
Unsupervised learning of spatial-temporal models of objects in a
long-term autonomy scenario

Rares Ambrus1, Johan Ekekrantz1, John Folkesson1 and Patric Jensfelt1

Abstract— We present a novel method for clustering seg-
mented dynamic parts of indoor RGB-D scenes across repeated
observations by performing an analysis of their spatial-temporal
distributions. We segment areas of interest in the scene using
scene differencing for change detection. We extend the Meta-
Room method and evaluate the performance on a complex
dataset acquired autonomously by a mobile robot over a period
of 30 days. We use an initial clustering method to group
the segmented parts based on appearance and shape, and
we further combine the clusters we obtain by analyzing their
spatial-temporal behaviors. We show that using the spatial-
temporal information further increases the matching accuracy.

I. INTRODUCTION

Autonomous mapping is becoming a mature technology.
Most approaches to date assume that the environment is static
and build a model to support localization. Dynamics are often
dealt with as noise to be filtered out, i.e. something to get
rid of. If robots are to shoulder the tasks that the future
holds for them, they need to do more than localize in static
environments. The dynamics of space carry a lot of informa-
tion which will need to be studied, modeled and exploited.
The highly dynamic parts, such as humans, can be studied
relatively easy. Many other objects in our environment move
much slower and often not at all while the robot is observing
but rather between observations and sometimes very seldom.
Studying these dynamics requires running experiments over
weeks or months but this is needed for a robot to become
truly autonomous. All objects cannot be known in advance.
They must be learned by the robot from experience and
separating dynamic parts of the environment is a very useful
tool for this.

Once dynamic parts have been identified they can be
matched over time and space to develop more complete mod-
els of the parts. For example, filling in initially unobserved
sections of the part, or modeling its movements over space
and or time, or trying to classify the part as a known object
class. In other words, identifying these parts opens up a
world of self-learning possibilities for robots operating over
extended periods of time.

Spatial-temporal models of dynamic elements are a higher
level representation of the world that can be used for a variety
of tasks such as predicting where objects are likely to be
at various points in time for the purpose of finding objects
or activity planning, or as input to an object recognition
pipeline that could also take into account the spatial-temporal
features. Moreover, such representations would help facilitate

1 The authors are all with the Centre for Autonomous Systems at
KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden.
{raambrus}@kth.se

Fig. 1: Modeling the spatial distribution of dynamic elements
and matching them across time. Top - environment outline
(red) and spatial distributions of four dynamic elements
(blue). Middle - Temporal pattern for one of the elements
that is matched across time showing when it is has been
detected. Bottom - Snapshots of the segmented element at
different points in time.

great data reduction. Instead of storing the raw data for each
instance of an element, the robot could simply store one
complete model of the element and its poses over time.

The problem of matching the dynamic elements across
observations collected at different points in time is inherently
hard. The data is collected at different times during the day,
and even during the night. The dynamic elements are usually
seen in different relative poses meaning different sections of
the element will be seen at different times leading to very
small overlap between observations; for an example see the
bottom row of images in Fig. 1. Dynamic elements may
be composed of several separately dynamic parts, a stack
of books for example. Some dynamic elements can change
shape, like a laptop or may even be truly non-rigid like a
coat.

In this paper we build on [1] where a method for modelling
the static part of the environment based on repeated obser-
vations was introduced. Preliminary results showed that the
static model could be used to extract dynamic elements from
the scene. In this paper, we investigate this further and look
at segmentation of elements and clustering of such elements

across time. We address a subset of the challenges mentioned
above and assume that the dynamic objects are rigid. Figure 1
illustrates some basic concepts. The upper part shows a 2D
slice of the environment with the red outline representing
what is static. The ellipses show a Gaussian estimate of the
spatial distribution of four dynamic elements. The middle
part shows when a certain element has been observed and in
the bottom we see five example observations of the dynamic
element, a chair. Notice how the chair both changes pose and
sometimes includes a person.

Our contributions are:
• improved registration to allow segmentation of dynamic

elements in more challenging scenarios which is quan-
tified with real data from the robot.

• clustering of repeated observations of dynamic elements
over time by exploiting spatial-temporal constraints.

• a large dataset with repeated observations over 30 days1.

II. RELATED WORK

Dynamics in the context of mapping has been studied
along several directions in the literature. Grid maps are
extended to model the dynamics of occupancy in [2],
[3]. Bieber and Duckett use several sample grid maps to
capture the changes in the environment at different rates
and time scales [4]. Walcott-Bryant et al. [5] maintain two
separate maps - active and dynamic - to better represent
a changing environment with a Pose-Graph SLAM system.
Modeling spatial-temporal dynamics in the environment has
been used successfully to improve robot localization in long
term autonomy scenarios by Krajnik et al. [6]. The SLAM++
system of Moreno et al. [7] uses an a-priori constructed
object database both for object recognition and for camera
localization. Similarly, Li et al. [8] use a database of object
models which replace segmented objects in the scene, with
an emphasis on maintaining and matching against large
databases of objects. In our work we focus on the individual
dynamic elements and we make no assumptions about them
being known ahead of time.

Gunther et al. [9] build large scale 3D maps augmented
with recognized objects. Mason et al. [10] perform exper-
iments over extended periods of time like us and build
semantic maps for object query as well as change detection.
They study objects lying on top of tables and other planar
surfaces and the matching of these objects is done on the
basis of the overlap between their convex hulls in 2D. In our
work we do not require any assumptions regarding geometry
of space but focus on objects that are dynamic and use that
via scene differencing as the queue for segmentation.

The scene differencing technique has been used success-
fully by other researchers as well. In [11] Herbst et al. use
scene differencing and surface patches to segment out shapes
on table tops. In [12], they present a method that clusters
the detected shapes into object clusters using 2D features
(kernel features) and ICP as similarity measures which are

1The dataset can be found on-line at:
https://strands.pdc.kth.se/public/KTH-longterm-dataset/

then clustered using multiclass spectral clustering. In [13]
they show that additional methods, such as a human moving
an object can be used in conjunction with scene differencing
to further improve the segmentation and classification of
objects. Finman et al. [14] use change detection to segment
objects in a long term autonomy scenario, and they show
how the segmentation can be improved by re-identifying the
segmented objects multiple times over the lifetime of the
robot. Many feature representations exist in the literature
within the context of re-identifying objects extracted through
various methods from RGB- D data, and substantial research
has been invested in coming up with better descriptors that
handle occlusions or partial data - e.g. Aldoma et al [15]
or Tombari et al. [16]. We also deal with partial observa-
tions of objects collected under very different circumstances.
However we only rely on features extracted over the point
cloud for an initial clustering phase. Contrary to previous
work, we look at the spatial and temporal behavior of the
elements we segment to form the clusters. We have access to
this information as our data is captured over very long time
periods, and we show that by using it we can improve the
classification accuracy over only point cloud features.

Other work that make no or little assumptions about
the environment and that do not require any training or
previously defined data include Endres et al. [17]. They
employ a variant of the spin-image local feature extracted
from the input point cloud in conjunction with Latent
Dirichlet Allocation to autonomously discover and classify
object classes by modeling the distribution of the features in
different object classes. Shin et al. [18] segment the input
point cloud using a superpixel segmentation algorithm and
match groups of segments using a modified version of the
branch and bound algorithm. Their method however relies
on the fact that the scene contains multiple instances of an
object, as a prerequisite for that object to be segmented.
Mattausch et al. [19] segment the input point cloud into
planar patches and define a patch similarity measure that
takes into account geometric properties of the patch as
well as spatial relationships with other patches, and which
is used to cluster the patches in a higher dimensionality
Euclidean space. They show that their method scales well
with very large amounts of data. We also segment objects in
an unsupervised fashion and without requiring any training
data as input. Our work differs in that it focuses on building
models of individual objects observed multiple times over
extended time rather than trying to find multiple instances
of the same type of object.

III. SYSTEM OVERVIEW

At predefined waypoints we incrementally update a 3D
model of the static structure of the environment through the
Meta-Room method presented in [1]. For completeness we
briefly describe the method from [1] here: given a number of
observations collected at a waypoint over some time period,
we iteratively estimate the static structure of the environment,
called the ”Meta-Room”, by removing what is dynamic from
one observation to the next and at the same time adding

what was previously occluded. Changes to the static structure
such as the addition of furniture are also taken into account.
Examples of typical observations collected at one of the
waypoints can be seen in Fig. 2.

Fig. 2: Three observations collected at the same waypoint

Each new observation is then compared to the constructed
Meta-Room to segment out dynamic elements from the
scene. We then match segmented elements across observa-
tions at a particular waypoint. The main difficulty in achiev-
ing this arises from the complex nature of the segmented
elements, being seen from different viewpoints, under dif-
ferent illumination or at night, only partially visible, etc.

Our matching algorithm has two main stages: first we
match elements using point features - this gives rise to sets
of matched elements. Some sets correspond to the same
physical object detected under such different conditions that
the point features were not enough to group the elements
together in one set. Second, we reason about sets of elements,
trying to understand whether they represent the same physi-
cal object, by taking into account their temporal distributions,
as well as calculating a similarity measure of their spatial
distributions.

IV. DYNAMIC ELEMENT DETECTION/SEGMENTATION

In [1] the focus was on reconstructing the static struc-
ture, and convergence of the method. Here we focus on
the segmentation of dynamic elements, and propose two
improvements that increase the accuracy of the segmentation.

A. Registration

The registration process has two stages. First, we register
the individual RGB-D frames making up an observation to
form a single, dense point cloud of a whole scene. Second,
we register observations acquired at the same waypoint with
each other, so that they are in the same frame of reference
and can be compared. In [1] the Iterative Closest Point (ICP)
[20] was used to register individual frames, and the Normal
Distribution Transform (NDT) [21] to register observations
together. Each pair of frames were registered individually,
even though the motion of the pan-tilt unit is always the
same in all the observations. This results in small alignment
errors between frames which does not affect the creation of
the static model, but which nevertheless leads to inaccuracies
and noise when segmenting dynamic elements.

We propose here a different registration method which
exploits the fact that the pan-tilt unit always executes exactly

the same motion, even if this motion is known only roughly
in advance (explained in more detail in section VI). One can
say that we use all our collected data to calibrate this motion.
That is, given that the relative poses between the frames are
fixed we can propagate the constraints of all frames into the
same estimation. For the collected dataset this is frames from
over 700 observations leading to a very accurate registration.
The registration is based on sparse bundle adjustment of
ORB [22] keypoints augmented with depth values. Keypoints
are matched between frames using the visual descriptors and
then filtered using RANSAC [23]. In order to improve the
results the matches are then filtered using ICP [20]. The
optimization engine used is the Ceres Solver [24]. After the
individual frames have been registered, the relative poses
of the observations are found using the same technique of
keypoint matching using RANSAC and ICP for filtering as
above.

B. Dealing with low-dynamics changes

In [1] a sliding window approach was used for incorporat-
ing new elements (e.g. new furniture) into the static structure.
We propose here a new formulation of this algorithm using
a Bayesian approach that explicitly takes into account the
temporal aspect of our data:

P(dynamic|τ) ∝ P(τ|dynamic)P(dynamic)

where τ represents the amount of time the element has not
moved. The factor P(τ|dynamic), the probability that an ele-
ment has not moved for τ given that the element is dynamic,
is modelled as a Poisson distribution, while P(dynamic)
is the prior probability that an element is dynamic and is
estimated using a heuristic. The flatter an element is the more
likely it is part of some large piece of furniture or the walls,
and hence the lower the probability that it is dynamic. If the
probability, P(dynamic|τ), exceeds a threshold we classify
the element as dynamic, else we conclude it is static and add
it to the static structure. Thus for each element our model
gives a duration of time that the element must not move for
it to be considered static.

V. CLUSTERING DYNAMIC ELEMENTS

In this section we focus on autonomously separating the
detected dynamic elements into clusters corresponding to the
same physical structure seen at different poses over time. In
our data there are multiple instances of the same type of
object, and thus we want to recognize that elements belong to
a particular repeated structure, but also to be able to separate
multiple instances of the same structure. This allows us to
build, for each such instance, a spatial-temporal map of when
the instance was seen and in what pose. We first cluster the
dynamic elements based on appearance and second merge
the clusters based on a spatial-temporal analysis of their
behavior.

A. Initial clustering

The initial clustering is done primarily through features
extracted over the point cloud making up the dynamic ele-
ment. The nature of our environment is such that the objects
corresponding to the dynamic elements detected move in
fairly constrained spaces (e.g. an office chair moves in a
certain space around a desk, a laptop or a monitor moves
roughly around the same position on desks). Moreover,
observations collected at a particular waypoint are captured
from roughly the same position, thus motivating our choice
of a global, viewpoint dependent feature to describe the
dynamic elements detected - the Visual Feature Histogram
(VFH) [25].

Here we must reject a fair number of true positives as
a result of the difficult nature of the data we are work-
ing with (partial views with very little overlap and severe
changes in illumination). We are matching elements based
on appearance only at this step. As we will merge these
clusters in the next step false positives are more of a problem
than false negatives. The result after this stage is clusters of
elements which are similar in appearance, and multiple such
clusters could correspond to the same physical object, seen
in different circumstances.

Algorithm 1 Initial Clustering

1: procedure INITIAL(allEl,newEl,clMap)
2: for e ∈ elements do
3: matches← getKNearestNeighbours(e,allEl)
4: matchFound← False
5: while (matches 6= /0) do
6: m← f indClosestElement(matches,e)
7: matches.pop(m)
8: if poseMatch(m,e) then
9: clMap[e]← clMap[m]

10: matchFound← True
11: break
12: end if
13: end while
14: if not matchFound then
15: clMap[e]← e
16: end if
17: end for
18: allEl.push back(newEl)
19: end procedure

The initial clustering algorithm is described in Alg. 1;
we execute it once for each new observation acquired at
a waypoint. The input to the initial clustering algorithm
consists of all the detected dynamic elements from previous
observations (variable allEl), the newly detected dynamic
elements (variable newEl) and a map (variable clMap) that
keeps track of which elements belong to which cluster. We
define the cluster Ci as the set of elements c from the map
such that:

Ci = { c ∈ clMap | clMap[c] = i}

For each new dynamic element, we find K nearest neighbors,
in terms of the Chi-square distance of their VFH descriptors.
We do not limit ourselves to just one nearest neighbor due to
the fact that VFH sometimes returns wrong matches and also
our data contains multiple instances of the same object, in
which case we would want to pick the closest one. We select
from the nearest neighbors the closest one spatially to the
new dynamic element and we perform a spatial alignment
step using ICP - this helps discard false positives, as our
matching criteria is a fitness measure that considers two-
way alignment. If a match is found we update the map to
reflect the fact that the current dynamic element belongs to
the same cluster as the matching dynamic element (line 9 of
Alg. 1), otherwise we initialize a new cluster for the current
dynamic element.

The initial clustering step is based on state of the art
methods for matching features extracted over point clouds
with the purpose of object recognition / clustering (see [15]
[16]). In the results section we show that such methods
are successful only up to an extent, but that it is possible
to increase the clustering accuracy using spatial-temporal
information about the elements.

B. Spatial temporal clustering

Fig. 3: The spatial and temporal distributions of three dy-
namic element clusters obtained after initial clustering. The
bottom row shows the temporal patterns of the three clusters
rendered on the same graph.

After the initial clustering step, we are left with a number
of clusters of dynamic elements, with some corresponding
to the same physical object. Note that at this stage, if two
clusters represent the same physical object, it means that
they represent two different embodiments of that object (i.e.
seen under different lighting conditions or in different orien-
tations), otherwise the initial clustering step based on visual
features would have grouped all their elements together.
The next step is to identify which clusters represent the
same object and to group them together. The underlying
assumptions are that clusters representing the same object
will define the same spatial distribution, i.e. they will be
found in the same place(s), and if two clusters represent

the same physical object, none of their elements should
overlap temporally, i.e. in that case they must represent
two different objects. Assuming a cluster is made up of n
dynamic elements di with centroids ci, we model the spatial
distribution of the n dynamic elements making up a cluster
as a Gaussian with mean and covariance:

µ =
1
n

n

∑
i=1

ci

Σ =
1

n−1

(
[ci−µ] [ci−µ]T

)
Fig. 3 shows an example of the spatial distributions of

three clusters of dynamic elements that correspond to the
same physical object, along with the outline of the environ-
ment where the observations were taken. Given probability
distributions P and Q, the Kullback Liebler Divergence
denoted as DKL (P‖Q) is a measure of the information
lost when Q is used to approximate P. However, since the
KL Divergence is non-symmetric, we use the Symmetric
Kullback Liebler Divergence DSKL (P‖Q) = DKL (P‖Q) +
DKL (Q‖P) to measure similarity and dissimilarity at the
spatial distribution level between the clusters. To compute the
KL Divergence between two normal distributions N0 (µ0,Σ0)
and N1 (µ1,Σ1) we use:

DKL (N0‖N1) =
1
2

tr
(
Σ
−1
1 Σ0

)
+(µ1−µ0)

T
Σ
−1
1 (µ1−µ0)

− k+ ln
(

detΣ1

detΣ0

)
Using the SKL Divergence we find pairs of compatible

clusters, from a spatial distribution point of view, as those
clusters Di, D j for which SKL(Di‖D j)< δ , where δ is empir-
ically chosen such that only clusters with very similar spatial
distributions match the criterion. Given two clusters Di and
D j that fit the previously defined criterion, we conclude they
represent the same physical object if the individual dynamic
elements making up the clusters do not overlap temporally,
i.e.:

Match(Di,D j) ⇐⇒ ∀dk ∈Di,∀dl ∈D j (time(dk) 6= time(dl))

The middle row of Fig 3 shows the temporal patterns of
three clusters of dynamic elements which represent the same
physical object, and in the bottom row of Fig. 3 one can see
that when rendered on the same graph, the temporal patterns
of the three clusters do not overlap.

During the spatial-temporal clustering phase, we itera-
tively group pairs of clusters that match spatially and tem-
porally, according to the criteria described above; we stop
when no such pairs exist any more. In the results section
we quantify the true and false positive rates of both the
initial clustering and the spatial-temporal clustering on an
individual object basis, as compared with labelled data.

VI. EXPERIMENTAL SETUP

The data was collected autonomously by a Scitos G5
robot with an RGB-D camera on a pan-tilt unit (PTU),
navigating through our office environment over a period
of approximately 30 days. Each observation consists of a
set of 51 RGB-D images obtained by moving the pan-
tilt in a pattern, in increments of 20 degrees horizontally
and 25 vertically. We have chosen this specific pattern for
good coverage of the environment around the robot, however
any such configuration is possible. The requirement here is
that initially the PTU visits each one of the 51 positions
when acquiring a new observation. The 51 camera poses are
optimized after executing the registration step described in
section IV-A. Once the camera poses are known, the PTU
does not need to stop at each of the 51 positions and a subset
of these can be covered during the acquisition of subsequent
observations.

Fig. 4: 2D map with the waypoints at which the data was
collected

Waypoints are visited between 80 and 100 times and a
total of approximately 720 observations are collected at the
eight waypoints that can be seen in Fig. 4. The robot typically
starts operating at 9 AM and finishes at 7 PM every weekday,
and patrol runs are usually scheduled every hour. However,
depending on factors such as doors being open or closed,
or other tasks with higher priority being scheduled instead,
not all the waypoints are visited during each patrol run. This
leads to a temporally non-uniform set of observations. We
make available the data collected (images, poses and the
results of our registration algorithm) for easier use and/or
comparison.

To evaluate the segmentation and matching algorithms
presented in this paper we have manually segmented and
labelled the observations collected at one of the waypoints,
using the GrabCut algorithm described in [26]. Since our data
was collected at different times during the day and sometimes
during the night as well, we have labelled objects both on
the depth and the RGB images (roughly 3400 images for 100
observations collected at the waypoint).

VII. RESULTS

We perform two evaluations, one of the segmentation
of dynamic elements and one of clustering of dynamics
elements.

A. Dynamic element segmentation

In this section we compare the performance on segmen-
tation of dynamic elements in a scene against the original
Meta-Room method [1]. We use the manually segmented
and labelled elements as ground truth for the evaluation.
The results are shown in Fig. 5 and Fig 6. Note that we
are not showing the standard precision vs recall plot. Instead
we show the precision and recall of the detected dynamic
elements for each observation. In this way one can see the
variation in the values that go into the averages shown in
Table I.

Observation number

0 10 20 30 40 50 60 70 80 90

P
e
rc

e
n
ta

g
e

40

50

60

70

80

90

100
Dynamic cluster segmentation - precision

Improved method
Original method

Fig. 5: Dynamic element segmentation - precision

Observation number

0 10 20 30 40 50 60 70 80 90

P
e
rc

e
n
ta

g
e

30

40

50

60

70

80

90

100
Dynamic cluster segmentation - recall

Improved method
Original method

Fig. 6: Dynamic element segmentation - recall

To generate precision and recall values at each observation,
we compared the reported dynamic elements with the true
dynamic elements, as given by the labelled data for that

particular observation, (i.e. precision = true positives / total
reported dynamic and recall = true positives / total dynamic
in labelled data).

TABLE I: Average precision recall - original method and
improved method

Precision (%) Recall (%)
Original method 67.6 79.4
Improved method 82.7 85.9

We achieve an increase of 15 percentage points in the
precision of the dynamic elements detected, which in practice
means we are detecting less elements corresponding to noise,
while the 6 percentage points increase in recall means we
are segmenting dynamic elements more reliably. It must be
noted here that we were not working with an engineered
dataset, where the dynamic elements were under our control.
As a result the labelling was not perfect. We have labelled
most of the important dynamic elements, such as chairs,
people, backpacks, jackets, laptops, monitors, etc, however
sometimes we detect other dynamic elements, such as cups
or mugs, or bags on the floor which we have overlooked
while labelling - this gives rise to some of the unevenness
in the precision curve. One way to address this limitation
would be to discard smaller dynamic clusters based on a
size threshold, however this would also result in discarding
partial matches of larger objects.

Another factor affecting the precision and recall figures is
the motion of low dynamics objects (such as couches, desks,
etc.). Since these objects are mostly static in our observations
we have not labelled them as dynamic. Whenever these
objects move, they are segmented as dynamic for some time
until they are absorbed back into the static structure, as
defined in section IV-B. During that time, the precision and
recall figures will be affected.

Object classes
1 2 3 4 5 6 7 8 9 10

P
e

rc
e

n
ta

g
e

0

10

20

30

40

50

60

70

80

90

100
Dynamic object segmentation - detection of individual objects

Improved method
Original method

Fig. 7: Dynamic element segmentation - detection rate

We have also checked the performance of the segmentation
by looking, for each element in each observation in the
labelled data, whether it was detected and segmented out as a

Object classes
1 2 3 4 5 6 7 8 9 10

P
e

rc
e
n

ta
g

e

0

10

20

30

40

50

60

70

80

90

100
Dynamic object segmentation - accuracy of segmented objects

Improved method
Original method

Fig. 8: Dynamic element segmentation - accuracy, averaged
over all detections for each object

dynamic element (shown in Fig. 7), and if segmented, how
accurate was the segmentation, in terms of spatial overlap
between the labelled element and the segmented element
(shown in Fig. 8, averaged across all the detections for
each particular object). The figures show the results for the
10 elements with the highest number of occurrences in the
labelled set.

Again we see a significant increase in the performance
of the improved method, particularly in the accuracy of the
elements segmented. The average detection rate and accuracy
are summarized in Table II.

TABLE II: Average detection rate and accuracy - original
method and improved method.

Detection rate (%) Accuracy (%)
Original method 52.2 79.4
Improved method 70.4 82.6

B. Dynamic element clustering

To quantify the results of the clustering algorithm, we
have compared the resulting clusters with the objects in the
labelled dataset, where each object in the labelled dataset
(e.g. a chair or a backpack) is present a certain number
of times across the observations making up the dataset.
Thus subsets of a particular object’s instances would be
covered by various clusters we obtain through our algorithm,
which we count as true positives for those particular clusters.
Conversely, those clusters might contain other instances of
other objects due to clustering errors; those instance we
count as false positives with respect to the object we are
currently matching to. In the case when multiple clusters
contain instances of a particular object (which is indeed the
case most of the time), we display the one with the highest
number of true positives in the subplots of Fig. 9.

In Fig. 9 we show the true positive and false positive
percentages for five of the objects in the labelled dataset, on

Object classes
1 2 3 4 5

P
e

rc
e
n

ta
g

e

0

10

20

30

40

50

60

70

80
Initial clustering

True positives
False positvies

Object classes
1 2 3 4 5

P
e

rc
e
n

ta
g

e

0

10

20

30

40

50

60

70

80
Spatio-temporal clustering

True positives
False positvies

Fig. 9: Dynamic element clustering - true and false positive
rate for the initial and spatial-temporal clustering methods

the left displaying the result of the initial clustering and on
the right the result of the spatial-temporal clustering. There is
a clear and visible increase in the percentage of true positives
with a very little increase in the percentage of false positives
after the spatial-temporal clustering step. The object classes
represent the same physical objects in both the subplots.

Meters
-8 -7 -6 -5 -4 -3 -2

M
e
te

rs
 (

m
a
p
 f
ra

m
e
)

6

7

8

9

10
Dynamic clusters spatial distribution

Environment walls
Dynamic clusters

Time instance
0 10 20 30 40 50 60 70 80 90 100

P
re

s
e
n
t

-0.5

0

0.5

1

1.5
Temporal Pattern

Fig. 10: Dynamic element spatial-temporal distribution

Fig 10 shows the resulting spatial-temporal distribution of
one of the dynamic element clusters. The spatial distribution
is shown in the map frame of reference here modelled as
a Gaussian, and for clarity we also display the outline of
the environment at the waypoint where the observations
were collected. The bottom row of Fig. 10 shows the
actual observed temporal pattern of the cluster across all the
observations collected by the robot.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a novel method of object clustering
based on spatial distributions and temporal patterns. We show
that the spatial-temporal clustering algorithm allows cluster-
ing object instances that vary significantly in appearance, and
that this leads to an increase in overall classification accuracy.
The input to the clustering algorithm is a set of dynamic
elements segmented through the Meta-Room method [1],
and we investigate the performance of this segmentation
method on a large dataset collected autonomously by a
mobile robot over a long time period. We propose a number
of improvements to the original segmentation method and we
evaluate their performance in terms of precision and recall of
the dynamic elements segmented as compared to a labelled
dataset. Finally, we share the collected dataset with other
researchers along with the tools required for easy access as
well as for labelling.

For future work we will focus on developing a prob-
abilistic way of assigning segmented objects to clusters,
which allows for correcting the assigned labels once more
information becomes available. We will also investigate how
the spatial-temporal models of the dynamic element clusters
can be used to predict where the objects are most likely
to be at different points in time, by exploiting things like
periodicities in their behaviour. In addition, we will look
into whether the spatial-temporal models can be used to
cluster objects in different rooms or different environments
altogether. And finally, we would like to see how localization
can be improved in an environment where the robot knows
which objects are dynamic and that they are likely to move
within some spatial distribution.

IX. ACKNOWLEDGMENTS

The work presented in this papers has been funded by the
European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement No 600623 (”STRANDS”), the
Swedish Foundation for Strategic Research (SSF) through its
Centre for Autonomous Systems and the Swedish Research
Council (VR) under grant C0475401.

REFERENCES

[1] R. Ambrus, N. Bore, J. Folkesson, and P. Jensfelt, “Meta-rooms:
Building and maintaining long term spatial models in a dynamic
world,” in Intelligent Robots and Systems (IROS), 2014 IEEE/RSJ
International Conference on. IEEE, 2014, pp. 1854–1861.

[2] J. Saarinen, H. Andreasson, and A. J. Lilienthal, “Independent markov
chain occupancy grid maps for representation of dynamic environ-
ment,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 2012, pp. 3489–3495.

[3] T. Kucner, J. Saarinen, M. Magnusson, and A. J. Lilienthal, “Con-
ditional transition maps: Learning motion patterns in dynamic envi-
ronments,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on. IEEE, 2013, pp. 1196–1201.

[4] P. Biber and T. Duckett, “Experimental analysis of sample-based maps
for long-term slam,” The International Journal of Robotics Research,
vol. 28, no. 1, pp. 20–33, 2009.

[5] A. Walcott-Bryant, M. Kaess, H. Johannsson, and J. J. Leonard,
“Dynamic pose graph slam: Long-term mapping in low dynamic envi-
ronments,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 2012, pp. 1871–1878.

[6] T. Krajnik, J. P. Fentanes, O. M. Mozos, T. Duckett, J. Ekekrantz, and
M. Hanheide, “Long-term topological localisation for service robots in
dynamic environments using spectral maps,” in Intelligent Robots and
Systems (IROS), 2014 IEEE/RSJ International Conference on. IEEE,
2014, pp. 4537–4542.

[7] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and
A. J. Davison, “Slam++: Simultaneous localisation and mapping at the
level of objects,” in Computer Vision and Pattern Recognition (CVPR),
2013 IEEE Conference on. IEEE, 2013, pp. 1352–1359.

[8] Y. Li, A. Dai, L. Guibas, and M. Nießner, “Database-assisted object
retrieval for real-time 3d reconstruction,” in Computer Graphics Fo-
rum, vol. 34, no. 2. Wiley Online Library, 2015.

[9] M. Gunther, T. Wiemann, S. Albrecht, and J. Hertzberg, “Building
semantic object maps from sparse and noisy 3d data,” in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on. IEEE, 2013, pp. 2228–2233.

[10] J. Mason and B. Marthi, “An object-based semantic world model
for long-term change detection and semantic querying,” in Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on. IEEE, 2012, pp. 3851–3858.

[11] E. Herbst, P. Henry, X. Ren, and D. Fox, “Toward object discovery
and modeling via 3-d scene comparison,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on. IEEE, 2011, pp.
2623–2629.

[12] E. Herbst, X. Ren, and D. Fox, “Rgb-d object discovery via multi-
scene analysis,” in Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on. IEEE, 2011, pp. 4850–4856.

[13] E. Herbst, P. Henry, and D. Fox, “Toward online 3-d object segmen-
tation and mapping,” in IEEE International Conference on Robotics
and Automation (ICRA), 2014.

[14] R. Finman, T. Whelan, M. Kaess, and J. J. Leonard, “Toward lifelong
object segmentation from change detection in dense rgb-d maps,” in
Mobile Robots (ECMR), 2013 European Conference on. IEEE, 2013,
pp. 178–185.

[15] A. Aldoma, F. Tombari, L. Di Stefano, and M. Vincze, “A global
hypotheses verification method for 3d object recognition,” in Computer
Vision–ECCV 2012. Springer, 2012, pp. 511–524.

[16] F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of
histograms for local surface description,” in Computer Vision–ECCV
2010. Springer, 2010, pp. 356–369.

[17] F. Endres, C. Plagemann, C. Stachniss, and W. Burgard, “Unsupervised
discovery of object classes from range data using latent dirichlet
allocation.” in Robotics: Science and Systems, vol. 2. Seattle,
Washington;, 2009, p. 113120.

[18] J. Shin, R. Triebel, and R. Siegwart, “Unsupervised discovery of
repetitive objects,” in Robotics and Automation (ICRA), 2010 IEEE
International Conference on. IEEE, 2010, pp. 5041–5046.

[19] O. Mattausch, D. Panozzo, C. Mura, O. Sorkine-Hornung, and R. Pa-
jarola, “Object detection and classification from large-scale cluttered
indoor scans,” in Computer Graphics Forum, vol. 33, no. 2. Wiley
Online Library, 2014, pp. 11–21.

[20] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek, “The trimmed
iterative closest point algorithm,” in Pattern Recognition, 2002. Pro-
ceedings. 16th International Conference on, vol. 3. IEEE, 2002, pp.
545–548.

[21] T. Stoyanov, M. Magnusson, and A. J. Lilienthal, “Point set reg-
istration through minimization of the l 2 distance between 3d-ndt
models,” in Robotics and Automation (ICRA), 2012 IEEE International
Conference on. IEEE, 2012, pp. 5196–5201.

[22] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: an efficient
alternative to sift or surf,” in Computer Vision (ICCV), 2011 IEEE
International Conference on. IEEE, 2011, pp. 2564–2571.

[23] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[24] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-solver.
org.

[25] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recognition
and pose using the viewpoint feature histogram,” in Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Conference on.
IEEE, 2010, pp. 2155–2162.

[26] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: Interactive fore-
ground extraction using iterated graph cuts,” ACM Transactions on
Graphics (TOG), vol. 23, no. 3, pp. 309–314, 2004.

