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Abstract— All currently used mobile robot platforms are able
to navigate safely through their environment, avoiding static
and dynamic obstacles. However, in human populated environ-
ments mere obstacle avoidance is not sufficient to make humans
feel comfortable and safe around robots. To this end, a large
community is currently producing human-aware navigation
approaches to create a more socially acceptable robot behaviour.
A major building block for all Human-Robot Spatial Interaction
is the ability of detecting and tracking humans in the vicinity
of the robot. We present a fully integrated people perception
framework, designed to run in real-time on a mobile robot. This
framework employs detectors based on laser and RGB-D data
and a tracking approach able to fuse multiple detectors using
different versions of data association and Kalman filtering. The
resulting trajectories are transformed into Qualitative Spatial
Relations based on a Qualitative Trajectory Calculus, to learn
and classify different encounters using a Hidden Markov Model
based representation.

We present this perception pipeline, which is fully imple-
mented into the Robot Operating System (ROS), in a small
proof of concept experiment. All components are readily avail-
able for download, and free to use under the MIT license, to
researchers in all fields, especially focussing on social interaction
learning by providing different kinds of output, i.e. Qualitative
Relations and trajectories.

[. INTRODUCTION

Currently used mobile robots are able to navigate safely
through their environment, avoiding not only static but also
dynamic obstacles. An important aspect of mobile robots
however is the ability to navigate and manoeuvre safely
around humans [1]. Treating them as dynamic obstacles
and merely avoid them is not sufficient in those situations
due to the special needs and requirements of humans to
feel safe and comfortable when interacting with robots.
Human-Robot Spatial Interaction (HRSI), is the study of
joint movement of robots and humans through space and the
social signals governing these interactions. It is concerned
with the investigation of models of the ways humans and
robots manage their motions in vicinity to each other. Our
work aims to equip a mobile robot with understanding of
HRSI situations and enable it to act accordingly.

Recently, the robotics community started to take the dy-
namic aspects of “human obstacles” into account, e.g. [2] and
currently a large body of research is dedicated to answer the
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Fig. 1. Example output of the ROS based people perception pipeline,
showing the tracker and detector results in rviz.

more fundamental questions of HRSI to produce navigation
approaches which plan to explicitly move on more “socially
acceptable and legible paths” [3]. The term “legible” here
refers to the communicative — or interactive — aspects of
movements which previously has widely been ignored in
robotics research. To realise any kind of these HRSI appli-
cations, the basic challenge is the detection and tracking of
humans in the vicinity of the robot considering the robots
movement, varying ambient conditions, and occlusion [4].
Due to the importance of these applications, there are several
solutions to the problem of detection and tracking of humans
or body parts, as shown for example in these surveys [5],
[6]. In our work, we are focusing on two specific body
part detectors, i.e. human upper bodies and legs, combined
in a multisensor Bayesian tracking framework. We present
a fully integrated and freely available processing pipeline,
using the widely used Robot Operating System (ROS), to
detect and track humans using a mobile robot. Apart from the
ability to directly feed into reactive human-aware navigation
approaches like [7], this detection and tracking framework
is used to create qualitative representations of the interac-
tion [8], to facilitate online interaction learning approaches
via a Hidden Markov Model (HMM) based representation of
these qualitative states.

Detecting walking or standing pedestrians is a widely
studied field due to the advances in autonomous cars and
robots. To this end, many successful full-body or partly
occluded body detectors have been developed, e.g. [9], [10].
Most of these detectors suffer from high computational costs
which is why currently used approaches, like the so called
upper body detector [11], rely on the extraction of a Region
Of Interest (ROI) to speed up detection. Therefore, our
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Fig. 2. Conceptual overview of the system architecture. The number of
detectors is variable due to the modular design of the tracker and its ability
to merge several detections from different sensors.

framework employs this upper body detector for the real-
time detection of walking or standing humans. The second
detector used is a leg detector based on work by [12] and has
become a standard ROS component for people perception.
Like detectors, human tracking is an important part of a
perception system for human spatial movement. Hence, a
variety of tracking systems using multisensor fusion have
been introduced, e.g. [13]. We use a probabilistic real-time
tracking framework which, in its current implementation
of the processing pipeline, relies on the fusion of the two
mentioned sensors and an Extended or Unscented Kalman
filter to track and predict the movements of humans [14].
However, the tracker itself does not rely on a specific detector
for input and is very modular in design.

The presented human perception pipeline (see Fig. 2) is
used to facilitate our interaction learning framework which
relies on previous work where we introduced a qualitative,
probabilistic framework to represent HRSI [8] using a Qual-
itative Trajectory Calculus (QTC) [15]. We utilised HMMs
to represent QTC state chains and classify several different
types of HRSI encounters observed from experiments. In
this paper we present a fully integrated and automatised
processing pipeline for the detection and tracking of people
in close vicinity to a robot (see Fig. 1), and the online
creation of QTC state chains, enabling the classification and
learning of HRSI using our HMM representation. We show
the functionality of our framework in a small experiment
using an autonomous human-sized mobile robot in a real
world office environment, relying on the robots on-board
sensors instead of an external motion capture system like
in the mentioned previous work.

Everything presented here is available online. A concise
list of packages and installation instructions can be found at
http://lcas.lincoln.ac.uk/cdondrup.

II. OVERVIEW

In this section we present our integrated system, consisting
of the perception pipeline including the upper body detector
and the tracker, the qualitative spatial representation module,
and the library to create the QTC state chains.

A. Detectors

Robots use a range of sensors to perceive the outside
world, enabling them to reason about its future state and plan

Fig. 3. Our Scitos G5 robot — equipped with two RGB-D sensors and a
laser scanner — in our open office environment.

their actions. Our robot (see Fig. 3) used in the experiment
has three main sensors, i.e. a Asus Xtion RGB-D camera, a
Sick s300 laser, and the odometry of its non-holonomic base.
In the following we are presenting the two detectors based on
the RGB-D and laser scanner, respectively. Example output
can been seen in Figure 1.

The so-called upper body detector uses a template and
the depth information of a RGB-D sensor to identify upper
bodies (shoulders and head), designed to work for close
range human detection using head mounted cameras [11].
This first approach was based on stereo outdoor data; an
integrated tracking system using a Kinect like RGB-D sensor
and the mentioned detector was introduced in [16]. To reduce
the computational load, this upper body detector employs a
ground plane estimation or calculation to determine a Region
of Interest (ROI) most suitable to detect upper bodies of a
standing or walking person. The actual depth image is then
scaled to various sizes and the template is sliding over the
image trying to find matches. This detector works in real
time, meaning = 25 fps which corresponds to the frame rate
of the Asus Xtion. We implemented the detector and the
ground plane estimation/calculation into ROS and will use
it as one of the inputs for our tracker. The main advantage
of this detector, compared to full body detectors, is that the
camera on our robot is mounted in 1.72m hight which only
allows it to see upper bodies in normal corridor or room
settings, like offices or flats, due to the restrictions in space
and the field of view of the Asus camera.

In addition to the RGB-D base detector we also use
a laser based leg detector which was initially introduced
in [12]. Using laser scanners for people perception is popular
in mobile robotics because most currently used platforms
provide such a sensor which also has a wider field of view
than a camera and is less dependent on ambient conditions.
Arras et al. define a set of 14 features for the detection of
legs which uses, e.g. the number of beams, the circularity, the
radius, mean curvature, and the mean speed, to only name
a few. These features are used for the supervised learning
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Fig. 4. Example of HRSI encoded in QTC, with human % and robot [.
The respective QTC state chain is (- — 0 0)¢;: £ moves straight towards
I (= -0 0) and [ moves straight towards £ (- = 0 0), (— 0 0 0)¢,: k
continues its movement while [ is stationary (— 0 0 0), (— — + 0)¢5: k
approaches and moves to the right (= 0 + 0) while [ stays stationary. For a
more comprehensive and detailed description of QTC for HRSI please refer
to [8].

of a set of weak classifiers using recorded training data.
The AdaBoost [17] algorithm is employed to turn these
weak classifiers into a strong classifier, detecting legs in
laser range data. The approach was evaluate in various office
and corridor settings which makes it ideal for most indoor
robotics environments. The implementation of the detector
is part of the official ROS people stack!' and is also used to
feed into our tracker.

B. Tracker

To use the wealth of information provided by a robot
equipped with multiple sensors, we refrain from using purely
vision based trackers like the one introduced by Hosseini
et al.’> — from which we extracted the upper body detector
— and employ a solution for Bayesian tracking originally
implemented in [14]. This tracker is available in its current
implementation from [18] (see Fig. 5(b)) and allows to
natively combine multiple sensors and is not dependent on
the frame rate of any one detector. Bellotto er al. showed
that their Bayesian tracker, based on an Unscented Kalman
Filter, achieves comparable results to a Sampling Importance
Resampling particle filter in several people tracking scenar-
ios, although it is computationally more efficient in terms
of estimation time. In the current implementation different
tracking configurations can be used by defining the noise
parameters of the constant velocity model to predict human
motion, to e.g. compensate for loss of detection, as presented
in [19], and the fixed frame observation models (one for each
detector). A gating procedure is applied using a validation
region relative to the target, based on the chosen noise
parameters, for each new predicted observation in order to
reduce the chance of assigning false positives and wrong
observations [20]. New detections are then associated to the
correct target using a Nearest Neighbour (NN) association
algorithm, suitable for computationally less powerful robot
systems, or a more sophisticated Nearest Neighbour Joint
Probabilistic Data Association (NNJPDA), which is more
reliable but also less efficient regarding computation time. If
no suitable target could be found, the detections are stored

'https://github.com/wg-perception/people

2The tracker bey Hosseini et al. has been ported and split up into several
ROS modules and is available from our github repository or debian package
server, see Sec. II-E.

(a) The two used detectors. Green
sphere: leg detector, green cube and
red box in image: upper body detec-
tor.
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(¢) A human moving around the
robot. Showing his/her current posi-
tion and the path since the start of
the tracking.

Fig. 5.

(b) The tracker output. Overlaid red
and blue figure: position of tracked
human, green arrow: orientation.

(d) The complete path of the human
walking around the robot. Human
left the field of view of the laser and
is not tracked any more.

The visualisations of the detector and tracker outputs using rviz.

The leg detector is a standard ROS component, the upper body detector was
ported to ROS and tracker was implemented by us.

and eventually used to create a new track if they are stable
over a predefined time frame. For a detailed description of
the tracking and association algorithms, please refer to the
original paper [14] and other relevant work [21].

C. Spatial Interaction Learning

The output of the tracking framework, i.e. the position,
velocity, and orientation of the tracked humans, can either
be directly used for reactive human-aware navigation like the
ROS implementation of layered costmaps [7], or for online
spatial interaction learning. In previous work, we focused on
a learning approach representing HRSI utilising Qualitative
Spatial Relations (QSR) [8], i.e. a Qualitative Trajectory
Calculus (QTC) [15]. This is used to qualitatively represent
the relative spatial movement of a human (k) and a robot (/)
in relation to one another (see Fig. 4).3 The 2D movement
of these two agents k and [ is represented in a 4-tuple
(abed) where a and b can assume the values {—,+,0}
for moving apart, towards the other, or being stable with
regards to the last position and where ¢ and d can assume
the values {—, +,0} for moving to the left, right, or along
the connecting line between the two agents. Hence, a and ¢
describe the movement of k£ and b and d the movement of [
in relation to each other. This allows to abstract from metric
space and to focus on the “essence” of the interaction.

We presented a Hidden Markov Model (HMM) repre-
sentation of these QTC state chains in [8] used to classify
and reason about HRSI situations. This probabilistic model
enables us to represent actual sensor data by allowing for

3The variant of QTC we are referring to here is QT'Coa1.
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Fig. 6. A simplified representation of the ROS nodes and their most important connections, created using rgt_graph.

uncertainty in the recognition process. We were able to
reliably classify different HRSI encounters, e. g. pass-by and
overtake scenarios, and showed that the QTC-based represen-
tations of these scenarios are significantly different from each
other [8]. We have initially modelled the “correct” emissions,
e.g. (+—0 0) actually emits (+ — 0 0), to occur with 95%
probability and to allow the model to account for detection
errors with 5%. Our HMM contains the legal transitions
stemming from QTC and the transitions from and to the
start and end state, respectively. For each different behaviour
to be represented, a separate HMM is trained, using Baum-
Welch training [22] (Expectation Maximisation) to obtain
the appropriate transition and emission probabilities for the
respective behaviour. In the initial pre-training model, the
transitions that are valid, according to the Continuous Neigh-
bourhood Diagram for QTC [15], which defines the legal
transitions between states, are modelled as equally probable
(uniform distribution). We allow for pseudo-transitions with
a probability of P,; = 1le~1? to overcome the problem of a
lack of sufficient amounts of training data and unobserved
transitions therein. These HMMs can then be used to classify
the observed interactions and to predict their outcome by
sampling from the most probable paths.

D. Trajectory Stitching

In order to enable and facilitate more generic trajectory
learning approaches, in addition to our Qualitative Spatial
Relation based framework, we generate trajectories of human
and robot, accounting for periods of occlusion or loss of
detection in general. We regard a human trajectory as a se-
quence of positions stitched together based on the chronology
of the poses. The trajectories of all agents are taken into
account, i.e. the trajectory information of all the currently
tracked humans and the robots trajectory including the length
of the human trajectories, and the start and end time. To
create these, all human poses are grouped based on the Uni-
versally Unique Identifier (UUID) provided by the tracker.
Each UUID represents a person and once there is no position
update for that particular UUID, a validation of the recorded
poses is carried out. The validation includes ordering the
poses based on time of appearance and taking one pose
out of k-similar poses recorded at the same timestamp. We
selected the pose with the smallest distance between the next
and the previous pose.* Once the validation has taken place,
the human trajectory is ready to be stored in a database
and published in form of a ROS message. For the online
stitching, human trajectories are published incrementally (see

“4In the presented framework, this step is obsolete and just mentioned for
the sake of completeness and to show the appropriateness of this particular
component for noisy detectors or trackers.

Fig. 5(c) and 5(d)), meaning that the human trajectories
will be published in a chunk of incomplete trajectories. The
sequence id of the published message states the order of the
chunks so that by combining all the published messages, a
complete human trajectory can be obtained.

E. System Dependencies, Installation, and Usage

This work presents the implementation of all the men-
tioned components into a processing pipeline (see Fig. 2),
able to work in real-time (prediction rate > 30Hz) on a
mobile robot. It has been tested on a Scitos G5 robot (see
Fig. 3), using 2 embedded PCs, i.e. an i5 with 4GB RAM
for the navigation and hardware communication and an i7
with 16GB RAM for the image processing. No dedicated
graphics cards are required. The robot is equipped with
two Asus Xtion RGB-D sensors, one mounted overhead on
a Pan Tilt Unit for the upper body detector, the other at
chest hight facing down for 3D obstacle avoidance, and a
Sick s300 laser for navigation and leg detection. Software
dependencies are Ubuntu 12.04 or 14.04 64bit, and the Robot
Operating System (ROS) (supported versions: hydro - main-
tained and indigo - developed), see Figure 6. All software
is distributed under the MIT license where possible and can
be downloaded from our github page or installed via debian
packages from our private server, please refer to the web-
site http://lcas.lincoln.ac.uk/cdondrup. The
original pipeline relies on a RGB-D sensor and a laser
scanner but the tracker’s modular design allows for the easy
replacement or addition of detectors. To add a detector to
the tracking framework, we have to provide the following
information via a YAML based config file:

bayes_people_tracker:
filter_type: °‘UKF’
cv_noise_params:
x: 1.4
y: 1.4
detectors:
my_detector:
topic: ‘/my_topic’
cartesian_noise_params:
x: 0.5
y: 0.5

matching_algorithm: ‘NNJPDA’

where filter_type can be UKF or EKF for the
Unscented and Extended Kalman Filter, respectively.
cv_noise_params describes the standard deviation of
the noise (i.e. acceleration component of the motion) for
the constant velocity prediction model. Please note, that a
standard Kalman Filter would be sufficient for the use with
such a model but the tracking library itself [18] allows for
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(a) Four people are tracked. Two of
them via the upper body detector,
one via the leg detector, and one

via the combination of both using
NNIJPDA.

(b) Five people are tracked. The up-
per body detector only picks up two
due to occlusion or “incorrect” body
posture. The other two are tracked
via the leg detector input.

Fig. 7. As a proof of concept, we tracked several people moving around
our office environment, showing that the multisensor tracking compensates
for false negatives of the detectors.

the easy addition of other, non-linear predication models.
Under the detectors namespace we can add any arbi-
trary amount of detectors defined by: my_detector as a
unique identifier, topic is the ROS topic under which the
geometry_msgs/PoseArray for the detections is published,
the cartesian_noise_params describing the standard
deviations of the noise for the Cartesian observation model,
and the association_algorithm which can either be
NN or NNJPDA for the previously presented data association
approaches. All noise parameters just represent example
values which work for the presented evaluation but could of
course be enhance by empirical analysis of the sensor noise.
We show the usage of the whole system in a video created
during the evaluation described in Section III and linked on
our website.

I1I. EVALUATION

The majority of the presented components have been eval-
uated separately in previous publications. For the evaluation
of the detectors, please refer to [11] and [12], respectively.
An exhaustive evaluation of the tracker can be found in [14]
and the QTC based HMM representation of HRSI has been
presented and evaluated in [8].

Since this work presents the integration of all these com-
ponents into a state-of-the-art robot platform and the widely
used Robot Operating System, we are presenting a short
proof of concept. To this end, we deployed the robot in
our open office environment, observing people in the kitchen
area, see Figures 1 and 7. A video of this deployment is
available on youtube, please refer to our website for the link.
Screenshots of the live system can be seen in Figures 1, 5,
and 7.

In addition to the proof of concept for the perception
pipeline, we conducted a short trial using the tracker output
to generate QTC state chains online; feeding them into our
HMM based representation. The trial featured our robot
driving along a corridor and an oncoming human, engaging
in a so-called pass-by encounter. The robot would drive
straight while the human was circumventing the robot either
on the left or right side. This was repeated 7 times for each
side. We classified the resulting state chains into passing on

Fig. 8. Visualisation of the HMM trained from the recorded QTC
state chains. A — in the 3rd and/or 4th position of the tuple indicates
circumvention on the left and a + in the respective positions represents
circumvention on the right. Transitions below 0.15 have been pruned for
visualisation purposes. The grey level represents the a-priori probability of
the state, the darker the higher the probability of being in this specific state.

the left vs. passing on the right using the dataset presented
in [8], featuring two human interactants. The HMMs for
classification were trained using the trajectories of both
humans recorded via a motion capture system.

A. Results

Figure 8 shows the recorded QTC state chains in our
HMM based representation. The figure is clearly divided into
two possible paths, passing on the left and passing on the
right as can be seen from the — or + for ¢ and d in the tuple
(abcd).

As stated above, we classified our recorded encounters
using models trained from data collected during a Human-
Human Spatial Interaction experiment using motion capture.
The classifiers were trained for three different conditions,
i.e. starting the circumvention early, late or in between
where each is 500ms apart. Each of the six models (three
per side) was trained with 162 to 178 (for passing on the
right) and 183 to 189 (for passing on the left) QTC state
chains, respectively. Using these models and the state chains
generated using sensor data via our tracking framework, we
achieved classification rates from 78.57% to 85.71% on our
dataset using input generated from our integrated systems



instead of external motion capture. In the following we are
discussing these results and the general implementation of
the perception pipeline.

IV. DISCUSSION

This work presents components that have already been
proposed for human detection, tracking, the generation of
qualitative representations of HRSI, and trajectory stitching.
However, for the first time, all these components have been
implemented in a concise and easy to deploy system based
on ROS the Robot Operating System. The majority of these
components have therefore already been evaluated on their
own which makes it hard to argue for the novelty of the
system. Nevertheless, we believe that the presented people
perception pipeline, especially considering the automated
QSR and trajectory generation, provides a specialised tool
set facilitating offline and online learning approaches for
Human-Robot Spatial Interaction. Our short trial indicates
that, using the automatically generated QRSs, we are able
to classify HRSI encounters using models created from
previous knowledge, based on a similar scenario but recorded
using a vastly different sensor and modelling the interac-
tion between two humans. We believe that this ability of
knowledge transfer from previous encounters or even from
Human-Human Spatial Interaction, is a very promising and
interesting direction of research and shows the power of our
tracking framework and QSR based model.

Limitations and Lessons Learned: Like all robotic sys-
tems, our approach is very susceptible to sensor noise and
limited fields of view when it comes to detectors. The upper
body detector itself for example has shortcomings when it
comes to detecting sitting people due to the defined Region of
Interest being optimised for walking/standing people, and the
shape of the used depth template. This template represents an
upright upper body, which can mostly be found in walking
or standing persons. Looking at Figure 7(b) we can see that
one of the people in the images is not detected due to an
“incorrect” body posture. The solution to most of these issues
is provided by the Bayesian tracker, fusing the detectors to
compensate for the fact that one of them might produce
false negatives or a person is not in its field of view, and
via smoothing the trajectories using a Kalman filter and a
constant velocity model.

Concluding from the above statements, we did not specif-
ically focus on the development of novel approaches to
solve human-aware or social navigation but on providing a
toolbox to facilitate spatial interaction learning, making it
readily available to be employed for existing reactive human-
aware navigation or more sophisticated machine learning
techniques; one of them being the presented QSR based
probabilistic model.
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