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Abstract— Accomplishing object search tasks in human envi-
ronments requires autonomous mobile robots to reason about
potential object locations and to plan for the next best view
accordingly. By using information about the 3D structure of
the environment, knowledge about landmark objects and their
spatial relationship to the sought object, the search can be
improved by directing the robot towards the most likely object
locations.

In this paper we have designed, implemented and evaluated
an approach for searching for objects on the basis of Qualitative
Spatial Relations (QSRs) such as left-of and close-to. On the
basis of QSRs between a landmark and the sought object we
generate a Gaussian Mixture Model (GMM) for representing
metric poses of potential object locations using a ternary point
calculus. The GMM is employed within object search for
planning the next best view. Preliminary results show that
search methods based on QSRs are faster and more reliably
than methods not considering them.

I. INTRODUCTION

In recent years, we have seen substantial progress to-
wards personal robot assistants performing everyday tasks
in human environments. The ability to search for objects
is an integral part of many of those tasks, as the locations
of task-relevant objects are often unknown beforehand, or
change over time. Although the locations of some objects
often change due to the dynamics in human environments
(e.g. pens, mugs, books, magazines etc.), the locations of
other objects are more consistent (TVs, desks, cabinets etc.).
Let us, for example, consider an office environment which
contains both largely stationary items (furniture such as office
desks, cupboards and drawers, and devices such as desktop
PCs, monitors and printers) and movable table-top objects
(such as pencils, papers and cups). If a robot has some
knowledge about the relationships between such objects
in the environment, it can exploit this information when
searching for an object. For example, a robot supposed to
search and locate unused coffee cups in an office space could
make use of the information that coffee cups are often located
on offices desks, to the left or to the right of a keyboard
and in front of a monitor. Given this knowledge about the
environment, the robot can identify potential object locations
and reason about its own goal locations in order to perceive
the object under consideration. Narrowing the target of an
object search through the use of an intermediate object is
known as indirect search, and has been previously shown to
be an effective method of improving search performance [1].

In this paper we investigate how indirect search using
Qualitative Spatial Relations (QSRs [2]) can improve the
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(a) Q: Where to stand to find
a keyboard? A: Keyboards are
usually on supporting surfaces
such as tables.

(b) Q: Where to look for it? A: Keyboards
are likely to be found in front of a monitor.

Fig. 1. Searching objects in human environments requires autonomous
mobile robots to reason and to plan where to stand and where to look. This
paper investigates how the search for objects can be improved by using
3D environments maps, information about landmarks and qualitative spatial
relations between objects.

performance of a robot searching for objects in human
environments. To this end, we have designed, implemented
and evaluated an approach for searching for objects based
on QSRs. Figure 1 illustrates the questions a robot has to
answer when searching for an object, namely where to stand
and where to look. In this work we are answering these
questions on the basis of QSRs. Extending the approach
of Aydemir et al. [3], we assume that the robot has the
following information at the beginning of the search: a 2D
map, a 3D voxel-based occupancy map, a set of poses of
known landmark objects, and a set of task-relevant QSRs.
Given this information, the general idea of QSR-based object
search is as follows. First, the robot samples a set of random
poses within the free space in the 2D map. It then evaluates
each sampled pose based on the view it provides for object
search with respect to the 3D map and the QSRs. Then
the robot selects the best view, navigates to it, and uses its
perception routines to attempt to recognize the sought object.
This procedure is repeated until the robot either finds the
sought object or the process is aborted.

The remainder of the paper is structured as follows. In
Section II, we present the underlying representations of
QSRs, explain how we generate potential object locations
based on a ternary point calculus, and show how we use
the generated information within the search for objects. In
Section III, we present preliminary results of different search
methods employed in simulated object search experiments.
In Section IV, we put this work into context by discussing
related approaches before we conclude in Section V.



Fig. 2. Different geometric configurations of object on an office desk on
the basis of the same QSRs.

II. QSR-BASED INDIRECT OBJECT SEARCH

As stated previously, the idea of QSR-based indirect object
search is as follows: the robot searches for an object by
considering the QSRs between the sought object and other
objects in the environment that function as landmarks. In this
work, we distinguish between two different object classes,
namely, static and dynamic objects. In Table I we give some
examples of different types of objects. We refer to objects as
static if they are only subject to quantitative location changes,
but not subject to qualitative changes. On the other hand, we
refer to objects as dynamic if they are subject to qualitative
location changes. In our approach we use static objects as
landmarks for finding the locations of dynamic objects on
the basis of QSRs.

TABLE I
LOCATION CHANGES OF OBJECT TYPES

Object type Location changes Examples

static quantitative desktop PC, monitor, printer
dynamic qualitative keyboard, mouse, cup,

In [4], the authors use topological relations such as “in”
and “on” to specify potential object locations. In this work
we use directional (left-of, right-of, in-front-of, behind-of )
and distance relations (close-to, distant-from) to describe the
QSRs between objects. Figure 2 shows different geometrical
configurations of a desktop scene with the same underlying
QSRs. In this example, the monitor functions as primary
landmark object and the scene is defined by the following
QSRs:

scene(Monitor,Keyboard,Laptop,Cup,Bottle)⇔
in-front-of(Keyboard,Monitor)∧
left-of(Laptop,Keyboard)∧
right-of(Cup,Keyboard)∧
behind-of(Bottle,Cup)∧
close-to(Bottle,Cup).

In order to utilize this information within object search
tasks, the symbolic scene description from above is trans-
formed into a sub-symbolic representation that can directly
be integrated with the environment model of the robot.

To this end, we use the qualitative positional calculus
based on ternary relations [5] that has been developed in
the context of robot navigation. The three positions in the
calculus are referred by origin, relatum and referent. The
origin corresponds to the position of the robot. Origin
and relatum define the reference axis which partitions the

referent

origin

relatum

φrel

Fig. 3. The relative angle φrel is defined by the reference axis, which
is specified by origin and relatum, and the referent. The example above
illustrates a situation where the referent is left and behind of the relatum.

surrounding space. Then, the spatial relation is defined by the
partition in which referent lies with respect to the reference
axis. In order to determine the partition, i.e. the directional
relation, [5] calculate the relative angle φrel as follows:

φrel = tan−1 yref − yrel
xref − xrel

− tan−1 yrel − yorig
xrel − xorig

(1)

φrel, is the angle between the reference axis, defined by
origin and relatum, and the referent point. This is visualized
in Figure 3.

In our work, we assume that the robot position (origin),
is located in front of the office desk, facing the intrinsic
front side of the monitor (relatum). Given this idealized
situation, the robot hallucinates potential object locations of,
for example, a cup on the basis of QSRs. That is, the robot
first generates the potential locations of the keyboard, and
afterwards a potential location of a cup.

We generate geometric positions from QSRs by sampling
the relative angle φrel from a set of Gaussian distributions
representing the directional relations. The four directional
relations behind-of, left-of, in-front-of, and right-of are rep-
resented by Gaussian normal distributions with means 0,
1
2π, π, and 3

2π respectively. For generating the distances for
the proximal relations between objects we used a similar
approach while taking the dimensions of a hypothetical
office desk into account. We determine an axis between
the landmark and the edge of the desk in the direction
of the relative angle φrel. This axis is divided into two
qualitatively different intervals: close-to and distant-from.
For each interval we use a uniform distribution to sample
a distance between the object and the landmark according to
the QSRs.

Having sampled a number of potential object positions we
represent them by a single multivariate Gaussian distribution
relative to the landmark. Different QSRs are represented by
combining the individual Gaussians into a Gaussian Mixture
Model (GMM):

PQSRrel
(x|λ) =

m∑
i=1

wiN (x|µi,Σi), (2)

where x denotes the relative object position with respect
to the landmark and λ is a set of parameters {wi, µi,Σi} for
m Gaussian distributions. The weight wi of each Gaussian
is determined by dividing the number of samples for a



Fig. 4. Gaussian Mixture Models (GMMs) generated from QSRs. The
images depict a top-down view onto a table whereby the image width
corresponds to 1.5 meters. The landmarks are indicated by a black circle.
Left: Locations of a cup with respect to a monitor. Right: Locations of a
cup with respect to a keyboard.

Fig. 5. Left: 3D Octomap of the environment. Right: Extracted supporting
planes on the basis of a normal estimation.

particular QSR by the total number of samples. Thereby
the weights wi (for i = 1, . . . ,m) always sum up to one.
For example, if we sample the QSR left-of(Cup,Keyboard)
15 times, and the relation right-of(Cup,Keyboard) 85 times,
then the related Gaussians are weighted by 0.15 and 0.85
respectively. Figure 4 visualizes GMMs for a cup with
respect to two landmarks: monitor (left) and keyboard (right).

The overall set of QSRs is then represented by a mixture
of 2D Gaussians. How this model is used within a search
task is explained in the next section.

A. Search Method

Before we outline the view planning algorithm in detail
we recapitulate the different types of information the robot
uses for reasoning about the potential object locations: a 2D
map, a 3D occupancy map, a set of landmark objects, and a
mixture of Gaussians generated from the QSRs.

When the search is started, the robot first receives the latest
version of the 3D occupancy map, calculates the average
normal for each voxel in the map, and keeps only those
voxels which normals are pointing upwards (in a certain
range). These voxels are considered as part of supporting
planes. We denote these voxels by v1. . .vk. Figure 5 shows
the complete 3D Octomap [6] of the environment (left) and
the extracted supporting planes according to the averaged
normals (right).

In a second step, the robot samples n navigatable poses
from the 2D map which are denoted by Ψ. At each of

high low

Fig. 6. Voxels of the supporting planes are weighted by the Gaussian
Mixture Model (GMM) derived from the QSRs

these poses, we calculate a 2D view cone according to the
robot’s sensor specification. The view cones are evaluated
with respect to a 2D projection of the 3D occupancy map.
To assess the view cones, we count the number of occupied
voxels that lie within a cone. However, we only consider
voxels that have been classified as part of a supporting plane
beforehand. Furthermore, the voxels are weighted in regards
to the QSR (GMM) models. The function V iewcone(ψ)
returns the view cone of the robot at a given pose ψ. And
the function In(vi, V iewcone(ψ)) returns 1, if the voxel vi
is in the view cone of pose ψ, otherwise 0. To select the best
view cone the robot uses the equation as defined below:

argmax
ψ∈Ψ

∑
PQSR(vi)In(vi, V iewcone(ψ)) (3)

where PQSR(vi) denotes a probability distribution in the
world frame to find the object at voxel vi. This distribution
is calculated by placing the the relative QSR-based mixture
models (PQSRrel

) at the poses of the known landmarks.
Figure 6 visualizes an example of such a probability distri-
bution over the voxels that had been classified as supporting
planes on the basis of the mixture of Gaussians generated
from the QSRs. Having selected a best view cone the robot
proceeds by navigating to the respective pose and by running
its perception routines. The overall algorithm of the view
planning procedure is formalized in Algorithm 1.

Figure 7 and Figure 8 visualize the progress of a search
and the evaluated view cones with respect to the supporting
planes and the QSRs respectively. The colors of the view
cones indicate the probability to find an object at the re-
spective poses. When comparing the highly rated view cones
from both figures it is visible that the QSR-based view cones
are much more directed towards the Gaussian Mixture Model
shown in Figure 6.



Algorithm 1 QSR-based object search
Require: M2D and M3D are the 2D and 3D environment

maps respectively; n denotes the number of poses to be
sampled

1: procedure SELECTBESTVIEW(n, M2D, M3D, PQSR)
2: {v1. . . vk} ← V oxelsOfSupportingP lanes(M3D)
3: Ψ← NavigatablePoses(n,M2D)
4: Initialize sum(ψ) with 0 for all poses ψ ∈ Ψ
5: for all ψ ∈ Ψ do
6: vc← V iewcone(ψ)
7: for all vi ∈ {v1. . . vk} do
8: sum(ψ)← sum(ψ)+PQSR(vi)×In(vi, vc)
9: end for

10: end for
11: Find ψ?, that maximizes sum(ψ) for all ψ ∈ Ψ
12: return ψ?

13: end procedure
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Fig. 7. Viewcone evaluation on the basis of a uniform distribution with
respect to supporting planes. Search over three poses.
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Fig. 8. View cone evaluation on the basis of QSR-based models.

III. PRELIMINARY RESULTS

The QSR-based search method described in the previous
section has been implemented and evaluated in a simulated
environment. We used the open source robot simulator
MORSE [7] for simulating the environment1, the SCITOS
G5 robot platform2 and its sensors. In simulation, we used a
semantic camera to perceive objects in the environment. The
semantic camera returns an object ID, the object’s type, and
its pose whenever an object is in sight and between the near
and far plane of the camera’s view frustum.

In the experiments, the robot was controlled through the
task-level architecture SMACH3 and the middleware ROS4.
The robot control program is comprised of four states: a
search monitor, a particular search method, a navigation rou-
tine, and a perception routine. The search monitor assesses
the overall progress of the search, i.e., whether an object was
found or not and/or whether a timeout has occurred. On this
basis it decides to continue or to abort the search task. If
it decides to continue the search, the search method selects
the next best view pose and the navigation routine moves
the robot to the goal accordingly. At the goal location the
perception routine is called and the result is interpreted by
the search monitor and so on.

In our experiment we compared three different search
methods: a purely random method, a method based on the
information about supporting planes and the QSR-based
method described in the previous section:
• Within the random search method 20 locations are

sampled from the 2D map. Out of the 20, a single goal
location is randomly selected and sent to the robot’s
navigation routine.

• Within the supporting planes method 20 locations are
sampled from the 2D map and evaluated with respect
to the projected 3D occupancy map of voxels that had
been classified as supporting planes.

• Within the QSRs-based method also 20 locations are
sampled from the 2D map and evaluated with respect
to the 3D voxel weighted according to the QSR-based
mixture of Gaussians.

Table II summarizes the results of ten searches using each
search method respectively. In total we placed three cups
in the environment. If the object was not found within a
time span of two minutes the search was aborted. First it
can be noted that the uninformed random search method,
namely random, was only able to find the object in 60% of
the searches, that is, 40% of the searches had been aborted.
Please note, that the average time and the average number of
searched poses was calculated on the basis of successful trials
only. The average time also includes the time for making the
QSR-based inferences based on the pre-defined models. The
second noteworthy aspect of the results is how the average
time and average number of searched poses decreased when

1In the experiments we used the TUM kitchen environment of MORSE
2http://metralabs.com/
3http://wiki.ros.org/smach
4http://wiki.ros.org/



more information is considered in the view planning step.
Although both informed search methods, namely supporting
planes and QSR, found a cup in all trials it can be seen that
the latter method was able to succeed in half of the time
requiring only half of the number of poses.

TABLE II
PERFORMANCE OF THREE DIFFERENT SEARCH METHODS

Search method Found Average Average
objects time (sec) poses

random 6/10 68.5 4.8
supporting planes 10/10 33.6 2.3
QSR 10/10 15.6 1.1

However, as we know from previous work, it is sometimes
the case that the belief state of the robot does not reflect
the actual circumstances of reality. Therefore, we conducted
additional variants of the experiment to evaluate how the
QSR-based search method performs when the QSR model
differs from reality. In variant A the setup and the result is
actually the same as from above. In variant B the robot’s
knowledge is only partially correct as we removed two of
the three cups from the environment. That is, in the three
locations at which the the QSRs predict cups, a cup is
only present at one. In variant C the robot’s knowledge is
completely misleading as we moved the last remaining cup
to a location that is not indicated by any of the three QSRs.
The results are shown in Table III.

TABLE III
PERFORMANCE OF QSR-BASED SEARCH UNDER FALSE BELIEFS

Variant Found Average Average
objects time (sec) poses

A (correct QSRs) 10/10 15.6 1.1
B (partially correct QSRs) 8/10 55.0 3.1
C (misleading QSRs) 6/10 65.0 3.2

The fact that the robot is still able to find cups in the
environment although the QSR model is misleading (variant
C) can be explained by the sampling strategy used within our
approach. Although views with respect to the QSR model
are in general preferable, sometimes none of the sampled
navigation goals are directed towards a QSR-related location.
In this case, a location with a view cone in direction to a
supporting plane gets selected and explored instead.

IV. RELATED WORK
Active visual search has become a popular topic in mobile

and service robotics recently. Work done by Aydemir, Sjöö
and others in the CogX project ([3], [8], [4]) introduced the
sampling-based approach using object location probability
distributions. This approach provides and effective and flex-
ible approach to active visual search which is not restricted
by the complexity of optimal object search in the general
case [9]. The CogX work [4] used the spatial relations “in”
and “on” to define object targets. We go beyond this work by
using more restrictive spatial models to provide more tightly

defined viewing probabilities. As shown in III, increasing
search performance in the case where the environment is a
close match for these models. Other recent work on object
search has tackled larger scale space but used predefined
view cones within rooms [10], or has allowed searching over
rooms or scenes for unknown objects without constraining
their location in 3D [11], [12] such as we are.

In future work we intend to learn positional spatial models
from the robot’s experience of an environment, creating both
environment general spatial models (i.e. keyboards can be
found in front of monitors) and more specific models (i.e. the
keyboard in Room 133 is often to the right of the monitor).
To create such models we can draw on existing work which
quantifies qualitative knowledge making it appropriate for
our approach (e.g.spatial models [13], [14] or conceptual
knowledge [15], [16]), or learns metric object location pre-
dictors from experience [12], [17].

V. DISCUSSION AND CONCLUSIONS

In this paper we described an approach on object search on
the basis of QSRs between distinguished landmark objects
and a sought object. We explained how symbolic repre-
sentations of QSRs can be transformed into sub-symbolic
information (GMMs) to guide a robot in its search towards
the most likely object locations. Preliminary experimental
results in a robot simulator suggest that QSR-based search
methods improve the performance of search tasks when
compared to non-QSR-based methods.

However, the transfer of the simulated results onto a
real robot platform needs some consideration. First, the
semantic camera has to be replaced by an object recognition
framework using, for example, the robot’s RGB-D sensor.
As the recognition rate of the robot’s real perception will be
lower than that of the semantic camera used in simulation, it
might be useful to revisit locations where the robot did not
find an object in the first place although the GMMs indicate a
high probability. Thereby, the robot could compensate for the
false negatives of the perception. This behaviour could also
be tested and evaluated in simulation when we induce noise
to the semantic camera. A second important aspect concerns
the knowledge about landmarks. Ideally, landmarks are be
identified and located by the robot itself while operating in an
environment. However, it is not clear what kind of objects are
good candidates for landmarks as they have to be both salient
for the perceptual system and informative with respect to the
QSRs with other objects. Therefore we will start with some
pre-defined landmarks when we will conduct experiments on
the real robot platform.

In future work we would like to learn the currently pre-
defined QSR model over space and time from the real robot’s
experience. As the robot explores the environment it should
collect data about the spatial relations between different types
of objects at different times of the day and learn a compact
QSR model from it.

With respect to the search method, we plan to sample also
3D view cones at the navigatable goal poses and evaluate
them using GMMs and the 3D occupancy map. Using the



robot’s pan-tilt unit, this would result in even more accurate
views at the goal locations and would, for example, make
a difference where objects could be located on table-tops or
shelves.

Furthermore, it would also be interesting to investigate
how the size of the search space, the number of sampled
poses, and the weight of QSR models influence each other
and to learn to trade-off between the robot’s exploration and
exploitation behavior.

Overall we belief that the use of QSRs in object search
tasks leads to better results in complex and highly dynamic
human environments.
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