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Abstract—In this work we present the Probabilistic Primitive
Refinement (PPR) algorithm, an iterative method for accurately
determining the inliers of an estimated primitive (such as
planes and spheres) parametrization in an unorganized, noisy
point cloud. The measurement noise of the points belonging to
the proposed primitive surface are modelled using a Gaussian
distribution and the measurements of extraneous points to the
proposed surface are modelled as a histogram. Given these
models, the probability that a measurement originated from the
proposed surface model can be computed. Our novel technique
to model the noisy surface from the measurement data does not
require a priori given parameters for the sensor noise model.
The absence of sensitive parameters selection is a strength of our
method. Using the geometric information obtained from such an
estimate the algorithm then builds a color-based model for the
surface, further boosting the accuracy of the segmentation. If
used iteratively the PPR algorithm can be seen as a variation
of the popular mean-shift algorithm with an adaptive stochastic
kernel function.

I. INTRODUCTION

Robots can capture 3D point cloud data using several types of
sensors such as laser range finders, stereo cameras and struc-
tured light sensors. When combined with a calibrated camera,
these 3D sensors can produce colored 3D point clouds which
provide an informative visual snapshot of the environment.
This combination of sensors is often called a RGB-D sensor.
Popularized by the release of the Microsoft Kinect sensor back
in late 2010, RGB-D sensors have received a large interest by
the computer vision and robotics communities.

Man made environments contain large amounts of informa-
tion in the form of easily parametrized surfaces such as planes,
spheres and cylinders. Detection, estimation and segmentation
of these surfaces can be used to solve many robotic problems,
such as object segmentation, simultaneous localization and
mapping (SLAM), navigation and planning. Hence, despite the
noisy observations obtained from the sensors, we persistently
try to autonomously extract such surface information from our
environments. For vision based tasks such as object recognition
and scene characterizations , the capacity of the robot to
differentiate between such geometric primitives and other
objects is of high utility. Hence, when dealing with 3D images
or maps in the form of point clouds, it becomes beneficial to
determine which points of the point cloud belong to the surface
inliers and differentiate them from surface outliers, see Fig.(1).

This assignment is limited by the sensor noise. As a
direct result, efforts to improve point cloud segmentation have
focused on accurately modelling the measurement noise. Most
of these methods have built a priori models of the sensor noise.
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Fig. 1: An example point cloud with a desktop scene. All
the points detected by the PPR technique as desktop surface
inliers are highlighted in pink, outliers have their original
color. Notice how the object points are avoided from being
misclassified as inliers. The typical result from plane extraction
without our refinement on this scene is to include the bottom
few centimetres of objects as table points.

For parametric surface estimation from point clouds the
two widely accepted algorithm categories are the RANdom
Sample Consensus (RANSAC) algorithm [1] and the Hough
transform [2], [3]. Both these techniques typically require
well calibrated, accurate camera sensors and finely hand tuned
parameters to provide good surface and inlier estimates. The
Mean-shift algorithm [4] is a greedy iterative technique which
can be used for surface refinement given an initial estimate.
It finds an accurate model by maximizing the number of
points close to the surface. It works by iteratively estimating
the parameters: performing a weighted re-estimation of the
surface parameters, using all the 3D measurements weighted
by a characteristic kernel function ω operating on distances
of the points from the surface; Inliers can consequently be
detected as measurements where ω is larger than some pre-
defined threshold.

In this paper we present the Probabilistic Primitive Refine-
ment (PPR) algorithm for accurately estimating the surface pa-
rameters and inliers, given a rough initial estimate as provided
by e.g., RANSAC or the Hough transform. Our algorithm can
be seen as a variation of the Mean-shift algorithm. Assuming
that a set of measurements consist of noisy data with surface
inliers and outliers, we propose a kernel function ω in which
the weight of ω is proportional to the probability of a mea-
surement being an inlier. The contributions of this paper lie in
the formulation of a novel ω. Rather than using a priori built
models of the sensor noise we take another approach in which
we look at the evidence from the measured scene to directly
build noise models from the measurement data, by leveraging978-1-4673-9163-4/15/$31.00 c© 2015 IEEE



the insight that observed things in a scene can exist in front
of surfaces but not behind them as a simple consequence of
occlusion. This means that observable things will be on one
side of the underlying surface primitive. We hypothesize that
our technique could outperform the above mentioned three
categories of techniques by being more robust to sensor noise,
less reliant on hand tuned parameters as well as better being
able to handle non uniform background noise.

To quantify the probability of a point being an inlier it
is important to study the measurement noise of the sensor.
The measurement noise depends on many environment specific
aspects such as the proximity and angle of the sensor to the
surface, lighting conditions, surface material, reflectivity, and
texture. Given that all of these properties vary in environments,
it is impossible to, a priori, build a precise measurement noise
model with optimally tuned parameters. The PPR algorithm
solves this problem by dynamically modeling the measurement
noise from available data using a modified least squares formu-
lation. By integrating over the measurement noise distribution,
PPR can accurately estimate the number of inliers expected
for the surface, given a required accuracy. This removes the
normal requirement of a user defined thresholding parameter
on ω for inlier calculation.

Color information in RGB-D sensor data is a discriminating
feature that can be exploited for surface characterization. As-
suming accurate calibration, Color information can especially
be used at boundary regions where the sharp edges could
be drowned in depth measurement noise but can still be
classified based on color. The PPR algorithm builds a color-
based histogram in order to learn which colors are correlated
to likely surface inliers. This is then used to boost the accuracy
of the PPR algorithm.

The algorithm is evaluated in three experiments, two using
public datasets ([5], [6]), with favourable results. See Sec-
tions V, VI and VII for more details.

II. RELATED WORK

Probably the most popular technique for surface estimation
from point clouds today is the RANSAC algorithm [1]. The
RANSAC algorithm is an iterative, robust estimation technique
where a subset of measurements is randomly selected and used
to form a hypothesis which is then validated by calculating
the support for the hypothesis using the rest of the data. The
typical formulation using RANSAC can give the surface with
most support by the data of a point cloud.

While flexible, RANSAC hinges on the assumption that it
is possible to accurately find the inlier measurements given
a proposed solution. As discussed in the introductory section
this is far from simple due to measurement noise.

In [7] an efficient RANSAC based algorithm is presented
and used for detecting planes, spheres, cylinders, cones and
tori. In that paper the performance of RANSAC is increased
by using a sampling strategy which samples points using a
pyramid, controlling the spatial locality of the samples picked.

In [8] superquadrics were fit to everyday objects such as
bowls and cups using RANSAC. Compound objects are created
using connectivity. Using compound models the system is able
to model complex objects such as cups with handles.

The Hough transform [2] is a voting based algorithm where
the surface parameter space is discretized into bins. The data
points add support to a bin if the bin’s parametrization could
generate the data point. The Hough transform is often used in
the context of detecting lines but can also be used to detect
other shapes. In [9] the Hough transform was extended to work
for arbitrary objects described by some predetermined model.

As a result of the abundance of planar surfaces in indoor
environments, a large body of work has been spent on detecting
and estimating the parameters and inliers of planar surfaces
from point clouds.

In [10] multiple variations of the Hough transform were
evaluated for plane detection in 3D laser scan data. The
Randomized Hough transform [11] was found to provide
exceptional results with regards to execution time.

In the work of [12] an efficient plane detector was intro-
duced that relied on an efficient approach to normal clustering
through the use of voting. When a cluster of normals was
detected the measurements in the cluster could be separated
into planes by detecting the clusters of points along the normal
axis.

In [13] an efficient plane segmentation was proposed which
utilizes the connected component algorithm using a distance
metric which can use color, normals and depth information in
order to group similar points. The segments are then checked to
see if they are planar and if so, refined by growing the segment
to nearby points which fit in the plane and are characterized
by the correct color, giving good results on organized data.

In [14] a plane detection algorithm based on the principle
of region growing is presented. For a found plane a histogram
of points along the normal axis of the plane is calculated and
the peak values of the histogram are used in order to detect
planes. This technique bear a resemblance to our algorithm in
that both rely on the assumption that primitives are detectable
as peaks in histograms of point to surface distances.

In [15] a primitive segmentation algorithm for organized
pointclouds based on region growing is presented. By utilizing
the organized structure the authors are able to efficiently
calculate surface normals and curvature for the measurement
data. Filtering the data using an edge-preserving multilateral
filter taking into account color intensity, normal direction and
depth measurement.

In [16] it was shown that detection of elipses in organized
pointcloud data could efficiently be levareged to detect cylin-
ders, spheres and cones.

Using the generalized Swendsen-Wang sampling MCMC
method, [17] fits planar surfaces using color and disparity
images by fusing super pixels. This work is well tailored to
segmenting RGB-D images because it explicitly models the
noise in the disparity map rather than in a generated point
cloud. The authors propose that this method could be suitable
for other types of primitives as well.

The authors of [18] address a region segmentation prob-
lem in video stream data and utilize an adaptive Mean-shift
Algorithm. They utilize different kernel functions (spherical,
product-based, Gaussian etc.) to iteratively estimate a pro-
posed multi modal underlying probability function, seeded by



the histogram of features extracted on the input data. They
calculate the classification probability for every pixel in the
video frame, based on such probability functions over space
(connected regions) and color. These probability functions
are built using kernels with adaptive parametrizations which
are optimized to suit the instance data the best. Our PPR
algorithm is similar to this contribution in a way that we are
interested in a 2-class classification problem (inliers or outliers)
and utilize a similar concept of finding an underlying inlier
probability function based on geometry and color. In addition
to processing different types of data for different purposes,
we rely on a unimodal Gaussian kernel and employ more
sophisticated signal processing engineering to achieve inlier
and outlier classification.

III. THE PPR ALGORITHM

The Probabilistic Primitive Refinement (PPR) algorithm con-
siders an initial estimate of a surface parametrization pin
of a geometric primitive surface S, a set of measurements
(i.e. points in the point cloud) M = {m0,m1, . . . ,mn}.
PPR outputs a refined parametrization pout and a set K =
{k0, k1, . . . , kj} ⊂ M where K are the measurements classi-
fied to belong to the surface S in M .

PPR assumes that given K, a parametrization p for S
can be accurately estimated. The parametrization p contains
valuable information when constructing K. The main principle
of this paper is therefore to iteratively refine K and p as
described in Algorithm 1. This lies within the bounds of a
family of algorithms rooted in the Mean-shift [4] algorithm.

Algorithm 1 Mean-shift-based Surface Estimation

while not convergence do
1: Compute surface inliers K given surface parametriza-
tion pin
2: Estimate new surface parametrization pout given inliers
K
3: Update pin ← pout

end while

Algorithm 2 Probabilistic Primitive Refinement (PPR)

while not convergence do
1: Build distance to surface histogram H given surface
parametrization pin
2: Fit a scaled Gaussian α ∗G to approximate H
3: Find color-based models for surface inliers and outliers

4: Calculate the probability P (inlier) of belonging to the
surface for each measurement
5: Compute a estimate of surface inliers K from
P (inlier)
7: Estimate new surface parameters pout using P (inlier)

8: Update pin ← pout
end while

While estimation of p given K is straightforward using,
for example, least squares optimization, the determination
of K given p will be flawed if measurement noise is im-
precisely known. The PPR algorithm addresses this aspect
of the problem in particular, by calculating the probability
P (mi = inlier) that a measurement mi is sampled from the
surface S i.e. the probability that a particular point in the point

cloud is an inlier of the surface.

In order to find P (mi = inlier), PPR (see Algorithm 2) as-
sumes that the measurement noise is an identically distributed
random variable, unbiased and symmetric. In the rest of this
paper we use a Gaussian to represent the measurement noise
distribution.

An inherent issue of fitting a measurement noise distribu-
tion to sensor data for a surface are outlier points that lie near
the surface. These points will be asymmetrically distributed,
with nearly all being on the side between the sensor and the
surface. Due to occlusion it is usually not possible to see two
sides of the same surface.

A. Inlier Probability Function

The measurement noise for measurement mi is assumed to be
a zero mean Gaussian as a function of the distance d(mi, S),
where d(mi, S) is the shortest signed distance from mi to
the surface S i.e. the distance has a sign (+/−) depending on
which side of the surface the point is located at. For notational
convenience we abbreviate d(mi, S) as d(mi).

By constructing a smoothed histogram H of the distances
for all for the measurements close (−β ≤ d(mi) < β ,
where β is a neighbourhood threshold) to the surface S,
we can capture the distribution of points which are likely to
be classified into K. An example of a histogram H given a
typical desktop scene (Fig. 2a) is shown in Fig. 2b.

Given the Gaussian distribution N(x−µ, σ) with σ captur-
ing the noise in the measurements of K and a scaling constant
α, controlling the number of inliers in the surface S, we can
calculate the inlier probability P (mi = inlier|d(mi)) as the
ratio of expected inliers to number of actual measurements, see
Eq. (1). For convenience we abbreviate P (mi = inlier|d(mi))
as P (inlier|d(mi)).

P (mi = inlier|d(mi)) =
αG(d(mi), µ, σ)

H(d(mi))
(1)

B. Estimating Parameters For Geometrical Fit

As mentioned in Section I the measurement noise σ for
a surface S depends on several properties particular to the
environment, sensor, surface etc. This makes it impossible to
know a priori with high certainty the σ and α parameter values.
PPR solves this by estimating these parameters (viz. µ, σ, α)
from data.

The estimate of µ is done by a search for a large peak in
the histogram H where µ ≈ 0 (i.e. in the neighbourhood of
0). This means that PPR assumes that the surface S is clearly
distinguishable in the histogram but that the parametrization p
is possibly inaccurate, but not by a large amount. We note that
simply taking the mean of H would not be appropriate as the
data is skewed by the asymmetric outlier distribution.

When estimating α, we rely on the assumption that given
a perfect parametrization p the inlier measurements of S,
dominate the total distribution of measurements in H(µ). We

therefore have P (inlier|d(mi) = µ) = αG(µ,µ,σ)
H(µ) = 1 and can

use the value of α = H(µ). This means that we select α to
be such that the probability of a measurement found exactly
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Fig. 2:
(a) Typical desktop with lots of clutter.
(b) Histogram of distances from estimated planar desk surface in (a). Negative distances are above the desk surface.
(c) Differently fitted Gaussian functions overlaid on the smoothed histogram H of distances from (b) (in green). The red boundary
circles represent the first local minima on either side of the histogram peak. G naive (red) is calculated using standard mean and
variance estimation of H . G decreasing (blue) is calculated using least squares fitting on the data between the aforementioned
boundaries. G left is calculated using least squares fitting on the data between the peak and the left boundary point. G right is
calculated using least squares fitting on the data between the peak and the right boundary point. Notice how G right fits very
well to the histogram on the bottom side of the desk where there is no clutter.
(d) Histogram H of distances from estimated planar desk surface in Fig. 2a and found surface measurement noise estimate G
normalized so that the peak values equals one. G/H shows the probability function for P (inlier|d(mi, p)) where −0.04m ≤
d(mi, p) < 0.04m for a parametrization p found after 15 iterations of PPR.



at the surface to be part of the surface is 1, see Fig. 2c for an
example.

The inlier distribution uncertainty σ is due to measurement
noise. This noise dominates over the clutter near the surface.
We limit the estimation of σ to fit the data about the proposed
peak (µ) in the section that is monotonically decreasing from
the peak, since the increase after that section is presumably due
to clutter becoming dominant. In order to reduce the risk of
unwanted local minima caused by sample variance, we slightly
smooth the histogram H (as seen in Fig. 2b).

Using least squares, σ can be estimated as

argmin
x

∫ b

a
(H(x)− αG(x, µ, σ))2dx where the interval

[a, b] defines the partitioned region. As can be seen in Fig. 2c,
the proposed method leads to considerably better fit of the
peak in H than the naive approach of estimating µ and σ as
the mean and standard deviation of H .

We know that if the data used to estimate σ contains
outliers, the size of σ will be over estimated. We also know
that the outliers due to objects on the surface will only be on
the side facing the sensor because of occlusion (normal sensors
can only see the side of a surface facing the sensor).

In order to increase the accuracy of the estimated model
we can therefore estimate σ individually for each side of µ in
H for the partitioned region (i.e. for the intervals [a, µ] and
[µ, b]) and finally pick the smaller value of the estimated σ, as
that estimate is likely to be influenced by less outliers.

As can be seen in Fig. 2c the measurement noise Gright
fits better to the data of H than the other estimations of the
measurement noise G as it uses a section of the histogram
that contains less outliers for estimating σ. Fig. 2d shows the
probability, as defined in Eq. (1), that a measurement is an
inlier to the planar desk surface in Fig. 2a. We can easily
modify the least squares formulation to prefer solutions where
P (inlier|d(mi)) ≤ 1

C. Estimating Color Probabilities

In many environments color contains strong descriptive in-
formation. Our idea is to use correlation of colors and
the geometrical fit, to learn a set of colors that are more
likely found among the inliers of the surface than among
the outliers. To learn a mapping P (inlier|color(mi)), we
can use P (inlier|d(mi)) for the measurements in M where
−β ≤ d(mi) < β as labelled training data in order to train
a regressive color model. It is important that the learning
algorithm used is robust to incorrectly labelled training data.
In this work we use a model in the form of a discrete grid of
colors in the HSV color space. For every cell in the grid we
calculate the average probability for the measurement data to
be inliers. This model is easy to learn and flexible enough to
learn multi-modal color models. See Fig. 3b for an example
of a learned color model applied to an image.

D. Inlier Inference

For measurements mi we assume that P (inlier|mi)
depends on two independent probability distributions
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Fig. 4: Experiment showing that given different initial values
for the width of the histogram the solution converges to
the same value even if the initial estimate is far from the
convergence value.

P (inlier|color(mi)) and P (inlier|d(mi)), resulting in
Eq. (2).

P (inlier|mi) ∝ P (inlier|color(mi))× P (inlier|d(mi))
(2)

The α is related to the total number of predicted inliers, γ,
by Eq. (3), where w is the bin width of H . Using γ, K can
be constructed by selecting the γ most likely measurements as
inliers.

γ =

∫
∞

−∞

αG(d(mi), µ, σ)dx =
α
√
2πσ2

w
(3)

IV. EXPERIMENTAL SETTINGS

In the experiments that follow, we measure and compare the
performances of the PPR algorithm w.r.t. the two types of
output produced: the surface parameters p and the set of
surface inlier measurements K. On a single core using of
an Intel Core i7 2600K processor, normal runtimes for one
iteration of the PPR algorithm are 4-5 ms without calculating
the color probabilities and 6-7 ms when calculating color
probabilities.

The following subsections provide brief details about the
different techniques that are compared and their parameters.
Given that some of the experiments will be run on unorganized
point clouds and using both spheres and planes we focus our
comparisons to RANSAC and Mean-shift which are both able
to handle such cases and are widely used today.

A. RANSAC Algorithm

RANSAC proposes a solution by randomly selecting a set of
unique measurements from M and calculating the primitive
spanned by the selected measurements. The obtained solution
is scored based on the number of points within a distance mar-
gin δ around the estimated primitive (inlier count). RANSAC
is then run multiple times and the solution with the highest
score is picked. Using the inliers of the best solution found,
the primitive is re-estimated. From experiments we found
that δ = 0.005m provided good results on the benchmarks.
RANSAC will be used both for comparison and initialization
to PPR.

B. Mean-Shift Algorithm

The Mean-shift algorithm is run for 30 iterations. We define
inliers to be measurements where ω > 0.5. A common kernel
function is the Gaussian or normal distribution. We found
that σ = 0.005m provided good results on the benchmarks.
Notice how this is equivalent to setting max (H(d(mi))) = 1,
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Fig. 3: (a) Geometrical probability P (inlier|geometry). (b) Color probability P (inlier|color). Notice how the color model can
clearly determine that the red color of the coca cola can does not fit in the gray desktop plane. (c) Difference of the geometrical
fit P (inlier|geometry) and joint probability P (inlier) = P (inlier|geometry) × P (inlier|color). Notice how the difference
is largest at the boundaries of objects. (d) Selected inliers using automatic estimation of the number of inliers.

α = 1, µ = 0 and a user defined σ set to 0.005m when
using the PPR algorithm. Mean-shift with a Gaussian kernel
can therefore be seen as a subset of the PPR algorithm with no
background modelling, no noise estimation and no automatic
inlier inference. Mean-shift will be used for comparison to
PPR.

C. PPR Algorithm

Using PPR1 as defined in Section III, the histogram range β
is initialized to [−0.04m, 0.04m] and is adaptively updated as
β = k×σ. Here σ is initialized by statistics over the histogram
and updated in subsequent iterations according to the least
squares formulation. We use k = 6 which corresponds to the
(6σ) bound. As can be seen in Fig. 4, β quickly converges
to the same value even if initialized far from the optimal
value. The number of bins in the histogram ǫ is selected as
the number of measurements in H divided by 500. The result

1Open source implementation of the PPR algorithm available at:
https://github.com/jekekrantz/PPR

is constrained to have no less than 10 bins in order to be able
to accurately capture the distribution and no more than 500
bins in order to avoid over representing the distribution. This
removes the need to supply PPR with finely tuned user defined
parameters for β and ǫ. Similar to the Mean-shift algorithm,
PPR was run for 30 iterations.

V. EXPERIMENT: INLIER ACCURACY

In order to assess the accuracy of the PPR algorithm as com-
pared to RANSAC and Mean-shift we devised an experiment
where the task is to segment a set of desktop tables from the
objects on top of it.

For the evaluation we use the KTH-3D-TOTAL dataset [5].
It contains over 400 desktop scenes in the form of large unor-
ganized, colored point clouds generated by registering multiple
frames and fusing the data into one point cloud. The data is
captured in office rooms at a robotics research lab and contain
real-world desktop scenes with lots of clutter. Given that the
scenes are registered automatically the data contain properties

https://github.com/jekekrantz/PPR


such as slight misalignment and missing data, as would be
the case in most real-world robotics scenarios. Also, the final
point clouds in the dataset are unorganized, i.e. the point
clouds have no fixed density, size, resolution or point ordering
w.r.t. the sensor. We consider this dataset with its “real-world
attributes” to provide a good setting for benchmarking the per-
formances of various plane estimation/refinement techniques.

The objects in the dataset are annotated to an accuracy of
approximately 0.001 m. The dataset also contains an initial
plane guess given by three points manually selected from the
desktop. In the case of RANSAC point sampling was done
only on points that were less than 0.05 m from the desktop in
order to ensure that the desktop was selected, to increase the
fairness of the comparison.

A. Performance Measure

We define the Error for a scene i as the ratio of desktop
inliers ||Kplane|| selected from the annotated ground truth
object inlier points Kobject to the total number of object points
in ||Kobject|| as defined in Eq. (4). In other words: Error is
the fraction of object points being miss classified as being
part of the desk in a scene. Using this criterion a conservative
technique that selects very few points as inliers would perform
very well. It is therefore informative to see the average number
of selected inliers for the different algorithms in order to
ensure that all of the algorithms are approximately equally
conservative in their inlier estimation. Given that the objects
in the dataset are annotated using bounding boxes we use only
the book and keyboard object categories which have cuboidal
structures resulting in accurate annotations.

Error(i) =
|Kplane ∩Kobject|
|Kobject|

(4)

B. Experimental Results

In Fig. 5a the distribution of errors as defined by Eq. (4)
for the joint set of keyboards and books in the KTH-3D-
TOTAL dataset can be seen. The experiments show that the
PPR algorithm has a significantly higher number of cases
with a very small error (see the leftmost bin of the histogram
shown in Fig. 5a) as compared to RANSAC and Mean-shift.
Similarly it is also clear that the use of a learned color model
has a significant impact on the results. Looking at the average
number of plane inliers (as shown in Fig. 5b) we conclude that
all of the algorithms select approximately the same number of
inliers. From the experiments we conclude that PPR, especially
using color information, is better at picking correct surface
inliers. We also notice that RANSAC slightly outperforms
Mean-shift, this makes sense because RANSAC is less likely
to get stuck in local minima, while optimizing on a similar
criteria.

VI. EXPERIMENT: SURFACE ACCURACY 1

A key property for any surface segmentation algorithms is
the ability to precisely estimate the same surface parameters,
independently of where the surface is viewed from. Using five
RGB-D video sequences from the dataset [6] we investigate
the performance of the PPR algorithm by running a single
iteration of refinement to post process the parameters for a set
of desktop planes found using RANSAC.
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(a) Distribution of errors as defined in Eq. (4) for the joint set of
keyboards and books in the dataset.
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Fig. 5: A summary of the results on the KTH-3D-TOTAL
dataset.

A. Performance Measure

Using ground truth sensor poses, acquired using a motion
capture system, it is possible to transform the plane parameters
found in each RGB-D frame into a global coordinate system.
For a frame i with normal Ni defined in the local coordinate
system and a global camera rotation Ri, the angle between
two planes can be found as in Eq. (5). Calculating the average
angle between all pair of planes can be used to measure the
stability of the estimations.

angle(i, j) = cos(R−1
i Ni ·R−1

j Nj)
−1 (5)

B. Experimental Results

From table I we can see that even a single iteration of PPR
consistently improves the results for the RANSAC algorithm.
In sequences fr1/xyz and fr1/rpy the desktop contains a lot
of occluding objects (see Fig. 2a) and fast motions. Accurate
measurement noise estimation and background modeling is
therefore of key importance for these sequences. Sequences
fr2/xyz, fr2/rpy and fr2/desk contain a much cleaner desk (see
Fig. 3d) and involves slower camera motions. The improve-
ment using PPR is greater in hard cases whereas in simple
cases a finely tuned RANSAC performs adequately.



Algorithm fr1/xyz fr1/rpy fr2/xyz fr2/rpy fr2/desk

RANSAC+PPR
color 1.35 6.53 0.68 1.23 3.14

no color 1.35 6.32 0.68 1.24 3.17

RANSAC σ = 0.005m 1.43 6.99 0.68 1.24 3.18

TABLE I: Mean angular difference for a set of estimated planes on five image sequences from the dataset presented in [6].
Notice how the application of PPR on the solution found by RANSAC consistently leads to more consistent estimation of plane
parameters.

Fig. 6: Two views of a sphere fitted to a plastic ball using PPR.
Estimated ball diameter was accurate up to 0.002 m even for
noisy data such as in this pointcloud.

VII. EXPERIMENT: SURFACE ACCURACY 2

To test on non-planar primatives, we devised an experiment
where the parameters of a sphere is to be estimated. The
diameter of the sphere, a plastic soccer ball, was manually
measured to 0.175 m. RANSAC is used to get an initial
estimate which is then improved by PPR. Results can be seen
in Fig. 6. Using 100 images of the soccer ball, the average
diameter as estimated by PPR was 0.177 m (average error
0.002 m) with a standard deviation of 0.002 m. For RANSAC
the average diameter estimated was 0.197 m (average error
0.022 m, 11 times that of PPR) with a standard deviation
of 0.003 m. Studying the data, we notice that this is caused
by RANSAC being unable to accurately filter out the hands
holding the ball.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we present a probabilistic primitive refinement
algorithm that given an initial geometric primitive estimate and
a point cloud can refine the parameters of the primitive and
calculate a set of likely surface inliers. Using a novel approach
to estimate the measurement noise we can accurately estimate
the probability of a measured point as being sampled from the
surface. By utilizing inherent properties of the problem and
self-tuning, the proposed algorithm is able to avoid using finely
tuned sensor specific parameters. Based on three separate
experiments we conclude that the proposed algorithm outper-
forms both RANSAC and a Mean-shift formulation using a
Gaussian kernel. By learning a multi modal color model for
the surface the accuracy of the inlier estimation can be boosted
further. In future work we envision that the use of localized
color and noise models could improve accuracy further. We
also believe that enforcing locally coherent segmentation could
improve the solutions.
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