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Abstract. The need for robots to search the 3D data they have saved
is becoming more apparent. We present an approach for finding struc-
tures in 3D models such as those built by robots of their environment.
The method extracts geometric primitives from point cloud data. An at-
tributed graph over these primitives forms our representation of the sur-
face structures. Recurring substructures are found with frequent graph
mining techniques. We investigate if a model invariant to changes in
size and reflection using only the geometric information of and between
primitives can be discriminative enough for practical use. Experiments
confirm that it can be used to support queries of 3D models.

1 INTRODUCTION

Rapid advances in computing and 3D sensing have led to larger and larger 3D
data sets being collected by robots and stored for future reference. With the
advent of digital cameras and the Internet, a similar situation arose for 2D
images, spurring the development of ways to analyze and mine the large amounts
of data; these needs now arise for 3D data.

The ability to represent a robot’s working environment with simple structures
of composite geometric primitives enables both compact representations and the
possibility for the robot to reason about its surroundings at a more abstract
level. For example, at a high level a bookshelf consists of two vertical sides and
horizontal shelves. Most indoor environments consist of combinations of simple
substructures repeated throughout the space. Take an office space as an example.
It is typically made up of tables, chairs, bookshelves, doorways, pillars, etc. which
could be further broken down to simpler parts, e.g. corners or edges.

We would like our robot to be able to look back over its stored data to
find specific structures. This would be helpful in a semantic mapping context;
perhaps instructed to put a label ’doorway’ on all structures that ’look like’ some
example. It can also be used in an unsupervised transfer learning context, e.g.
the robot learns to associate a certain human behavior near a sink in a kitchen.
It then finds a similar structure in another room and infers a similar human
behavior as a prior. The capability needed is one of being able to query 3D data
with representative examples of a structure.

Our approach is based on the idea of having a qualitative representation
that can be queried for parts that might be similar. We focus on finding general
structures by looking at the surface topology of an indoor environment. We
believe that identification of frequent substructures could be an important part



of a robot’s understanding of space. The structures could potentially be used as
building blocks for a robotic map representation, enabling efficient representation
of 3D data gathered by modern robots.

We build on the work in [1] and adapt a popular adjacency graph model to
represent configurations of geometric primitives. To find the frequent substruc-
tures we look for frequent subgraphs using the gSpan algorithm [2].

We contribute a new way of defining discrete pairwise relations in the ad-
jacency graph and propose to have full connectivity locally. This enables us to
achieve greater consistency between matched structures. In addition, we extend
the approach by learning a graph to search for from a set of example pointclouds.

2 RELATED WORK

The use of frequent patterns for image detection and classification has been stud-
ied within the computer vision community. In [3], Nowozin et al. demonstrate
good classification results with a method based on a combination of graph mining
and boosting. The authors suggest that a representation of spatial relations be-
tween features is powerful compared to bag-of-words representations, and note
that it has the important advantage of easier human interpretation. Jiang &
Coenan [4], like [5], propose to use frequent patterns across a set of images as
features for classification. As in this paper, both approaches utilize some variant
of the popular gSpan graph mining algorithm [2]. Within a robotics context,
Aydemir et al. [6] use gSpan to predict what may lie beyond the explored part
of the environment.

Many recent papers both in 2D and 3D contexts use over-segmentation to
partition a scene into areas that are to be labeled. Those often employ graphical
models over adjacent areas to infer semantic labels, primarily by using some
kind of probabilistic inference over the graph. An early example of this kind of
inference on a stitched point cloud map was presented by Anand et al. [7]. As is
natural in a 3D context, they use e.g. local shape features for the patches and
geometric relations such as co-planarity as pairwise features. Silberman et al. [8]
focus primarily on inferring geometrical structure in the form of support rela-
tions. They demonstrate that segmenting the scene simultaneously with inferring
scene topology improves segmentation quality.

Another approach within the scene analysis context that is more similar to
ours is the work by Nüchter et al. [9]. Their method segments a scene into planes
and form discrete pairwise angle features over the segments. Using pre-compiled
knowledge of typical angle and co-planarity constraints between plane classes,
the system labels each plane according to e.g. floor, ceiling or doorway. Their
algorithm achieves this by finding a global labeling that satisfies the local inter-
planar constraints.

Farid & Sammut [10] use a similar model for supervised classification of
compounds of planes. To achieve this they use a classification scheme based
on inductive linear programming. Given a set of object groups that are to be
classified, a set of Prolog clauses are learned for each object such that at least



one returns true upon being shown an object example but none returns true
when shown a negative.

In robotics, several papers have dealt with the problem of finding furniture-
sized objects from 3D data without supervision. Common to all such methods is
that they look for recurring objects. Shin et al. [11] use the relation of gradually
discovered shape parts in addition to features to gain more information about
potential objects. The authors propose a variant of the branch-and-bound joint
compatibility test to find multiple object instances. In [12] the authors find
repetitive objects in precise indoor LIDAR data. Using a segmentation of point
clouds into locally planar patches, the authors group combinations of patches into
spatially consistent objects. They use shape descriptors of the patches together
with geometric consistency within the objects. To limit the possible number of
necessary combinations, several pruning steps based on patch size and individual
patch is similarity is required.

The idea to model perception of 3D objects through their decomposition into
primitive parts was introduced by Biederman [13]. Adjacency graphs over planes
have been used for 3D roof detection from aerial LIDAR data, see e.g. [14]. In
[15], Schnabel et al. present a representation of adjacency graphs over primitives
that is similar to ours. The authors demonstrate a system that allows a user to
look for a structure by specifying a query graph that can then be found within
large scale environments. Our model differs in how we define discrete pairwise
relations and have full connectivity locally. This enables us to search the graph for
repeated structure and achieve greater consistency between matched structures.
In addition, we extend their approach by learning a graph to search for from a
set of example point clouds.

Our work differs from unsupervised object detection approaches like [12] in
that, instead of looking for repeating structures, we look for functional parts by
finding the most frequently repeating structures globally. We also consider more
of the environment, including building structure. This is enabled by frequent
subgraph mining techniques, which, to the best of our knowledge, is applied
here for the first time to extract patterns in 3D point cloud data. A trade-off
when using these techniques is that we have to derive precise discrete attributes.

3 METHOD

A popular approach to model semantic properties of a space has been to study
graphs constructed over over-segmented scenes [7, 8]. Our approach is to simi-
larly construct an adjacency graph over the scene but to instead identify topo-
logical structures within that graph. However, to do so, we need a graph that
for one type of 3D structure consistently returns the same segmentation and
graph structure. This means that over-segmentation is not an option. Instead
we need to make the assumption that the surfaces that we study are unambigu-
ous. Therefore, similar to [9, 10], [15], we make the assumption that interesting
parts can be represented by geometric primitives such as planes or cylinders.
This makes sense at a larger scale where much of the environment is made up



of constellations of such shapes. It further enables us to define clear pairwise
relations through the relative angles and the primitive types provide us with
node labels. The algorithm works with discrete properties, an inherent trait of
this kind of graph mining.

We assume that we have an algorithm for segmenting a point cloud into
planes, cylinders and spheres. First, some general graph concepts are introduced.

3.1 Preliminaries

A labeled graph is defined as a tuple G = (V,E, α) of nodes V and edges E ⊆
V × V together with a function α : V ∪ E → L that maps nodes and edges to
discrete labels. The order of a graph is |V |, the number of nodes. Two graphs
G1 = (V1, E1, α1) and G2 = (V2, E2, α2) are said to be isomorphic if there exists
a bijective function f : V1 → V2 such that

– α1(v1) = α2(f(v1)),∀v1 ∈ V1
– ∀e1 = (v1, v

′
1) ∈ E1 ∃e2 = (f(v1), f(v′1)) ∈ E2

s.t. α1(e1) = α2(e2) and conversely,
– ∀e2 = (v2, v

′
2) ∈ E2 ∃e1 =

(
f−1(v2), f−1(v′2)

)
∈ E1

s.t. α2(e2) = α1(e1).

This simply means that there is a mapping f that associates every node in G1

with a node in G2 in such a way that all the labels and edges are maintained.
A graph G is called a subgraph of Ĝ = (V̂ , Ê, α) if there exists some subset
(V ⊆ V̂ , E ⊆ Ê, α) isomorphic to G.

A collection of graphs D = {G1, . . . , Gn} is said to form a graph dataset.
Further we define DG = {Gi ∈ D; G subgraph of Gi}. The support of G in D is
then the number of times G appears as a subgraph in D, namely |DG|.

3.2 Graph Construction

In our graph, the nodes v ∈ V correspond to primitives. Each pair of primitives
in a scene are connected through an edge, with one exception discussed later.
Edges e = (v1, v2) ∈ E describe the spatial relation between two primitives, as
described by the distance and angle labels, α(e) = (ld, la). The distance label ld
can assume two values, close and distant. A close edge connects two primitives
(v1, v2) if any two points of the surfaces are closer than 0.01m (0.25m when
looking at large structure data), otherwise the edge is labeled distant.

To assign each edge an angle label la, we first define the meaning of an
angle γ between two primitives. Generally, the idea is to define it as the angle
between the rotational symmetry axes n1 and n2 of the two primitives, i.e.
γ = arccos(|n1 · n2|). Of course, in the case of the sphere, that is ambiguous
and any pair involving one is defined to have angle zero. Planes, however, have
a notion of direction since they are rotationally symmetric around the surface
normal. If the normals n1 and n2 are taken to be unit length and on the visible
sides of the planes, the angle between two distant planes is γ = arccos(n1 · n2).



Another exception is close planes, where we define the angle based on the angle
of intersection. An inwards edge (e.g. wall facing the floor) will have angle 90◦

whereas an outwards edge (e.g. corner of a building) will have angle 270◦.
The angles in our data are mostly parallel or orthogonal, with few exceptions.

This justifies a discretization of the angles. To find the angle label la of an edge,
we discretize the angle of its connecting primitives around multiples of 90◦. In
order not to include shapes not conforming to this model, all primitive pairs with
relative angle further away than ∼ 11◦ from this are discarded in the following
analysis. Additionally, we introduce an extra label for distant co-planar planes,
enabling us to represent e.g. walls interrupted by cabinets or doors.

3.3 Subgraph extraction

Given a collection of point clouds from different scenes, a graph of primitives is
extracted for each scene. The graphs together form a graph dataset D. We want
to study which substructures are the most frequent for different substructure
complexities. Within our framework, this translates to finding the subgraphs
of order n with the highest support in the graph dataset. We use the gSpan
algorithm for this purpose. The algorithm expands each graph to a unique Depth
First Code (DFC). It then does a depth-first search of the graphs to effectively
find the most frequent subgraphs in a graph dataset. The algorithm has found
extensive use in e.g. molecule mining for finding common molecule substructures
[16]. We use a gSpan implementation by Kudo et al. [17]. To make sure that the
internal relations between the primitives in all scenes corresponding to a certain
subgraph are consistent, we require that the frequent graphs be complete. We
therefore limit the gSpan algorithm to look only for subgraphs G = (V,E) with

|E| = n(n−1)
2 . Further, for the subgraphs to represent something connected in

the scene, most of the primitives need to belong to the same surface structure.
A number of close edges greater than or equal to a constant nadj is therefore
also required. If nothing else is stated, at least half of the edges have to be close.
One could require that the subgraph be connected by close edges but as we will
see this was not necessary on our data. It can easily be added if needed.

3.4 Study of Isomorphic Graphs

We are investigating to what extent we can use pure surface topology to charac-
terize the typical structures. Within one group of isomorphic subgraphs we can
therefore have nodes corresponding to primitives of different sizes. However, in
the following analysis, it will prove useful to be able to remove instances with
large size deviations. To do this, we construct from each instance of a subgraph
in a scene, a vector ui where each element represents a measure of the size of one
primitive. For example, in Section 5.2 we use the areas of the extracted planes.
Thus, a subgraph found in m scene instances will have vectors U = {u1, . . . , um}
describing the different sizes. To separate the subgraphs based on size also, one
could imagine doing clustering over this vector space. For this paper, we are only



interested in removing matched graph instances with sizes dissimilar from the
provided examples. Based on the nearest neighbor distance between an instance
and the example set size vectors, we remove far-away matches.

Fig. 1: The Scitos G5 robot, during the capturing of the data set with the snap-
shot positions overlaid on the floor map. The camera is looking down at 43◦.

4 EXPERIMENTAL SETUP

4.1 Primitive Extraction

One major challenge with using geometric primitives is that they can be costly to
extract, especially in noisy sensor data. We use a RANSAC algorithm [18] since
it is known to be robust to noise in the form of outliers. The basic algorithm in
the context of shape recognition works by sampling a number of points, called a
minimal set, from which a shape hypothesis can be formed. Several hypotheses
are formed by sampling minimal sets of points repeatedly. The algorithm returns
the shape hypothesis that is supported by the most inlier points. An inlier to a
shape is defined as a point whose minimal distance to the shape surface is less
than some threshold λ.

However, using this algorithm to extract several shapes from one point cloud
can be unnecessarily costly since the minimal sets are sampled across the entire
cloud, with no prior on size or locality. We therefore use a RANSAC modification
which was introduced by Schnabel et al. [1]. Their algorithm makes use of the
observation that points in a smaller neighborhood are more likely to belong to
the same surface. The result of the method is a segmentation of a point cloud
into primitives, with some points remaining.

4.2 Environment & Setup

We conduct our experiments using a Scitos G5 platform with an Asus Xtion
depth-sensing camera mounted in front. We did two experiments, one in which
the robot drives around autonomously and captures individual RGB-D images
and another in which many point clouds were combined into a single 3D map.



In the first experiment we want to avoid having many images from nearly
the same camera pose so we only save images from distinct view points. A new
image is captured only when the robot has turned more than the field of view
or traveled more than a certain distance. Granted, this does not mean that the
same structure is not observed several times during a run but the intention is to
make the distribution of the scans roughly uniform across the floor. The robot
performed two runs over approximately three hours each, together making up a
dataset of 1846 frames, see Figure 1. Along the way, it went in to three offices
and a kitchen. In this first experiment we extract planes, cylinders and spheres.

To construct the 3D map for the second experiment, we drove the robot
around the office and collected local 3D sweeps using a camera pan-tilt unit
(PTU) mounted on the head. These were then assembled into a big map using the
transform from the PTU and stock laser localization [19]. To form a graph and
search this very large point cloud was computationally infeasible. We therefore
build graphs and search inside a window of a fixed size. The window is then slid
to a partially overlapping position and the search repeated until the entire map
is covered. Since planes are dominating at this more coarse level of resolution, we
limit ourselves to plane primitives. Also, as the robot always knows the position
of the floor, so it is given its own label with edge definitions equivalent to other
planes.
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Fig. 2: Graphs representing the doors and the classified scenes. The color of
primitives in the scenes and the corresponding nodes of the graph match. The
far edges are dotted, while the close edges are solid. From left to right: Open from
outside, open from inside and closed from outside. The bottom middle frame has
similar geometry to an open door from the inside and is falsely classified as such.

5 RESULTS

5.1 Experiment 1

In the first experiment we search a set of individual RGB-D snapshots. We show
the robot doors in three different configurations: open from outside, open from in-
side, and closed from outside. Our robot was positioned to take twelve snapshots
of different doors in each configuration. The framework then extracts the most



frequent subgraph from each door configuration, defining a ”template” graph for
each type. The doors are re-identified by finding instances of these graphs within
the set of 1846 scene graphs. To make the subgraphs more discriminative, we
choose a graph order of n = 5 with nadj = 4.

The results can be seen in Figure 2. Apart from the floor, all graphs have
the door frames and parts of the door in common. Among all frames, the robot
successfully found five instances of open doors from the outside, seven open doors
from the inside and 33 closed doors from the outside. For each of the open door
categories, one false positive was found, containing some primitives not part of
the doors. Among the 33 extracted closed doors, all were found to be correctly
classified. The most common subgraph for each configuration together with some
instances of the graph are presented in Figure 2. This is an encouraging result
and confirms that the representation can be descriptive enough to find instances
of one particular structure.

As might be expected, the sphere primitives found little use in this data set
as they were detected in only a few places. The cylinders were detected more
often, most consistently in specific structures like the trash cans. While simple
primitives other than planes were not as common in this particular environment,
we note that they allow the method to represent some more of these special cases.

Many doors were not detected, probably partly because the entire structure
was not in the field of view of one of our snapshots. This is a limitation of
our method when applied to single snapshots as we did here. If we look at the
example of the closed doors, the method is sensitive to the degree of occlusion
between the door and the floor since that can determine if the corresponding edge
will be labeled as close or distant. The following section explores one approach
to overcome these problems.

floor

bookcase

wall

floor

doorway

wall
ceiling

Fig. 3: Top row: Result of a bookshelves query. The blue rectangles are graph
template matches removed by size constraints. Bottom row: Here we show the
most frequent structures found using a 3m× 3m window size; mostly doorways.



5.2 Experiment 2

In the second experiment we search a very large point cloud map. A user selects
windows by clicking points in a display of the point cloud map. In this experi-
ment we select four areas with bookcases. The average width of these windows
determine the scale at which we look for similar structures. From the examples,
the most frequent subgraph of order 5 is extracted, giving us a template graph
representing the bookcase. The top row of Figure 3 summarizes the result. On
the left are all the locations of returns from the query. On the right is one in-
stance. In this case the query returns many false candidates. We can then use
other information, size in this case, to further remove candidates. From the ex-
ample graph instances, we create a vector set U over plane areas, constructed
as in Section 3.4. By removing found instances with size vector further than a
certain nearest-neighbor distance from U we can remove all instances not repre-
senting a bookcase. These are shown as blue rectangles while the red ones are all
true bookcases. We also looked at the most frequent structures over the sliding
windows. The result for a 3m × 3m sliding is presented in the bottom row of
Figure 3. The most frequent graph represents most of the doors found in the en-
vironment. As should be expected, when the user queries for doors by marking
four doorways, the result is mostly the same. A four times larger window finds
structures matching walls and ceiling of a room.

The results show that the problems observed in the door identification are
fixed by considering a full view of the scenes instead of partial views; this time
14 out of 18 doors in the office floor are detected without any false positives.

6 CONCLUSION AND FUTURE WORK

We proposed a method to construct adjacency graphs over geometric primitives
from point cloud data. We demonstrated the ability to re-identify structures. The
approach was also verified to be able to search for structure in a large scale 3D
map. Our results indicated that we can combine topology with other cues, here
size but one could extrapolate to for example color, for reliable classification. An
advantage of the graph mining in 3D versus the case with traditional images is
that we can define clear, descriptive relations between local features.

We see this as a first step towards building a general 3D point cloud query
framework. This would extend the search criteria to include such things as the
separation of the point cloud by planes which could lead to concepts such as
”enclosed by”. One could for example then look for structures ”inside” the rooms
that we found here.
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