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Abstract— Socially interacting robots will need to understand
the intentions and recognize the behaviors of people they come
in contact with. In this paper we look at how a robot can
learn to recognize and predict people’s intended path based on
its own observations of people over time. Our approach uses
people tracking on the robot from either RGBD cameras or
LIDAR. The tracks are separated into homogeneous motion
classes using a pre-trained SVM. Then the individual classes
are clustered and prototypes are extracted from each cluster.
These are then used to predict a person’s future motion based
on matching to a partial prototype and using the rest of the
prototype as the predicted motion. Results from experiments in
a kitchen environment in our lab demonstrate the capabilities
of the proposed method.

I. INTRODUCTION

It has often been pointed out that mobile robots operating
in areas occupied by people will benefit from identification
of the human behavior and using this to interact or to avoid
interfering with the humans [1], [2], [3]. Ideally the robot
will while operating in a new environment be able to learn
to make these predictions based on its own observation of the
people going about their normal business. Over time these
predictions should both improve and adapt to changes in
motion patterns.

For example in [4], a complete theoretical framework
is presented for robot motion planning using RRT that
incorporates predictions of person motion along with a set
of rules such as ‘collision free rule’ and ‘interference free
rule’. This is the sort of framework in which our work could
be applied.

In this paper we propose a solution for learning to pre-
dict the future motions of people. Our approach has the
robot collect short trajectories by tracking people using a
RGBD camera [5] or using LIDAR. The trajectories are then
clustered to find prototypical patterns of motion and these
are then used to predict likely future motions from partial
trajectories.

Our first contribution is the introduction of a modified
distance function for the clustering algorithm. This distance
is an improvement over the previously used edit distance in
that it can measure similarity of non-overlapping but nearby
trajectories especially ones with little or no movement.

A second contribution is the on-line adaptive prediction
of likely future trajectories from partial observation of a
person track. This includes developing a pipeline for on-
line unsupervised learning of prototypical trajectories from
the person tracks collected by the robot while it carries out
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tasks in some environment. The prediction can help the robot
avoid moving into the person’s intended path. The main
difference in this pipeline from previous work is the use
of the pre-trained SVM as a classifier to separate the on-line
training data into more homogeneous classes before learning
subpatterns within each class.

II. MOTIVATION AND OVERALL STRATEGY

Our goal is to have the robot predict where a person might
be moving so as to better plan its own motion. In addition
we want our robot to improve and adapt its predictions over
time by using observations of the people that it tracks in the
course of doing its tasks in an environment. In order to do
this we will learn prototypical trajectories in an unsupervised
manner from the tracking data.

A limitations that has a strong influence on our choices of
methods is the relatively small amount of data we have to
learn from. As very inhomogeneous data is harder to learn
from. We split the data into homogenous classes for learning.
That is done to learn the prototypes that presumably could
be learned from the non-split data if we had more of it.
The use of the learned protypes then does not require first
determining the class then the prototype but rather all the
protypes are matched to and the class is then not explicit
anymore. For the same reason we learn in an absolute frame
as it is easier to learn the specific environment of the test
data than a general behaviour in the normalized frame that
is used to do the initial spliting into subclasses.

Our predictions will be the result of matching currently
observed starting sections of people tracks with the starting
sections of the prototypes. The closest match will then give a
prediction of person’s unknown planned path as the continu-
ation of the known prototype trajectory. If several prototypes
match similarly well we can form multiple hypotheses over
the future paths with the similarity to the prototype giving
some ranking of the hypotheses. Either way it enables the
robot to move in a way less likely to interfere with the person.

Our approach to the unsupervised learning of paths is to
use a method similar to K-means clustering on the trajectory
data represented as vectors of cell labels, where 25 cm
square cells form a uniform grid over the environment.
The clustering method, partitioning around medoids PAM
[6], minimizes a sum of general pairwise dissimilarities in
contrast to the K-means algorithm which is restricted to the
euclidean distance as a measure of the dissimilarities.

This learning is aided by having training data that all
belong to the same general sort of human activity. For
example separating people standing still from people moving
in a very decided direction from A to B will make learning



easier. This was confirmed in our experiments as illustrated
in Fig. (1).

In order to separate the incoming learning data into these
more homogeneous classes we train a SVM in a supervised
manner to do the separations. Note that this SVM will not
be further trained on-line but will rather be a prefiltering
stage for the classifier which could then be trained on-line.
The classification boundaries of these activity classes will
not change even if motion patterns differ. This is supported
by the results of [7]. We can also expect this because of the
nature of the features and the classes that we will present
later. The more specific prototypes of the trajectories, on the
other hand, will benefit from long term learning that can
adjust to changes in the environment and the behaviors of
the people.

Fig. 1: PAM clustering with k=30, ie. w=1 eq. (2), on the
unclassified data. The stars are cluster centers, solid black
and path start, open blue. Most of the ‘prototypes’ end up
being very short or stopped trajectories. These then are not
very useful to predict future motion. That is why we learn
different prototypes for different activity classes as in Fig. (9)

III. RELATED WORK

Learning of motion patterns has been done using combi-
nation of clustering followed by a Hidden Markov Model
HMM [8] and IOHMM [9]. These methods were shown
to produce good results. As compared to our method they
required a more careful modeling of the trajectories for the
environment with certain resting places being defined for
behaviors. In [8] they learn a probabilistic model of the
trajectories using EM which is roughly comparable to our
learning the centers of clusters of trajectories using parti-
tioning around medoids PAM. They then derive the HMM

to allow prediction while we match to partial prototypes to
form a hypothesis over future trajectories.

In [7] several different approaches are used with the aim
of motion prediction over short times. First they use a SVM
classifier to learn motion classes in a supervised manner. This
learning used certain features in the trajectories to describe
them. Our SVM classifier uses a similar approach. They then
used the trained SVM to classify a much larger data set
allowing them to extract how certain areas tended to have
certain classes of motion patterns. So for example ’busy
walk’ in hallways. We however use the trained SVM to help
the unsupervised learning by making the training data more
homogeneous.

To do so called anticipation in [7] they perform what
they call DP matching for clustering using an edit distance
between state chain vectors similar to the edit distance we
describe in our method. They also then generate prototypes
that can then be matched to using the partial trajectories to
the partial prototypes. The main difference compared to our
method is in the distance or similarity measure used and
in the fact that we used the SVM to separate the training
data into more homogeneous classes before clustering. Both
of these differences can be considered incremental improve-
ments on their method. Similar work using unsupervised
approach is shown in [10], [11].

In another recent work [12] they take a completely dif-
ferent approach to the same problem. The idea of an ego
graph of possible future trajectories is used to predict future
movement. The ego graph is similar to the lattice graph that
is often used for path planning rather than prediction and
for similar reasons. In particular it is possible to build in
dynamic constraints into the set of graphs.

IV. METHOD

Here we will describe our approach in more detail. We will
first describe the learning methods SVM and PAM as applied
to the pre-processed person tracks collected by the robot.
These are lists of timestamped xy coordinates along the
trajectory. There was considerable effort put into collection
of person trajectories removing outliers, and smoothing the
data. We will discuss those parts briefly in the experiment
section.

A. SVM Classification

As SVM is a supervised method we need to first decide
how to break the trajectory set into classes that have similar
characteristics. With reference to the classes defined in [7]
we defined four classes of normalized trajectories. That is
trajectories that have been translated and rotated to start from
the same point and have their longest distance from that start
along the x-axis. This normalization removes some of the
dependence on the specific environment. In particular the
global starting point and direction are lost. Our classed are
illustrated in Fig. (2). We also built on the work of [7] when
selecting our set of feature types. Four of these are illustrated
in Fig. (3). In addition to those four we also used five features
based on speed between trajectory points, Vseg. These were



single goal multi-goal wandering stopping

Fig. 2: The classes that were labeled in our data.

the max, min average, variance and an efficiency E defined
as:

E =
dse

t ∑Vseg
(1)

where dse is the total distance between start and end points
and t is the total time of the trajectory.

el. Points 12, Area Size 6, Angle 9, Center 2.

Fig. 3: 4 of the 5 feature types used for SVM classification.

For relative points three sample points are taken at equal
time intervals along the trajectory. At each sampled point,
x coordinate, y coordinate, arctan(y/x), the distance from
this (x,y) point to the origin are calculated. For area size
we took the max, min and average of all x y coordinates
along the trajectory. For angles we computed angles for
uniformly sampled segments along the trajectory along with
the variance in these and the max angle relative to the origin.

B. PAM Clustering

The partitioning around medoids (PAM) algorithm resem-
bles the K-means algorithm. The main difference is that
instead of the mean being computed from the cluster as
the new cluster center, one cluster element is selected as
the representative of the cluster, known as the medoid. The
medoids are determined by minimizing the summation of the
distance from each cluster member to the medoid.

The PAM clustering method requires a distance function
be defined between the training data examples. To define our
distance we first form an uniform grid of square cells over the
environment. The trajectories are represented by vectors of
integers of length L. Each integer represent the index of the
grid cell that the trajectory was in at evenly space times along
the path. The time interval is adjusted for each trajectory to
be T

L−1 , where T is the entire time span of the trajectory.
So the first element is the starting cell index and so on. The
edit distance, dedit is defined by the minimum number of
insertions, deletions and value changes are needed to turn
one vector into the other as illustrated in Fig. (4).

Using the edit distance to measure the similarity of two
trajectories has the property that paths through the same cells
in the same order but with slightly different timing will be
similar while paths with no such overlap will be dissimilar.
This turns out to be good for clustering the trajectories with

Fig. 4: 2 trajectories at top are converted into the 2 indexes
vectors below. The edit distance is 3 in this example.

longer extent such as the single goal class but it works very
poorly (see Fig. (5)) for the stopping class as these often
do not overlap at all giving an edit distance of the vector
lengths (change all the elements of the vector). We could

Single goal Multi-Goal

Stopped Wander

Fig. 5: Pure edit distance, ie. setting w=0 in eq.(2), results
in poor clustering. The stars are cluster centers, solid, and
path start, open. The prototypes are less representative of the
cluster members than what we will show later in Fig. (9).

use a different distance for the stopping class to avoid this
problem but our goal is to predict future motion by matching
to prototype trajectories based on partial trajectories. As
the beginning part of a trajectory can not be classified by
the SVM we must have the same similarity measure for
all classes and be able to apply it to unclassified partial
trajectories.

We found that such a measure is given by:



d =
dedit +w∑i di

L
. (2)

where w is a relative weight parameter and di are the
euclidean distances between the cells that the ith elements of
the two vectors point to. If we use units of the grid spacing
then the di will have values of order 1 for nearby cells.
So that both distance terms will be of order 1 for nearby
trajectories and we expect a weight near 1.0 would count
each distance about equally. Also we see that this distance
does not depend strongly on L as both the edit distance and
sum scale linearly with L and this is then offset by the L in
the denominator.

Having defined the distance between two trajectories, the
PAM algorithm can iteratively improve the clustering given
an initial set of k cluster centers in the same way that
K-means clustering does. With our modified distance we
expect that both single goal and stopping trajectories can
be clustered and later matched to.

V. EXPERIMENTS

A. Data Collection and Pre-Processing

Our data consisted of tracks collected in a common kitchen
and dining area of our lab, shown in Fig (7). We used the
robot’s RGBD camera to collect people tracks over a 10
day period for 4 hours each day with a tracking method
described in [5]. We also collected laser scanner data over
one 8 hour period and applied a simple detection of dynamics
(ie people) by comparison to the static scene. The tracks
were all between 2 and 17 seconds long. The average of
the RGBD tracks was about 7.8 seconds while the laser was
13.2 seconds. We then smooth this data using a Kalman filter
while also removing the outliers defined by a threshold on
the mahalanobis distance. This is illustrated in Fig (6).

Detections Outliers Removed Kalman Filtered
Fig. 6: The data pre-processing. On the left are raw detections
center without outliers and the right Kalman filter smoothed.

Fig. 7: The kitchen/dinning area of our lab. The robot is
shown as the star in the corner, its RGBD camera FOV in
red. The hot water cooker and the dinning area are shown.

Class Distribution Laser RGBD
Single Goal 101 431
Multi-goal 225 445
Wandering 551 637
Stopping 274 548

TABLE I: Data Summary

RGBD Single Multi
Data Goal Goal Wandering Stopping
Single Goal 0.826 0.097 0.077 0.000
Multi-goal 0.061 0.602 0.328 0.009
Wandering 0.022 0.027 0.846 0.105
Stopping 0.000 0.000 0.062 0.938
Laser Single Multi
Data Goal Goal Wandering Stopping
Single Goal 0.673 0.109 0.218 0.000
Multi-goal 0.009 0.782 0.201 0.004
Wandering 0.000 0.005 0.951 0.044
Stopping 0.000 0.000 0.245 0.755

TABLE II: SVM Confusion Matrix

B. SVM Results

For the SVM implementation, we used the toolbox Lib-
SVM in Matlab. The one-against-one method combined with
the RBF kernel was used for the multi-class classification.
After training, we tested the model by the leave-one-out
method. This is a cross validation method that tests each
element by using the model trained by the remaining ele-
ments. Table I shows how our two data sets were distributed
between the different classes.
The classified data can also be used to map the environment

in terms of which motion pattern is most prevalent in each
area of the environment. This is shown in Fig. (8) The

Red o : Single goal Blue + : Multi-Goal,
Green diamond: Wandering, Black * Stopping.

Fig. 8: Each symbol indicates the highest frequency pattern.

resulting confusion matrix is shown in Table II. One can see
that the classification is not perfect but then the hand labeling
of trajectories was also often ambiguous.

C. PAM Clustering

The SVM classified laser scanner data is separated into
training (80%) and test (20%) sets and used to train four sets
of cluster centers using PAM. This is to show that the SVM



can be used as a pre-processing step for the unsupervised on-
line learning of prototype from data collected by the robot.
As new complete tracks arrive the robot will be able to pass
them through the SVM and then run the PAM clustering to
recompute the cluster centers. The test set will be used to
test the predictive power of the resulting prototypes.

The resulting clusters and cluster centers for each activity
class are shown in Fig. (9). As one can see both the very short
non-overlapping stopping and the longer often overlapping
single goal trajectories were well clustered and representative
prototypes have emerged. In particular we have captured the
patterns of the longer trajectories which were lost when all
the training data was lumped together as in Fig. (1).

Single goal Multi-Goal

Stopped Wander

Fig. 9: Examples of (w=1) clustered trajectories for the
single goal, multi-goal, stopping and wandering classes. The
prototypes or cluster centers are shown in a contrasting color.

D. Motion Prediction

In order to verify the capability of our prototypes to predict
future human motion, we match the first n points of the test
trajectories with the first n points of each of the prototypes.
In that way we could find the most similar prototype as a
function of n. We also know the entire test trajectory which
gives the ground truth of the most similar trajectory. We
know that as n approaches L, ie. the length of the prototypes,
the best match will equal the ground truth. This is shown in
Fig. (10). This figure shows for example that if we only have
the first 10 points of a trajectory we can be 70% confident
that the future trajectory is near one of the three most similar.
This figure can also be compared to the corresponding Fig.

14 in [7] although direct comparison is not possible as the
data and environment are different.

Fig. 10: The percentage correctly matched partial trajectory
of n points is plotted vs n. The upper, middle and bottom
curves show when the correct match was one of the 3, 2 or
1 most similar respectively, for the 40 point trajectories.

We also considered the question what distance can be
considered a good match. In Fig. (11) we show the plots
of correctly matching the partial trajectory for 5, 10, and
20 when matching is defined as distance below a threshold.
The plots are as a function of this threshold. Also shown is
the number of incorrect prototypes that were also below the
threshold, ie. false positives. This figure shows, for example,
that if we only have the first 10 points of a trajectory we can
be 95% confident that the correct prototypes is closer than
3 but on average there will be 2 others also closer than 3.

Fig. 11: The percentage correctly matched partial trajectory
of n points is plotted vs the matching threshold. Also shown,
as the dashed lines, is the number of incorrect matches found
using the threshold. With w=1, a threshold of 2 corresponds
to, for example, having all n samples of the trajectory in cells
adjacent to the prototype. Cell size is 25 cm.

Finally we present in Fig. (12) four examples of how the
robot might use these predictions in practice. We plot a map
of the kitchen grid that is based on the robot observing
the first n=5, 10, and 20 points of the 40 point trajectory
and for the closest two prototypes we shade each future
cell the prototype passes through. We see that although the
predictions work well for the first three of the examples we
also show one where it did not work so well. It is naturally
impossible to always get a good prediction in this open space
using only 30 prototypes. As we collect more training data
we will be able to increase the number of prototypes.



n=5 n=10 n=20

Fig. 12: These map shows the predicted possible futures of
the person who’s past, n=5, 10 or 20 time intervals were
matched. The ‘observed’ track is shown in red and actual
future is shown in blue. The future trajectories of the two
closest prototypes are shown as filled cells. The light gray
cells are the second closest, the closest prototype is dark gray
and when the same cell is covered by both it is black.

VI. DISCUSSION

Generally we would expect that the edit distance can
capture certain types of similarity and the metric distance
another. The edit distance works well for long trajectories
that are constrained such as in a corridor. The metric distance,
on the other hand, works well for shorter trajectories and in
more open areas.

In our experiments we had a relatively small amount of
data in a relatively open area. Our approach was able to
find some patterns in this data. The predictions are strongly
influenced by the number of prototypes. If there are too many
prototypes there will be too many matches and prediction
will eventually only enumerate physically possible paths.
If there are too few prototypes the prediction will miss
significantly likely alternatives. Our data was not enough to
see any problems with too many prototypes but as the robot
continues to collect data over weeks and months it will be
able to add prototypes and get a finer and finer model of the
motion patterns. Eventually it will not be advantageous to
add more prototypes.

The choice of number of prototypes for each class was
made by trial and error until we found what looked like
good prototypes. This work was mainly interested in the
existence of such a solution but one could investigate further
the criteria for setting k on each class so that this could
become automatic. This is direction for future work. We also
looked at other values for w and found that for values within

a factor of at least ten of 1 there was not any significant
change in the results.

It will be interesting to see both how much our prediction
can improve over time and to begin to use these in control
of the robot behavior. Besides adding prototypes more data
would allow us to incorporate the statistics of the clusters
in our predictions. The frequency of a cluster in the data
could give an a priori prototype probability. The spread of
the cluster could give a spread to the prototype’s prediction.

VII. CONCLUSIONS

Our results do support our hypothesis that the edit distance
used for clustering unclassified data will produce inferior
prediction prototypes compared to first classifying with a
SVM then clustering. We also saw that adding a term to
the edit distance that measures the actual metric distance
between curves along their length leads to better prototypes.
These were our main two goals in this paper.
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