Meta-Room
for that waypoint M, we compute the difference sets

Di=B\M, D,=M\B )

Once the difference sets D1 and D5 have been computed we
perform a two-way analysis about occlusions: elements of D1
which are occluded by the Meta-Room are added to the static
structure, while elements of Dy which are not occluded by the
new observation are removed from the static structure. This
iteratively eliminates those elements observed to be dynamic
from the Meta-Room, while at the same time we keep what
could be static but is currently occluded.

B. Extracting dynamic clusters

We extract dynamic clusters from a new observation by
running a Euclidean clustering algorithm on the difference
between the observation and the Meta-Room (as shown in
Figure 2a). We also find a camera pose for the object, to

initialise the camera tracker. To do this, we place a number of
virtual cameras at the position of the robot, each corresponding
to a different PTU orientation, then project the segmented
object in the frustum of each camera. We select the pose which
fully contains the object, then compute a mask corresponding
to the object projected in the image of the camera at that pose.
We use this computed mask, denoted by Oy, to initialize the
object modelling algorithm described in Section V. Figure 2b
shows the image corresponding to the selected camera pose,
with the object mask in red.

g S

(a) Meta-Room (RGB) and seg-
mented dynamic cluster (red).

(b) Camera image containing seg-
mented cluster and mask (red)

Fig. 2: Dynamic clustering on a controlled experiment.

IV. PATH PLANNING AND CAMERA TRACKING

Given one or more segmented dynamic cluster, the robot
must choose one from which to gather additional views.
During viewing, obstacles must be circumvented, the camera
must be kept close to the object, and camera motion must be
minimised to improve camera tracking. We consider a non-
holonomic robot equipped with a PTU-mounted camera. We
therefore separate the problem of navigating around an object
from that of keeping the camera focused on the object.

A. Planning a trajectory

Our approach has two steps: (i) find an intermediate set
of viewpoints around the object that the robot can fit into;
(i1) attempt to connect these points to form a complete trajec-
tory. The set of v intermediate points is found by considering
v evenly spaced radial lines centred on the object on the down-
projected 3D map, and finding the first pose along each line
where the robot footprint fits. The number of radial lines to
consider (20 in this work) depend on the expected object size;
if the robot is learning large objects then more positions need
to be considered than for smaller objects.

The down-projected 3D map is formed by considering all
points in the observation point cloud B which are at a height
that the robot could collide with. The robot is considered
to fit at a point in the map if none of the down projected
points fall within an inflated robot footprint, and the position
is not further than a maximum distance d,,x from the robot.
Figure 3a shows the selection of the intermediate view points.
The value for d,,y is dictated by the sensor being used. We use
2m as images taken further away are too noisy for creating
an object model. If the robot were to be expected to learn
large objects, a larger value would be required as the distance
is calculated from the centre of the object. In the case where
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multiple dynamic clusters have been extracted from the meta-
room, at this point we select the cluster which yields the largest
number of intermediate viewpoints.
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(a) Intermediate trajectory points are
first selected around the object.

(b) Points are then connected into
candidate observation trajectories.

Fig. 3: Planning candidate trajectories for observing objects.

Subsequent intermediate views are connected by planning a
path between them. We do this using the NavFn planner!.
Joining all inter-view paths together results in a trajectory
passing through each intermediate view point. For every pair
of adjacent viewpoints, if the length of the path between them
is significantly more than the straight-line distance between
them (i.e. the robot has to make a detour around obstacles),
the trajectory is split. The threshold for deciding when to do
this is dependent upon the reliability of the camera tracking.
If the camera can be reliably tracked across long trajectories
distant from the object, then there is no need to split the plan.
Evaluating the connections between all adjacent viewpoints re-
sults in a set of candidate observation trajectories for observing
the object, as shown in Figure 3b.

In order to select a view trajectory to be performed, a plan
is made between the robot’s current position and the start/end
points of each of the candidate observation trajectories, with
the nearest one being selected. This strategy could result in a
shorter trajectory being selected over a longer one. However,
as camera tracking must be performed once the robot starts
moving, more distant destinations result in a higher likelihood
of camera tracking errors (and ultimately a worse object model
as a result).

B. Maintaining the object in view

As a non-holonomic robot drives along an observation
trajectory, the direction to the object will usually be approx-
imately perpendicular to the direction the robot is heading.
We maintain the object in view by controlling the velocity of
a PTU on which the camera sits. As the robot navigates, its
localised transform tree allows us to transform the centre of
the object Oy into the current optical frame and command the
PTU such that the object is kept in the image centre.

C. Camera tracking

For precise registration of training views the robot poses
from AMCL are not accurate enough and we therefore employ

I'See the ROS navigation stack: http://wiki.ros.org/navfn.

camera tracking (short term visual SLAM) from the point
where the robot selected one of the objects for observation
until the object is completely modelled (i.e. during the ap-
proach to the observation trajectory and travelling along the
observation trajectory). Our camera tracker [1] is based on
a combination of a frame-by-frame KLT-tracker [15] with a
keyframe-based patch refinement stage which estimates the
pose of the robot with respect to the object.

To reduce the drift accumulated during sequential regis-
tration of images, the tracker generates keyframes when the
camera moved sufficiently far. In our case this is by more than
15°. This value is due to the SIFT feature descriptor which
we use when building (and recognizing) the object model.
SIFT is invariant up to about 30° [16], so we need views to
change by less than this amount. We select 15° as a trade-off
between creating many keyframes and therefore a denser 3D
object model, and selecting fewer keyframes for computational
and memory efficiency. Keyframes S serve as reference point
clouds for refinement of the estimated camera pose such that
local image patches from the current frame are projected into
the corresponding patch in the reference keyframe. The refine-
ment step includes warping the image patches and registering
them by a normalized cross-correlation, which gives a sub-
pixel accuracy as well as a confidence measure. As a post-
processing step we do bundle-adjustment over the keyframes,
which are then used as training views for learning the object
model.

V. OBJECT MODELLING

We now grow an object model over the training views
(i.e. keyframes), starting from the initial view of the cluster
extracted from the Meta-Room. S; represents the scene at
viewpoint ¢ as an RGB-D point cloud. Points on the object
within this view are denoted by O; € S;. The object points
in the initial view Oy are the points of the dynamic cluster
detected in Sec. III-B. The object points in subsequent views
are initially created by projecting O;_; into S; to create
O; (see Section V-B) and then filtered (Section V-A). The
filtered points are then grown to cover more of the object
(Section V-B) and then accumulated into an object model
(Section V-C). In the following we assume that the object
is rigid and its surface can be sensed within the specifications
of the RGB-D camera (i.e. not transparent, shiny or too far
away). Since we do not use prior information about objects,
cluttered objects will be merged together.

A. Pre-Processing

Typical RGB-D cameras suffer from various imperfections
such as measurement noise and non-perfect RGB-depth regis-
tration, especially at depth discontinuities [17]. Furthermore,
our approach has to deal with inaccurate camera pose estimates
coming from a possibly noisy camera tracker, and discretiza-
tion errors when extracting the initial dynamic cluster. To
reduce the influence of these imperfections, view point clouds
are filtered in the following steps:
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a) Erosion and Outlier Removal: Since depth discon-
tinuities (e.g. object boundaries) are prone to increased noise
artefacts [17], we apply a morphological filter to remove these
artefacts. The morphological filter acts on the silhouette of
the current object O; and consists of a 5 x 5 closing filter
which fills small holes within the silhouette, as well as a
subsequent 3 x 3 erosion filter which removes points at the
object boundary. The closing operation ensures that missing
data does not deteriorate the resulting silhouette. Furthermore,
following [18] we compute the neighborhood statistics of each
point in O, and remove statistical outliers.

b) Supervoxel Based Refinement: Since surface normals
contain crucial information about the object’s geometry, we
filter noisy measurements of the normals by clustering S; into
supervoxels with a resolution of SHmm, then average surface
normals over each supervoxel. This provides a more reliable
description of the surface normal. Also, we remove poorly
supported supervoxels from O, where < 25% of points belong
to Ot.

c) Plane Clustering: To avoid that objects are clustered
together with their supporting plane, we explicitly deal with
planar surfaces. We compute planar clusters in S; by a
RANSAC-based approach, then check how much of the cluster
belongs to O;. A cluster C; is removed if it is not sufficiently
supported by Oy,

ICi N Oy
|C:i]
with threshold g set to 0.25 in our experiments.

To avoid removing planar clusters belonging to the object
but appearing only later in the sequence, we do not remove
planes which were invisible in Sy. A point is classified as
invisible if its projection to the first view is either outside the
field of view or occluded by another point in Sy. Invisible
points within a cluster C; are represented by C; 7. The cluster
is only removed from S} if

< Yapi, 3)

(&
with a threshold parameter d;; (set to 0.25).

We also group planar clusters across views based on their
relative orientation and position, and remove new planes if
they belong to a group of previously removed planes. This
allows us to remove planar points which have been occluded
in other views, e.g., small table parts appearing behind objects.

The outcome is a filtered object cloud Og, and filtered scene
cloud, Sg.

< ﬂViS7 (4)

B. Growing Object Clouds

The modelling process includes finding points in the filtered
view ng\t>0 belonging to the object Op from the first view.
Object points in St might have been invisible or unlabelled
in any previous views S;.r and so have to be inferred by
using certain assumptions. In our work, we assume objects
consist of smooth surfaces. To reconstruct an object model,
we project all object points labelled in previous views into
the current view and label neighboring points in Sg within

a radius of lem as O;. This initial object cloud is then
filtered by the steps described in V-A and evolved by a region
growing step. The region growing step iteratively searches for
scene points s € S { \ O{ within a radius of lcm to any point
oc Otf . These candidates are labelled as object if they fulfil
the smoothness constraint, i.e. if the surface orientation 7n(s)
around point s aligns to (o) by an angle below 20°.

C. Fusing Object Clouds

At this point, the framework contains a set of object clouds
as a result of the previous steps, each with a respective absolute
camera pose. Instead of reconstructing the object model by a
simple summation of these clouds, we exploit the fact that
points are observed from multiple views. According to [17],
each point can be associated with an expected axial and lateral
noise term, o, and oy, respectively, depending on the distance
to the camera and position of the projection onto the image
plane. To accommodate the increased noise level at depth
discontinuities, we compute the Euclidean distance d of each
point to its nearest RGB-D edge [19] and assign it a noise term

2

Oe = kexp_#, with £ = 1m and D = 2mm. Subsequently,
we organize the accumulated points into an octree structure
and only sample points within a cube size of 2mm with the
lowest corresponding sum of squared noise terms, 02+07% +0?2.
Finally, we remove statistical outliers as described in Sec.V-A.
An example result of this post-processing filter is shown in
Fig. 4.

VI. OBJECT RECOGNITION

To identify learnt objects within the environment, we use
the object recognizer from [20]. To exploit the strengths of
different feature descriptors, this recognizer extracts multiple
features in parallel pipelines, generates object hypotheses by a
graph-based grouping of merged feature correspondences, and
verifies these object hypotheses by finding a global optimum
solution that best explains the scene in terms of number of
metrics. In our framework, we extract two feature descriptors,
(i) sparse SIFT [16] back-projected to 3D for visual texture
information and (ii)) SHOT [21] features sampled uniformly
over all points within 1.5cm for local geometrical traits. These
features are extracted from all training views (i.e. keyframes)
of the object model and matched to the observed scene by L1
nearest neighbor search.

VII. RESULTS

We have evaluated our system’s performance on the task of
autonomously learning objects models in an indoor environ-
ment, and on publicly available datasets.

A. Learning Objects with the Robot

In this experiment, the robot navigates to predefined way-
points within a typical household environment, creates a Meta-
Room at each waypoint, from which it extracts dynamic ele-
ments then plans a trajectory around them using the techniques
described previously. In between visits to the same waypoint,
we put 10 different objects in the room. The objects are typical
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Fig. 4: An example of the incremental object modelling pipeline. The autonomously segmented object is marked green, and
the transfer of this to a subsequent view is marked red. In Sy, the model only describes a small part of the object due to
sensor noise and object self-occlusion. This is partially compensated for in S; by our region growing and filtering approach.

rigid household objects with and without visual texture on their
surfaces.

We created two scenarios, one more and one less controlled.
For the controlled scenario, we put the objects on a round
table, which is easily accessible from all sides, and supported
the camera tracker by placing a textured piece of paper on
the table (see Fig. 2). Each object was placed in 4 to 5
different positions on the table resulting in 47 patrol runs (and
806 extracted keyframes). For the less controlled scenario,
we put them in less accessible locations with surrounding
obstacles like chairs, and without placing any artificial texture
in the scene (see Fig. 1). For these uncontrolled scenarios we
recorded another 30 runs (188 keyframes). We compare the
outcome of our approach in terms of quality and recognition
rate with models built offline (on a textured turntable with the
camera close to the object) using the method of [1].

Using the annotation tool [22], we annotated the identity
and 6DoF pose of each present object in each of the controlled
keyframes. But given that each modelled object is in a different
coordinate system, we only check for object presence and
not for correct pose estimation. RGB-D input streams and
annotations are publicly available (goo.gl/qamRPd).

We first evaluate the performance of the initial object
labelling O with respect to the visible ground-truth object in
the first keyframe. To obtain these visible parts, we project
each model point p,, of the offline learnt model onto the
image plane of view S using the ground-truth object pose
to obtain pixel location (u,v). The depth at this pixel is then
compared to the z component of p,, and p,, marked visible
iff the absolute difference is less than lcm. These visible
points are then aligned to the initial labelling by ICP and we
check if there is a point in Q¢ within a radius of 2cm, and
so explains the ground-truth point. The recall is defined as
ratio of explained ground-truth points to the total number of
ground-truth points. Similarly, the precision is defined as ratio
of explained model points to the total number of ground-truth
points. Averaged over all controlled patrol runs, we achieve
a recall of 0.8(£0.15) and a precision of 0.99(%0.01). This
means our dynamic clustering approach typically labels a
significant part of the object and hardly any points outside the

object; thus providing a good seed for the subsequent object
modelling step.

Next, we qualitatively compare our modelling approach with
objects modelled offline [1]. As shown in Fig. 5, in some
situations the camera tracker produces inaccurate registration
of the clouds. This is especially visible for the muesli and
cooler box. Most likely this was caused by either an abrupt
movement of the PTU or a long path taken by the robot
without rich texture information. In one case, the object
modelling failed to segment the table plane and clustered it
to the cooler box. We do not have quantitative results for
the uncontrolled scenes, but our observations showed that
extraction performance was similar to the controlled cases,
with very few non-object points clustered to the object model.
In the uncontrolled patrol runs the robot sometimes had to use
views further away from the object, with more distant views
increasing sensor noise. This resulted in models missing points
on certain materials (e.g. monitor or microwave) or the region
growing failing due to noisy surface normals.

Finally we evaluate the performance of recognition. For
each patrol run, we train our recognizer with a different set
of objects. For the offline based recognizer, we use the 10
object models trained offline. To evaluate our approach, we
take one object model learnt from a controlled or uncontrolled
patrol run and add the remaining 9 object models from the
offline set as distractors. Using this model database, we test
for object presence in the keyframes of the controlled runs
containing the online trained model, leaving out the ones used
for training. The recognition performance is measured by the
f-score averaged over all tested keyframes with respect to
the coverage of each (partial) object model. The coverage
is estimated by putting the model into a fixed-sized voxel
grid and counting occupied voxels with respect to the ones
occupied by the respective turntable object. While for ideal
models, this gives a fair comparison, note that in cases of
badly aligned training views (e.g. “double-wall” effects) the
coverage might be overestimated resulting in worse measured
performance of our method. To show the improvement of
recognition with additional training views, we trained the
controlled models and the ones learnt on a turntable on
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Fig. 5: Objects learnt autonomously in controlled (middle; dashed lines) and uncontrolled (bottom, o X A) environments,
compared to offline learnt models (top row; blue solid line). The figures on top show the recognition rate of the respective

model with respect to the completeness of the object model.

subsets of successive training views. Results for recognition
are at the top of Fig. 5. Each model for an object produces
a different line on the graph depicting fscore vs. model
coverage. For each uncontrolled case, we use all the (typically
few) training views to compute a single coverage and fscore.
These graphs show the trend that gathering additional views
improves recognition performance, and that models created
in the uncontrolled scenes are useful for recognition, but
are (inevitably) comparable to a less complete model. As
mentioned above, training views are not always well registered
(e.g. muesli) resulting in poor recognition performance for
autonomously learnt models. Nevertheless, the average recog-
nition performance is comparable to the one for offline trained
models. In fact, the head sculpture autonomously learnt in
the controlled setup achieves even better results than the one
trained offline. This can be explained by the fact that we have
more similar lighting conditions in both training and testing,
and that the Kinect sensor uses automatic white-balancing
which changes the perceived color used for verifying generated
object hypotheses. The median computation time for detecting
an object was Ss.

B. Learning Objects from Datasets

To isolate the learning process from failures coming from
bad object initialization or camera pose estimates, as well as to
quantitatively describe the results, we evaluated our method on
the Willow (rll.berkeley.edu/2013_IROS_ODP) and TUW (goo.gl/
gXkBOU [23]) RGB-D datasets. Both datasets contain scenes
with rigid objects observed by a Kinect camera from multiple
viewpoints plus ground-truth camera and object poses. The
TUW dataset contains highly cluttered scenes where objects
are only partially visible across all viewpoints. We therefore
perform our evaluations only on TUW sequences 6, 7, 8, 10,
11 and 12, where most objects are separated from each other.

In this section, we evaluate the object modelling in terms of
model completeness. Given we know which parts of the object
are visible over a sequence, this measures how much of that
visible object is learnt correctly by our approach. We use the
ground-truth annotation of the first view as Oy, then learn
the object model over the remaining views of the sequence.
Instead of comparing the autonomously learnt object to the
full object modelled offline on a turntable, we compare it only
to the parts of the offline model which are visible in the test
sequence using the visibility criterion above. The ground-truth
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TUW set id Willow

‘ 6 7 8 10 11 12 mean ‘ mean

Initial Og | .78/1. .80/1. T4/1. /1. 81/1. 1. 7711 58/1.
[9] 90/.78  94/1. 90/.81 .8l/1. .97/85 .93/70 .91/.82 | .84/.71
Our .90/.82  .92/1. 92/1. .88/1.  .85/.89 .90/.76  .89/.87 | .97/.92

TABLE I: Completeness of learnt models defined as re-
call/precision of their points with respect to visible ground-
truth points.

object model for a specific test sequence is then the offline-
learnt 3D model containing any point visible in any of the
viewpoints in the sequence.

Using the precision and recall measure described above,
we compare our method to (i) the initially labelled object
Oy and (ii) to the method described in [9] (where we use
additional views to provide additional opportunities for seg-
mentation). For the latter, we optimize the segmentation ac-
cording to Eq. 5 in [9] with O; := Oy and the parameter range
T € ]0.00001,0.1],k € [0,0.03] with 5 and 20 equidistant
steps, respectively. We optimize over both color and normal
edge weights. To speed up the segmentation, we downsampled
the registered cloud by a voxel grid filter with a resolution of
lcm, as in [9].

Table 1 shows our method generally performs well, and
performs as well as, or better than, [9] in many cases. This is
particularly noticeable in scenes which do not contain clutter,
e.g. TUW sets 8 and 10, and across the Willow dataset. In
contrast, the low precision value for TUW set 12, where many
objects are cluttered together, shows the limitations of our
region growing approach. The comparison to O shows the
benefit of autonomously gathering additional views after the
initial detection, something which is not done in existing work.
The average point-to-point distance of the object learnt by our
method to the ones learnt offline by [1] in 1.6cm for the TUW
and 1.7cm for the Willow dataset. This is approximately the
noise level we expect from the ASUS RGB-D sensor for these
distances. On an Intel QuadCore i7 machine with 8 x 2.8GHz
CPUs and 32GB RAM, learning objects from the TUW dataset
took on average 39s for our method compared to 169s (161s
for optimization) for the segmentation method in [9].

VIII. CONCLUSIONS

In this paper we presented a mobile robot that is capable
of autonomously learning object models in everyday environ-
ments. Our approach shows that a mobile robot equipped with
an RGB-D camera can successfully segment out interesting
parts of the scene, build object models of these parts from
multiple views, and re-identify them in future observations.
Unlike other approaches, this complete pipeline is executed
in an unsupervised way and without any prior knowledge. In
addition, we believe the data we have collected, consisting of
repeated visits to various waypoints and complete recordings
of the robot navigating around segmented objects, can be
of service to the robotic community and therefore make it
publicly available (data: goo.gl/qamRPd ; code: github.com/
strands-project).

As future work we plan to look at how we can improve
the models we have created by fusing information from

multiple runs together. Moreover, we would like to select
which objects to model not just based on observability but
also based on whether they have been modelled before, with
what accuracy etc. And finally, we would like to augment our
system to actively search the environment for objects which
could improve the partial models it has already built.
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