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Abstract— In this paper, we present an evaluation of standard
feature descriptors in a scenario of outdoor vision-based long-
term autonomous navigation. Although benchmarks of visual
features can be found in computer vision literature, we propose
an evaluation focused on navigational aspects, especially to
achieve a long-term autonomy under seasonal changes. The
considered dataset captures seasonal changes along a path used
for an autonomous navigation in a park like environment over
a whole year. The visual features are used to estimate the
robot orientation and its correct estimation is considered as the
primary measure of feature descriptor suitability for long-term
autonomous navigation. The achieved results indicate that a
suitability of the descriptor for the considered type of navigation
does not necessary correlate with its robustness and invariance
regarding regular quality metrics used in computer vision.

Index Terms— visual navigation, mobile robotics, long-term
autonomy

I. INTRODUCTION

Cameras are becoming a de-facto standard part of sensoric
equipment of mobile robotic systems including field robots.
It is due to improving ratio of their cost and information that
can be extracted from the captured images. Moreover, and
probably more importantly, the computational requirements
needed by computer vision techniques are not a significant
issue due to available computational hardware nowadays.
Therefore, on-board cameras of mobile robots are used as
the primary sensors to gather information about the robot’s
surroundings to establish the robot position.

Many visual localization and mapping methods in mobile
robotics rely on the so-called local feature extractors [1].
In these methods, a feature extractor is used to decompose a
captured image into regions that are then repeatably detected
and matched despite of a particular viewpoint or illumination
variations. Regarding a quality of feature extractors, a key
paper of Mikojaczyk [2] introduced a methodology for
evaluation of extractor invariance to image scale, rotation,
exposure and camera viewpoint changes. However, the local
feature extraction techniques are intended to be used in a
broad area of problems and some of their invariant properties
are not so important for purposes of mobile robot naviga-
tion [3].

Let us consider a mobile robot navigating along a known
(previously mapped) path in an outdoor environment. In
this case, it is not necessary to use a feature extractor
highly invariant to large viewpoint changes since the robot
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keeps itself close to the intended path. In addition, the
rotational invariance is also not crucial for the navigation,
because one can assume that the robot moves on a locally
planar ground. On the other hand, the map provided to the
robot might be obsolete, because the environment appearance
changes over time [4]. The map decay is caused mainly by
illumination variations, current weather conditions and long
term environment changes caused by seasonal factors.

These considerations about the visual features in the
navigation task motivate us to analyze available feature
extraction algorithms and their long-term performance in the
autonomous navigation based on pre-learned map, e.g., used
in [5], [6], [7]. The intention of this paper is to present our
proposed evaluation methodology and achieved results using
six feature extraction algorithms freely available as a part of
open source implementations.

II. LOCAL IMAGE FEATURE EXTRACTORS

An image feature extractor consists of detection and de-
scription phases. The feature detector serves to locate salient
areas of the image while the feature descriptor captures
information about the local neighbourhood of the detected
area. Six local image feature extractors have been evaluated.

SIFT – Scale Invariant Feature Transform [8] – an estab-
lished feature detector with high precision and good robust-
ness, which is known to be computationally demanding.

SURF – Speeded Up Robust Features [9] – similar to
SIFT, but it is computationally less demanding due to ap-
proximations, which allow to use a so-called integral image.

STAR – combines the SURF descriptor with modified
Center Surround Extremas [10] detector, which is fast and
precise. Exploits the advantages of the integral image as well.

BRIEF – Binary Robust Independent Elementary Fea-
tures [11], which describe image area by a number of random
pairwise intensity comparisons and use STAR as a detector.

BRISK – Binary Robust Invariant Scalable Key-
points [12]. Scale and rotation invariant version of BRIEF.
Unlike BRIEF, it uses a deterministic comparison pattern.

ORB - Oriented FAST and Rotated BRIEF. Another
attempt to achieve a scale and rotation invariant BRIEF. Uses
FAST (Features from Accel. Segment Test) [13] detector.

While SIFT and SURF descriptors are floating point vec-
tors, the BRIEF descriptor is a binary string, which reduces
the computational complexity of the subsequent matching.
All the aforementioned detectors and descriptors are part
of the Open Source Computer Vision (OpenCV) software
library (version 2.4.3), which is used for the results presented
in this paper.



III. THE DATASET

The dataset covers seasonal changes of the Stromovka
forest park in Prague throughout an entire year. Each month,
a robot was manually driven through a given closed path,
while the robot captured images by its on-board camera, see
Fig. 1. Although the path started and ended at an identical
location, it has been slightly altered every time. Therefore,
the first image of each traversed path is taken from exactly
the same location, while the locations of other pictures vary
up to ±1 m.

For the purpose of this evaluation, images from five
different locations have been selected, see Fig. 2. The radial
distortion of the captured images has been corrected and the
bottom half of each undistorted image has been removed
as it does not provide useful information for the considered
autonomous navigation. The resulting dataset captures one
year of environment changes caused by seasonal factors,
displaced objects, and weather (a detailed description is
available at [14], [15]). Thus, the dataset consists of sixty
1024×384 color images with removed radial distortion.

Six persons have compared all the images independently
and established particular camera rotations between them.
The results were checked for outliers (these were removed)
and the averaged estimations were used as a ground truth.

The dataset has been processed by the aforementioned
feature extractors with ten different threshold settings. Each
of the thresholds was chosen to extract a specific average
number of features per image.

IV. EVALUATION

Regarding the navigational method considered, it is not
necessary to perform a full 6DOF localization to reliably
traverse the given path. It is just sufficient to correct the
robot’s heading to keep it on the intended path [5], [6], [7].
Therefore, the proposed evaluation focuses on the ability of
the feature extraction and matching algorithm to establish
heading of the robot relatively to the intended path. This
corresponds to the relative rotation of the camera to the
moment the particular images were captured.

Two methods have been considered for determining the
relative rotation of the camera. The first method closely
follows a classical approach presented by Hartley’s book
on Multiple View Geometry. In this method, known cam-
era parameters and correspondences between extracted and
mapped features are used to calculate the essential matrix,
which is factorized to obtain the robot rotation. The second
method, based on articles [5], [7], establishes the robot
heading simply by finding a modus of horizontal (in image
coordinates) displacements of the tentative correspondences.
The modus is found simply by histogram voting. In both
cases, the tentative correspondences were established as
suggested in original articles on SIFT [8] and BRIEF [11].

The proposed evaluation is based on a measure of the
feature utility for a long-term mobile robot navigation. The
utility is computed as the “success rate” that is a ratio of
the correct estimations to the total number of estimations
performed. An estimation of the heading is considered as

correct if it differs from the ground truth by less than two
degrees.
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Fig. 3: Heading estimation success rate.

Since the success rate depends on the number of extracted
features, we have performed ten evaluation trials, each with
a different average amount of extracted features per image.
Each trial consists of six evaluations, one for each feature
extractor. The dataset contains 12 images from five locations,
which means 660 comparisons for each evaluation, which
allows to establish the success rate with a sufficient granu-
larity. The dependence of the success rate on the number of
extracted features is given in Fig. 3.

TABLE I: Success rates and real required computational
times for 1000 extracted features

Feature Extractor BRIEF BRISK ORB SIFT STAR SURF

Required time [ms] 23 26 24 109 64 211

Histogram voting [%] 83 57 56 64 41 60
Hartley [%] 46 19 19 30 14 23

In addition, we also examined the real required compu-
tational time of the feature extractor that is established as
the average runtime to extract one thousand of features per
dataset image using Intel i5 PC running at 2.5 GHz. The
results are depicted in Table I. Notice, SIFT seems to be
faster than SURF, which is probably an implementation issue
of the OpenCV library.

TABLE II: Success rates [%] between individual months
( Histogram voting, 1000 BRIEF features per image )

No foliage Foliage
Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Nov — 100 100 100 100 100 100 80 100 80 60 100
Dec 100 — 100 100 100 100 60 60 80 80 60 100
Jan 100 100 — 100 100 100 80 40 60 40 60 80
Feb 100 100 80 — 100 100 80 40 60 100 80 60
Mar 100 100 100 100 — 100 80 20 60 40 40 60
Apr 100 100 100 100 100 — 80 80 60 80 60 80
May 100 60 60 80 80 100 — 100 100 100 100 100
Jun 80 20 60 40 40 100 100 — 100 100 100 100
Jul 80 80 60 80 40 80 100 100 — 100 100 100
Aug 80 100 60 100 40 60 100 100 100 — 100 100
Sep 60 80 40 80 40 40 100 100 100 100 — 100
Oct 100 100 100 80 60 80 100 100 100 100 100 —



(a) November 2009 (b) December 2009 (c) January 2010 (d) February 2010

(e) March 2010 (f) April 2010 (g) May 2010 (h) June 2010

(i) July 2010 (j) August 2010 (k) September 2010 (l) October 2010

Fig. 1: Captured seasonal changes at location II.

(a) Location I (b) Location III (c) Location IV (d) Location V

Fig. 2: View from the robot camera at different locations.

The matching success rate between individual months is
shown in Table II to illustrate that the “map decay” is caused
mainly by seasonal factors. The results also indicates that the
matching reliability is decreased in cases when images with
foliage are matched to images without foliage. Therefore,
we performed two additional tests during early (no foliage)
and late (foliage) April of 2011 to show that the seasonal
factors are mainly periodical. In both cases, the P3AT robot
has repeatably traversed the testing path using maps from
the original dataset (captured in 2009 and 2010).

V. CONCLUSION

In this short paper, we report our results on the evaluation
of image feature extractors to long-term environment changes
caused by seasonal factors. The considered dataset captures
variations of a park like environment throughout one year,
and thus, allow us to consider suitability of image feature
extractor methods for the long-term autonomous navigation
using vision based estimation of the robot heading.

Regarding the results, the best performing method is
BRIEF, which outperforms SIFT by more than thirty per-
centage points. In addition, the BRIEF extractor is also less
computationally demanding and thus it seems to be the most
suitable feature descriptor for the navigational purposes.

Besides, we found out that the histogram voting exhibits
a better robustness than the classical method based on
advanced algebraic approaches. It is also worth to mention
that the histogram voting does not rely on an identification
of the camera parameters, which can be considered as an
additional advantage.

The results also suggest that just two maps (with and with-
out foliage) are sufficient for a reliable outdoor navigation.
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