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Abstract. This paper describes an efficient
algorithm to extract piece-wise smooth surfaces
from depth images. The algorithm is based on
the Mumford-Shah (MS) functional. A solution
is obtained by means of a multi-model and multi-
scale region merging strategy that does not re-
quire to define the number of regions in advance.
Our current formulation allows smooth regions
to be modeled either as planar or B-splines sur-
faces and thus provides a parametric representa-
tion of the scene upon convergence. Additionally,
we propose a final refinement step that corrects
initial region boundaries obtained by means of su-
pervoxel segmentation. This final stage results in
smooth boundaries (due to the boundary length
penalization in the MS) that better separate dif-
ferent regions in the scene. We demonstrate the
performance of the proposed algorithm in indoor
scenes, acquired with RGB-D sensors, showcas-
ing man-made objects and structures.

1. Introduction

Segmentation of images into meaningful struc-
tures is a major research area in the field of
computer vision. Even though segmentation
has been predominantly investigated for inten-
sity and color images, the recent appearance of
RGB-D sensors has sparked a renewed inter-
est among roboticists. Clearly, the availability
of depth data in conjunction with color images
provides additional cues to aid in segmentation.
Segments cannot only be assessed by their sim-
ilarity in color space, but also by their continu-
ity and smoothness in Euclidean space. Nev-
ertheless, while computer vision scientists have
adopted energy minimization techniques (which
in some cases consider the whole extend of the

image as well as interaction among segments) to
address the challenges present in segmentation,
recent approaches making use of depth informa-
tion still rely strongly on local heuristics (in par-
ticular during the initial stages of the segmenta-
tion pipeline) to determine the extend of individ-
ual regions in an image. While these algorithms
perform well in the envisioned situations, their
strong dependence on local properties of the data
results in an undesired lack of robustness to local
perturbations. This results in complex pipelines
that are difficult to adapt to novel situations or
slightly different sensors.

Because of the aforementioned caveats and in-
spired by recent trends in the segmentation of in-
tensity images, this paper formalizes the segmen-
tation of depth images into piece-wise smooth
surfaces within the Mumford-Shah framework
(see Section 3). We propose an algorithm (based
on Koepfler et al. [6]) to obtain an approximated
solution of the functional that upon convergence
results in a parametric surface representation of
the input data (see Section 4). We demonstrate
the performance of the proposed approach in Sec-
tion 5 on two datasets acquired with RGB-D sen-
sors but with different characteristics vouching
for the generalization capabilities of the proposed
framework.

2. Related work

Various approaches to segment images into
larger patches exist. Most of them are based on
simple color and edge features [4, 17, 21, 22, 2,
19], some include depth information [7, 10, 20]
and others rely on the estimation of shape prim-
itives [9, 5] or combine 3d-shape with color infor-
mation [16, 11]. In the following paragraph we
review aspects of these approaches starting with



algorithms relying on appearance cues.

Many approaches formulate image segmenta-
tion as energy minimization with a MRF [17,
21, 22]. In addition to an appearance model
computed from color and texture Werlberger
et al. [22] introduce a shape prior which is
modeled as a Geodesic Active Contour energy.
In [2] and [19] the objective function is for-
malized with the Mumford-Shah functional [12].
Bernard et al. [2] introduce a continuous para-
metric function using B-splines to model a
contour energy term. Strekalovskiy and Cre-
mers [19] rewrite the proximal operator in a
primal-dual algorithm using Moreau’s identity to
achive real-time performance.

A graph cut is also used in [7, 10]. While
Kootstra et al. [7] include the disparity de-
viation of pixels to the dominant plane and
solve an MRF-formulation using α/β swap [3],
Mishra et al. [10] use fixation points and a short-
est path in a log polar transformed edge im-
age. Ückermann et al. [20] propose a model-free
algorithm which subsequently combines smooth
surface patches, directly computed in depth im-
ages, to form object hypothesis. The approach
by Hager et al. [5] is able to segment objects from
cluttered scenes in point clouds by using a strong
prior 3d model. Hence, it is limited to para-
metric models such as boxes and cylinders. The
problem of fitting higher order surfaces to point
clouds was addressed by Leonardis et al. [9].
They segment range images by estimating piece-
wise linear surfaces, modeled with bivariate poly-
nomials. A Model Selection framework based on
the Minimum Description Length (MDL) prin-
ciple is used to find the best interpretation of
the scene. MDL for Model Selection is also
used in [11]. Instead of piecewise linear surfaces
Mörwald et al. use planes and B-spline surfaces.

Like Mörwald et al. the approach in this pa-
per uses basic surface models, such as planes
and B-splines. Instead of using Model Selection
and MDL where the complexity for each model
needs to be defined with respect to their number
of parameters, we integrate these surface mod-
els into the Mumford-Shah functional [12] and
model complexity is implicitly encoded by the
curvature of the regional surfaces.

3. Piece-wise Smooth Segmentation

This section briefly reviews the Mumford-
Shah framework for image segmentation. Then,
we propose an adaptation of the functional for
the segmentation of depth images into piece-wise
smooth parametric surfaces.

3.1. Mumford-Shah framework

In a nutshell, the celebrated Mumford-Shah
functional [12] is used to establish an optimal-
ity criterion to segment an image into a disjoint
set of sub-regions. The aim of the functional
is to find an approximation I of an input im-
age Io such that (i) I is similar to I0, (ii) I is
smooth within the different sub-regions and (iii)
the boundaries between regions are of minimal
length. In the continuous setting, the functional
is formulated as

E(I, Ci) =
∫

Ω
‖I − I0‖2 dx+ β

∫
Ω\Ci

‖∇I‖2 dx

+ α

∫
Ci

ds,

(1)

where Ω is the image domain and Ci represents
the boundaries of the different sub-regions in the
image. α and β are parameters (≥ 0) penalizing
lack of smoothness within regions and boundary
length, respectively. Of special interest is the
piecewise constant Mumford-Shah model when
β →∞ enforcing the different regions in the im-
age approximation, I, to be constant.

3.2. Multi-model MS for depth images

This section proposes a set of modifications to
the MS framework in order to extract piece-wise
smooth parametric surfaces from a depth image.
Multi-model refers to the availability of different
parametric surface models (with increasing ex-
pressiveness and potentially decreasing smooth-
ness) to approximate piece-wise smooth sub-
regions in the input data. In our current for-
mulation, surfaces can be represented by planar
or B-splines (with 3x3 control points) surfaces.
Please note that these two parametric models of
surfaces are by construction smooth and differ-
entiable. Thus, (1) becomes in our setting:



E(D,Ci) =
∫

Ω
‖D −D0‖2 dx+ β

∫
Ω\Ci

κ2dx

+ α

∫
Ci

ds.

(2)

where D0 represents the input depth image and
D represents an approximation of the input
depth and is composed by different piecewise
smooth regions parametrically modeled either as
planar or B-spline surfaces. Note that in our spe-
cific setting, the second term of (2) penalizes the
curvature κ of the approximating surface instead
of ‖∇D‖. This formulation allows on one hand to
overcome the problem of favoring fronto-parallel
planar surfaces (with ‖∇D‖ = 0) over equally
planar but slanted surfaces (with ‖∇D‖ > 0)
[15, 8]. On the other hand, it favors regional
models with less expressiveness (e.g. planar sur-
faces) over richer models (e.g. B-splines) pre-
senting higher complexity. Intuitively, we would
prefer segmentations that use simpler parametric
models unless there is a good reason to increase
the model complexity, such as low regional data
fidelity and/or reduction of the boundary length.

4. Implementation

This section revolves around the implementa-
tion of the piecewise smooth surface segmenta-
tion framework proposed in the previous section.
In particular, we address the problem of minimiz-
ing the functional in (2).

4.1. Overview

Provided with a depth image of a scene,
D0, the algorithm starts by computing an over-
segmentation of the scene in terms of supervox-
els. These small regions are the basis to minimize
(2) and provide as well the initial boundaries be-
tween different sub-regions. In particular, a solu-
tion is obtained by incrementally merging pairs
of adjacent regions (i.e., sharing a boundary)
that improve the functional energy. Our multi-
model scheme is introduced here by first trying to
reduce the energy by fitting planes to neighbor-
ing regions. Once the energy cannot be further
reduced, the model expressiveness is increased
and the merging process is restarted by fitting B-
splines surfaces to connected regions. Upon con-
vergence, a refinement stage is performed that

swaps the associated region at pixels located at
the boundary between two regions. This final
stage aims at improving the initial boundaries
provided by the over-segmentation in the scene
in situations where they do not adhere properly
to the actual boundaries of the smooth surfaces
in the scene. The outcome of the proposed algo-
rithm at different stages is depicted in Figure 1.

4.2. Oversegmentation

Over-segmentation of an image into regions of
similar pixels, known as superpixels, is a widely
used preprocessing step in oder to reduce the
amount of data for subsequent computationally
expensive algorithms. We use the method of
Papon et al. [13], which is able to cluster a
set of points using color and the 3D informa-
tion. The main idea is to select spatially uniform
distributed (in Euclidean space instead of im-
age space) seed points and to iteratively cluster
neighboring points enforcing spatial connectivity
and smoothness. In contrast to traditional su-
perpixel algorithms working on image space [1],
this results in supervoxels which do not flow
across boundaries in 3D space and are smooth
by considering surface normals. The implemen-
tation used in this paper is the one provided
by the original authors within the Point Cloud
Library. The supervoxel extraction is governed
in our case by two parameters indicating spa-
tial compactness and smoothness. Please note
that supervoxels provide on one hand an initial
reduction of the number of regions and on the
other hand, pixels get grouped together in larger
regions that allow the extraction of parametric
surface models.

4.3. Multi-scale and multi-model region merging

The previous stage results in an over-
segmentation of the image domain into a disjoint
set of regions Ω = {R1 ∪R2 ∪ ...∪Ri ∪ ...∪Rn}.
Ci ∈ Ri is defined as the boundary between Ri
and adjacent regions. Provided with this initial
set of regions and boundaries, this section de-
scribes the algorithm to minimize the functional
in (2). To this end, we propose an adaption of the
multi-scale algorithm by Koepfler et al. [6] that is
reviewed in the following for completeness. They
minimize the piece-wise constant Mumford-Shah
model for an intensity image I0



(a) Color image (b) Depth map (c) Over-segmentation

(d) Planes (e) Planes + B-splines (f) Refinement

Figure 1: Overview of the different stages of the method

E(I, Ci) =
∫

Ω
(I − I0)2 dx+ α

∫
Ci

ds, (3)

where the smoothness term has been dropped
by letting β → ∞ in (1). The algorithm in
[6] proceeds by iteratively merging adjacent re-
gions whereby the different regions composing
the piece-wise constant approximation I = {R1∪
...∪Rn} are modeled by the average intensity of
all pixels within each region. In a nutshell, at
each iteration, the algorithm selects the merging
move with minimal α̂k. The α̂k of a certain move
k representing the merging of two regions Ri and
Rj is defined as:

α̂k = −∆Eregion
∆Elength

=
−
(
ERi + ERj − ERi∪Rj

)
|Ci|+ |Cj | − |Cij |

(4)

where Cij represent the boundary length
obtained by merging both regions and
E{Ri,Rj ,Ri∪Rj} represent the regional error
for a piece-wise constant region. The algorithm
terminates when all possible merging moves in
the current state have an α̂k larger than the user

parameter α, indicating the lack of energetically
favorable moves. The multi-scale attribute arises
from the fact that as the algorithm proceeds, the
boundary length penalizer α̂k is incrementally
increased. Therefore, it is possible to obtain
different segmentations at different scales.

In contrast to [6], we propose a modification
that is very similar to the original algorithm but
with two main differences:

1) We minimize the piece-wise smooth MS in-
stead of the piece-wise constant model by
allowing regions to be modeled as paramet-
ric smooth surfaces, and

2) We incrementally increase the model com-
plexity representing piece-wise smooth re-
gions once the energy cannot be further re-
duced by simpler models.

Therefore, (4) becomes:

α̂k = −∆Eregion − β∆Esmooth
∆Elength

, (5)

and due to 2), the proposed algorithm works not
only at multiple scales but also with different
model complexities. In our current implemen-
tation, with two piece-wise smooth models (i.e.



planar and B-splines surfaces), our algorithm can
be considered a two-pass version of the algorithm
of Koepfler (see Algorithm 1). Using the appro-
priate data structures as well as exploiting incre-
mental computation properties of surface para-
metric models (see Section 4.4), merge moves can
be efficiently implemented.

Algorithm 1 Multi-scale and multi-model re-
gion merging
Input: α, β
Models={PLANE, BSPLINE 3x3}
m ←0
C = {Ri, Rj , α̂k} //sorted merging candidates
converged ← false
while not converged do
c = {Ri, Rj , α̂k} ← pop(C)
if α̂k > α then

if m ≥ length(Models) then
converged ← true

else
//increase model type
m← m+ 1
//merging candidates with current model type
C ← comp candidates(Models[m], C)
continue

end if
end if
//apply merge and update structures
{new cands, affected} ← merge(c)
C ← remove candidates(affected, C)
new cands ← comp candidates(Models[m], new cands)
insert sorted(C, new cands)

end while

4.4. Model fitting

The algorithm proposed in the previous sec-
tion relies on the ability to fit planar and B-
splines models to regions in the scene that build
up the piece-wise smooth approximation (D) of
the input data D0. To this end, this section fo-
cuses on how to incrementally (whenever possi-
ble) and efficiently extract the parametric repre-
sentation of regions as the algorithm iterates.

4.4.1 Planar surfaces

Planar surfaces are a good initial choice to para-
metrically approximate unknown surface data:

1) Locally, planar models can approximate al-
most any structure.

2) Planar surfaces are a recurrent structure in
man-made environments.

3) They can be efficiently estimated by first-
and second-order moments of the underlying
data followed by Eigenvector analysis of the
resulting 3x3 covariance matrix.

In addition, because first- and second-order
moments can be incrementally computed, planar
models become a very efficient model for region
merging strategies. In other words, the planar fit
of two regions that are to be merged can be effi-
ciently computed by reusing the previously com-
puted statistics of the individual regions.

Relation to (2): The regional fit of a region,
Ri, modeled as a planar surface is computed as
the squared depth error of the underlying pixels
to the model. Regarding the smoothness term,
planar surfaces do not present any curvature and
thus, the smoothness term has no effect in the en-
ergy for any region modeled as a planar surface.

4.4.2 B-spline surfaces

Modeling curved surface areas is a well studied
problem and there are many mathematical so-
lutions such as superquadrics, wavelets and bi-
variate polynomials to name a few. We choose
B-splines due to their beneficial properties:

1) They are very flexible w.r.t. the degrees of
freedom we wish to model.

2) Derivatives and curvature may be computed
explicitly at any point of the surface.

3) The mathematical formulation of fitting a
B-spline to a point-cloud or depth map be-
comes solving a linear system of equations.

A B-spline surface is defined as the sum of
weighted basis functions

S(ξ, η) =
m∑
j=1

ϕj,p(ξ, η)bj (6)

where (ξ, η) ∈ R and ϕj(ξ, η) is a bivariate basis
function which can be efficiently evaluated by the
Cox-de-Boor algorithm. They define the influ-
ence of the weights, also called control points bj .
The polynomial order of the basis functions is
denoted by p. A full explanation of B-splines is
available in the book of Piegl et al. [14]. Note
that we embed the B-spline surface into the do-
main of the depth map thus becoming a function
S : R2 → R.

Fitting to a depth image D : R2 → R is the
problem of finding control points such that the
distance between D and S is minimized. Since
we aim for piecewise smooth regions, a least
squares optimization w.r.t. the control points is



a sufficiently accurate approximation.

min
b

∫
R
‖D(ξ, η)− S(ξ, η,b)‖2 (7)

where b denotes a vector collecting the control
points. This is equivalent to the first term of
Eq. (2). We define the B-spline domain to match
the index space of the depth image. This al-
lows to conveniently query surface points and its
derivatives (up to order p − 1) at any image lo-
cation (ξ, η).

Relation to (2): The attentive reader might
already have noticed that the functional we min-
imize in Eq. (7) is equivalent to the first term
of Eq. (2). By using the Greville abscissae and
re-projecting into R3 we obtain the B-spline con-
trol points and therefore the surface in Euclidean
space (S ∈ R3). We then explicitly evaluate the
mean curvature κ for computing the second term
as

κ =
〈
∂2S
∂2ξ

,n
〉

+
〈
∂2S
∂2η

,n
〉

(8)

with n being the normal surface of the B-spline

n = ∂S
∂ξ
× ∂S
∂η
. (9)

4.5. Refinement stage

So far, we have focused on the minimization of
the functional in (2) by merging neighboring re-
gions as described in sections 4.3 and 4.4. While
being a successful strategy, it suffers from the
inability to change the location of initial region
boundaries resulting from the over-segmentation
stage. Therefore, if supervoxels flow across ob-
ject boundaries, the merging moves will not be
able to correct these artifacts. Aiming at fur-
ther minimizing the energy cost, we propose a
refinement stage that includes another variety
of moves. In particular, the refinement stage
aims at swapping the region association of pixels
at the boundary between regions provided that
this swap minimizes the functional. This simple
strategy results in the removal of wiggly bound-
aries due to a reduction of the overall bound-
ary length as well as a better pixel-wise associ-
ation due to a reduction of the data error term.
By applying this refinement stage after the func-
tional cannot be further minimized by means of
merging moves, the overall cost of this stage is
computationally acceptable (since the number of

boundary pixels has in general been greatly re-
duced prior to this stage by merging operations).

5. Experimental results

This section provides an initial qualitative
evaluation of the proposed method. Figure 2
and 3 show the resulting segmentation for three
scenes from the OSD0.2 [16] and three from the
NYU-depth (v2) [18] dataset respectively. Both
datasets have been acquired indoor using RGB-
D cameras but as it can be seen from the im-
ages they showcase different scenarios. In partic-
ular, OSD focuses on the segmentation of house-
hold objects in table-top scenarios. On the other
hand, the NYU dataset includes thousands of
scenes from domestic environments and its fo-
cus lies on larger objects (e.g., furniture, room
structure, etc). A major distinctive trait among
both datasets is the depth range covered by the
datasets. While most of the objects in OSD are
to be found not farther away than 1.5m from the
sensor, the NYU dataset depth range is much
larger. It is a well known fact that the quality
of RGB-D data degrades rapidly after 2m and
therefore, segmentation of meaningful structures
on the NYU dataset is much more challenging,
specially for algorithms like the one proposed in
this paper relying solely on depth information.

These differential traits have required a differ-
ent parameter setting for both datasets (see cap-
tions of Figure 2 and 3 for specific values). Over-
all, we can see that the scenes get segmented into
meaningful structures vouching for the efficiency
of the proposed method. However, in Figure 3
one can observe how segmentation quality de-
grades due to the noise in the data as the distance
to the camera increases. Figure 4 shows the re-
constructed point cloud from the depth data ob-
tained after minimizing the proposed functional.
As expected, noise in the data gets smoothed
by using smooth parametric surface models. Fi-
nally, Figure 5 shows the effect of the boundary
regularizer on a scene from the OSD dataset. As
boundaries become more costly, larger structures
arise.

6. Conclusions and future work

This paper has presented a formulation based
on the Mumford-Shah functional to segment
depth data into smooth surfaces. Our prelimi-



Figure 2: Qualitative results for three scenes in the OSD dataset. α = 1.5−4, β = 1.

Figure 3: Qualitative results for three scenes in the NYU dataset. α = 1−2, β = 2. Depth information
beyond 3.5m is ignored.

nary results show that the method is an effective
and elegant alternative for the task at hand. In
the future, we plan to extend our current model
to more complex models being able to represent
simple objects (i.e. by means of superquadrics)
as well as the addition of appearance informa-
tion to improve segmentation in situations where
depth data becomes unreliable. The addition of
shape priors based on the knowledge of recurrent

objects is another interesting research direction.
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Figure 5: Effects of boundary regularizer (α = 5−5, 1−4, 2−4, 3−4)

Figure 4: Resulting point cloud after segmenta-
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