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Mixed Logical Inference and Probabilistic Planning
for Robots in Unreliable Worlds

Shiqi Zhang, Mohan Sridharan, and Jeremy L. Wyatt

Abstract—Deployment of robots in practical domains poses key
knowledge representation and reasoning challenges. Robots need
to represent and reason with incomplete domain knowledge, ac-
quiring and using sensor inputs based on need and availability. This
paper presents an architecture that exploits the complementary
strengths of declarative programming and probabilistic graphi-
cal models as a step toward addressing these challenges. Answer
Set Prolog (ASP), a declarative language, is used to represent,
and perform inference with, incomplete domain knowledge, in-
cluding default information that holds in all but a few exceptional
situations. A hierarchy of partially observable Markov decision
processes (POMDPs) probabilistically models the uncertainty in
sensor input processing and navigation. Nonmonotonic logical in-
ference in ASP is used to generate a multinomial prior for proba-
bilistic state estimation with the hierarchy of POMDPs. It is also
used with historical data to construct a beta (meta) density model
of priors for metareasoning and early termination of trials when
appropriate. Robots equipped with this architecture automatically
tailor sensor input processing and navigation to tasks at hand, re-
vising existing knowledge using information extracted from sensor
inputs. The architecture is empirically evaluated in simulation and
on a mobile robot visually localizing objects in indoor domains.

Index Terms—Bayes methods, decision theory, intelligent
robots, knowledge representation, logic programming, stochastic
processes.

I. INTRODUCTION

MOBILE robots are increasingly being deployed in prac-
tical application domains such as healthcare, disaster

rescue, and navigation. These robots receive far more raw data
from sensors than is possible to process in real time, and it
is difficult to equip the robots with accurate and complete do-
main knowledge. Human participants, if any, may not have the
time and expertise to provide elaborate and accurate feedback.
Furthermore, the descriptions of knowledge and uncertainty ob-
tained from different sources may complement or contradict
each other. Widespread deployment of robots thus poses the
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fundamental challenge of enabling them to represent and rea-
son with qualitative and quantitative descriptions of incomplete
domain knowledge and the associated uncertainty, acquiring and
using sensor inputs based on need and availability.

Although probabilistic graphical models such as partially ob-
servable Markov decision processes (POMDPs) have been used
to plan sensing and navigation on robots by probabilistically
modeling the associated uncertainty, it is difficult to represent
and reason with commonsense knowledge in such formulations.
Declarative languages such as Answer Set Prolog (ASP) are
well suited for knowledge representation (KR) and nonmono-
tonic logical reasoning, but they do not support probabilistic
modeling of uncertainty [1]. Prior work integrating ASP with hi-
erarchical POMDPs [2] did not support key capabilities such as
default reasoning, incremental bidirectional flow of information
between the commonsense inference and probabilistic reasoning
components, and metareasoning with observations and histori-
cal data. The architecture described in this paper addresses these
limitations by making the following novel contributions:

1) richer representation and inference in ASP with incom-
plete domain knowledge, which includes default informa-
tion that holds in all but a few exceptional situations, to
effectively reduce the task completion time;

2) use of ASP-based inference to heuristically generate a
multinomial prior for the POMDP state estimation that
is used to plan sensing and navigation, with the subse-
quent observations adding relevant statements to the ASP
knowledge base (KB);

3) metareasoning with observations and a beta density model
of priors based on historical data, supporting early ter-
mination of tasks that cannot be accomplished with the
existing models.

The architecture thus establishes a continuous loop of nonmono-
tonic logical inference, probabilistic planning, and incremental
knowledge revision. The architecture is grounded and evaluated
in simulation and on mobile robots localizing (i.e., determining
the location of) objects in indoor domains.

II. RELATED WORK

Researchers have used probabilistic graphical models such
as POMDPs to formulate planning, sensing, navigation, and
interaction on robots [3]–[5]. However, these formulations, by
themselves, are not well suited for commonsense reasoning. In
parallel, research in classical planning has provided sophisti-
cated algorithms for KR and logical reasoning [6], which have
been used on mobile robots [7]. However, these algorithms typi-
cally require a significant amount of prior knowledge regarding
the domain, and the preconditions and effects of the actions.
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Many algorithms also do not support merging of new unreli-
able information (e.g., from sensors) with the current beliefs in
a KB. ASP, a nonmonotonic logic programming paradigm, is
well suited for representing and reasoning with commonsense
knowledge [1], [8]. It has been used in cognitive robotics [9],
e.g., for reasoning by simulated robot housekeepers [10] and
for representing domain knowledge learned through natural lan-
guage processing [11]. However, ASP does not support quantita-
tive models of uncertainty, whereas a lot of information available
to robots is represented probabilistically so as to quantitatively
model the uncertainty in sensing and acting.

Robotics researchers have developed algorithms that support
logical and probabilistic reasoning for task, motion, or behavior
planning [3], [12]. Semantic maps and commonsense knowledge
have been used with probabilistic algorithms to locate targets
and for open-world planning [13]. Declarative programming and
continuous-time planners have been used for path planning in
mobile robot teams [14], and a probabilistic extension of ASP
has been combined with POMDPs for commonsense inference
and probabilistic planning in human–robot dialog [15]. Princi-
pled algorithms developed to combine logical and probabilis-
tic reasoning include the Markov logic network that combines
probabilistic graphical models and first-order logic, assigning
weights to logic formulas [16], and Bayesian logic that relaxes
the unique name constraint of first-order probabilistic languages
to provide a compact representation of distributions over vary-
ing sets of objects [17]. Other examples include independent
choice logic [18], PRISM [19], probabilistic first-order logic
[20], first-order relational POMDPs [21], and probabilistic ex-
tensions to ASP [22], [23]. However, these algorithms are lim-
ited in their ability to support the desired KR and reasoning
capabilities for human–robot collaboration. Algorithms based
on first-order logic do not provide the desired expressiveness
for capabilities such as default reasoning, e.g., it is not always
possible to express degrees of belief quantitatively. Other al-
gorithms based on logic programming do not support one or
more of the capabilities such as reasoning about relations as in
causal Bayesian networks, incremental addition of probabilistic
information, reasoning with large probabilistic components, or
dynamic addition of variables with different ranges [22]. The
architecture described in this paper is a step toward achieving
these capabilities. Key limitations of prior work on integrating
ASP and POMDPs [2] are addressed by supporting default rea-
soning, generating priors based on ASP inference for POMDP
state estimation, and metareasoning with observations and his-
torical data from comparable domains. Preliminary versions of
some of these contributions are documented in workshop papers
[24], [25]. This paper provides a detailed description of the novel
contributions, supported by extensive experimental evaluation
in simulation and on a mobile robot.

III. PROBLEM FORMULATION

Fig. 1 depicts the control architecture, whose components are
illustrated and evaluated in this paper for visual target localiza-
tion. A mobile robot determines the locations of desired objects
in an indoor domain using (primarily) visual data. It is assumed
that the robot revises the domain map and estimates its own

Fig. 1. Architecture integrates KR, nonmonotonic logical inference, and prob-
abilistic planning.

location using laser range data and has learned object models
and semantic labels for rooms.

The ASP KB contains statements describing domain ob-
jects and relations between them, including default informa-
tion that holds in all but a few exceptional situations. Currently,
some statements are hand-coded (e.g., axioms), while others
are learned from sensor inputs and historical data. For any given
task, inference in the KB provides an Answer Set, a set of ground
literals representing the current beliefs based on nonmonotonic
logical inference in the KB (see Section III-A). In parallel, the
given task (e.g., to localize a specific object) is formulated as a
POMDP that probabilistically captures the uncertainty in sens-
ing and navigation (see Section III-B). The answer set heuristi-
cally generates a multinomial prior for the POMDP state estima-
tion, and action selection is based on the posterior distribution
(see Section III-C). The answer set and historical data from
comparable domains also populate a beta density that defines
a prior for metareasoning with observations in the current do-
main, supporting early termination of tasks when appropriate
(see Section III-D). A robot equipped with this architecture ob-
tains observations from algorithms activated when needed (e.g.,
for visual object recognition) and algorithms that are always in
use (e.g., obstacle avoidance using range data). Relevant ob-
servations (e.g., of the target object) update the POMDP belief
distribution, and a belief with high certainty commits an ap-
propriate statement to the ASP KB. Some observations may
also identify domain changes, e.g., using range data to identify
changes in the map of the domain, which are also used to revise
the KB. If the revised KB provides a new multinomial prior,
it is combined with the likelihood of the observation sequence
to obtain the revised posterior for action selection. The follow-
ing sections focus on the new contributions of this paper; other
components are summarized for completeness. For target local-
ization, inference in the ASP KB is at the coarser resolution of
rooms or places, while the POMDP solver works at the finer
resolution of grid cells in rooms.

A. Knowledge Representation with Answer Set Prolog

ASP is a declarative language that can represent recur-
sive definitions, defaults, causal relations, special forms of
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self-reference, and language constructs that occur frequently
in nonmathematical domains and are difficult to express in
classical logic formalisms [8]. ASP is based on the stable
model (answer set) semantics of logic programs and research
in nonmonotonic logics [1]. ASP can draw conclusions due to
lack of evidence to the contrary, using concepts such as default
negation (negation by failure) and epistemic disjunction. For
instance, unlike “¬a,” which implies that “a is believed to
be false,” “not a” only implies that “a is not believed to
be true”; and unlike “p ∨ ¬p” in propositional logic, “p
or ¬p” is not a tautology. ASP also supports nonmonotonic
reasoning—adding a statement can reduce the set of inferred
consequences—reasoning in large KBs, and reasoning with
quantifiers. These capabilities have led to the use of ASP by an
international research community.

The following basic definitions will be used in this paper [1].
Variable and object constants are terms, and a function of terms
is a term; terms with no symbols and no variables are ground.
A predicate of terms is an atom; it is ground if all its terms are
ground. An atom or its negation is a literal: ground atoms and
their negations are ground literals. Statics are domain properties
whose truth values cannot be changed by actions, and fluents are
properties that can be changed by actions. A basic fluent, also
called an inertial fluent in the KR literature, is subject to inertial
laws and can be directly changed by actions, while a defined
fluent cannot be directly changed by an action, is defined in
terms of other fluents, and is not subject to laws of inertia.

An ASP program (Π) has a sorted signature Σ and ax-
ioms of the form: l0 or . . . or li ← li+1 , . . . , lm , not lm+1 ,
. . . , not ln . Each l in the axiom is a literal of Σ. The sorts
in the illustrative example are object, class, and room; sorts
can have subsorts, e.g., fridge, printer, and book are subsorts
of object. Σ = 〈O,F ,P,V 〉 defines the names of objects,1

functions, predicates, and variables available for use. Each func-
tion or predicate is defined in terms of the sorts of its arguments,
e.g., predicatein(object, room) can represent the relation
in(fridge1, kitchen). Program Π is thus a collection
of statements describing domain objects and relations between
them. The ground literals in an answer set obtained by solving Π
represent beliefs of an agent associated with Π. Since program
consequences are statements that are true in all such belief sets,
the following discussion assumes that inference in the ASP KB
produces only one answer set.

Unlike prior work that combined ASP and POMDPs [2], the
KB in this paper includes default knowledge and relationships
in a complex domain, e.g., the simulated domain in Fig. 2,
and the effects of incremental knowledge revision are analyzed
thoroughly. The KB includes a hierarchy of object classes; leaf
nodes are object instances, and parents of leaf nodes are primary
classes. Information extracted from historical data helps identify
some relations between object classes, creating some nodes and
links between the root node and primary classes. Robots use
information extracted from sensor inputs to add object instances
and revise the KB.

1Unlike the sort object, elements of O are object constants (or symbols).

Fig. 2. Illustrative simulated domain used for experimental evaluation, with
a bedroom, study, and kitchen. The computer, fax machine, and printer are
usually in the study; books are on the bookshelf; and kitchenware is in the
kitchen. However, there are some exceptions, e.g., cookbooks are in the kitchen.

Predicates in the KB are applied recursively when appropri-
ate. The statics of the domain include is(object, class),
which describes class membership of an object, and sub-
class(class, class), which describes class hierarchy.
The basic fluents of the domain includein(object, room),
which describes the room location of an object, acces-
sible(room), which states if a room is accessible, and
on(object, object), which states if an object is on an-
other object. The defined fluent exists(class, room)
implies that an instance of a specific class exists in a specific
room. The sort step is included for temporal reasoning, and
the relation holds(fluent, step) implies that a particu-
lar fluent holds true at a particular timestep. The KB includes
reasoning rules such as

1) holds(exists(C, R), I) ← holds(in(O, R), I), is(O, C).

2) holds(exists(C1, R), I) ← holds(exists(C2, R), I),

subclass(C2, C1).

3) ¬holds(in(O, R2), I) ← holds(in(O, R1), I), R1! = R2.

The first rule states that if an object O of class C is in room R, an
object of class C is inferred to exist in R; the second rule applies
the existence predicate recursively in the class hierarchy; and
the third rule states that an object’s location is unique. The KB
also includes the closed world assumption for defined fluents,
and inertial axioms that state that the value of a basic fluent
F remains unchanged unless there is explicit evidence to the
contrary:

holds(F, I + 1) ← holds(F, I), not ¬holds(F, I + 1).

¬ holds(F, I + 1) ← ¬holds(F, I), not holds(F, I + 1).

As an example of nonmonotonic reasoning in ASP, con-
sider an ASP program that includes statements step(1..2),
is(prml, book),2 and holds(in(prml, study),
1). Inference produces the answer set3 with statements (ex-
cluding existing statements) holds(in(prml, study),
2) and holds(exists(book, study), 2). However,

2The “prml” is a specific book: Pattern Recognition and Machine Learning.
3We use SPARC [26] to solve ASP programs, as described later.
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adding the statement holds(in(prml, bedroom), 2)
results in an answer set that revises the outcomes of the previous
inference step by adding ¬ holds(in(prml, study),
2) and holds(exists(book, bedroom), 2).

Robots collaborating with humans frequently receive domain
knowledge that is true in all but a few exceptional situations.
An example of such default domain knowledge in the simulated
domain of Fig. 2 would be “the microwave is usually in the
kitchen.” Although such (qualitative) commonsense knowledge
can be very useful, meaningful representation of, and reasoning
with, such knowledge is challenging. For instance, if the logical
statement corresponding to a default is assigned a high proba-
bility, the robot’s performance (based on this knowledge) may
be sensitive to the choice of this probability, and it will be dif-
ficult to represent exceptions to such defaults. ASP provides an
elegant representation for defaults and exceptions (if any). One
significant addition to the ASP component of the architecture is
the inclusion of such default knowledge about object locations.
Consider the statement “books are typically in the study,” which
can be represented in ASP as

in(X, study) ← book(X), not ab(din(X)),

not ¬in(X, study)
whereab(d(X)) implies “X is abnormal with respect to d” and
supports the encoding of exceptions to defaults. For instance,
while textbooks are likely to be in the study, cookbooks are
more likely to be in the kitchen. We can first encode the class
hierarchy of books in the KB:

book(X) ← textbook(X)

book(X) ← cookbook(X).

We can then encode weak exceptions and a strong exception to
the default as

ab(din(X)) ← cookbook(X). %weak exception

ab(din(X)) ← not¬cookbook(X), book(X).

%weak exception

¬in(X, study) ← cookbook(X). %strong exception

where the two forms of the weak exception render the default
inapplicable, while the strong exception directly falsifies the
default. Assume that the weak exception has been included in
the KB and consider the following statements:

textbook(prml)

cookbook(spices).

Inference produces in(prml, study) but does not make
any claim about the location of spices, i.e., it is unknown if
this cookbook is in the study or not. For visual target local-
ization, the KB includes information about the default locations
of objects; see Section IV.

Inconsistencies caused by the addition of incorrect informa-
tion to the ASP KB can be corrected by subsequent sensor inputs.
ASP also provides planning and diagnosis capabilities [1] not
used in this paper but included in other work [27]. Although ASP

Fig. 3. Overview of the hierarchy of POMDPs for acquiring and processing
visual inputs for target localization.

has been used in the development of agent architectures, ASP
does not support probabilistic modeling of uncertainty, and ar-
chitectures that combine ASP with probabilistic reasoning lack
key representation and reasoning capabilities (see Section II).
The contributions of this paper are a significant step toward
addressing these limitations.

B. Planning Under Uncertainty with Partially Observable
Markov Decision Processes

A robot that can localize itself has to account for the un-
certainty in navigation and sensing as it moves and analyzes
images of specific scenes to accurately localize an object. The
robot must also pick a sequence of places to search; within the
Bayesian framework, the active sensing, information process-
ing, and navigation are formulated as a probabilistic sequen-
tial decision making task and, more specifically, as a POMDP.
Since it is computationally intractable to solve (and plan with)
practical-sized POMDPs in real time, our prior work intro-
duced a hierarchical decomposition of the POMDP formulation
[28]—Fig. 3 summarizes this decomposition. For a specific tar-
get, the 3-D area is represented as a discrete 2-D grid, each grid
cell storing the probability of target existence. The visual search
(VS)-POMDP plans an action sequence to analyze a sequence
of scenes, with the objective of maximizing the information
gain. For each scene, the scene processing (SP)-POMDP plans
the processing of regions of images of the scene using available
algorithms. This hierarchical decomposition supports automatic
belief propagation between the levels of the hierarchy and auto-
matic model creation at each level [28], [29]. Thus, ASP-based
inference operates at the (abstract) level of rooms, and POMDPs
plan at the higher resolution of cells. The salient features of the
hierarchy of POMDPs are described briefly for completeness.

For locating a specific object in a grid with N cells, the VS-
POMDP is the tuple 〈S,A,Z, T,O,R〉. Each entry in the set
of states S corresponds to the event that the target is in a spe-
cific grid cell, and executing one of the actions in A causes the
robot to move and analyze a specific cell4; Z : {present, absent}
is the observation set that indicates if the target is detected.

4The set A also includes terminal actions to terminate plan execution.
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T : S × A × S ′ → [0, 1] is the state transition function, and
O : S × A × Z → [0, 1] is the observation function. Since the
state is not directly observable, the robot maintains a probabil-
ity distribution b over the states; each entry bi, i ∈ [1, N ] of this
belief state is the probability of the corresponding state si . Un-
certainty in the belief distribution is measured by computing its
entropy. To maximize information gain, the reward for action at

is defined as the actual reduction in entropy between belief state
bt and the resultant belief state bt+1 . Thus, R : B × B′ → R is
the reward specification, where B is the space of belief states.
The observation function is learned by the robot as a function of
its position, the target’s position, the camera’s field of view, and
the observation functions of the hierarchy’s lower levels. Given
the tuple, a POMDP solver can be used to compute a policy
that maps belief states to actions by minimizing entropy over a
planning horizon. This formulation can become computation-
ally intractable for real-time operation because the number of
grid cells can increase significantly in complex domains. Our
previous work [28] addressed this challenge by enabling robots
to learn a convolutional policy kernel from the policy for a small
region, exploiting the rotation and shift invariance properties of
visual search. This kernel is convolved with larger maps to ef-
ficiently generate appropriate policies. Furthermore, movement
between grid cells is assigned a cost proportional to the distance
to be traveled.

For any chosen scene, the SP-POMDP plans the sequence
of visual input processing algorithms to be executed on a se-
quence of salient regions of interest (ROIs) in images of the
scene. The SP-POMDP may have one or two layers depending
on scene complexity, i.e., the number of ROIs and types of fea-
tures extracted from images of the scene. For instance, each ROI
extracted from an image of the scene is modeled as a lower level
(LL) POMDP. Each LL policy provides the sequence of algo-
rithms to apply on a specific ROI to detect the desired object,
e.g., algorithms to determine the dominant color or shape in the
ROI. LL policies of all image ROIs are used to automatically
create a high-level (HL) POMDP. Executing an action in the HL
policy directs attention to a specific ROI. Executing the corre-
sponding LL policy (until termination) provides an observation
that causes an HL belief update and an action choice. These
steps are repeated until a decision is made about the presence
or absence of the target in the image. This decision provides an
observation in the VS-POMDP, resulting in a belief update and
an action choice in the form of a scene for subsequent analysis.
This process continues until the belief of the target’s presence
in a grid cell exceeds a preset threshold (i.e., robot claims that
the target has been found and localized), or a time limit is ex-
ceeded (i.e., target is not found). The entire hierarchy is tailored
automatically to tasks at hand—see [28] and [29] for details.

C. Integrating Logical and Probabilistic Beliefs

The answer set obtained by inference in the ASP KB repre-
sents the current logically expressed beliefs of the robot (see
Section III-A), which can be used to guide the probabilistic
planning of sensor input processing and navigation. However,
these beliefs are not compatible with the probabilistic belief dis-

tributions used by the hierarchy of POMDPs (see Section III-B).
Previous work heuristically generated an ASP-based belief dis-
tribution from a predominantly static KB and used a generalized
form of linear and logarithmic averaging methods (r-norm) [30]
for weighted averaging of this belief distribution and the be-
lief distribution modeled by the POMDPs [2]. In this paper, we
present an approach that supports an incremental bidirectional
flow of information between the commonsense inference and
probabilistic reasoning components—the approach consists of
two steps: 1) the count of relevant literals in the answer set is
used to (heuristically) create a multinomial prior over rooms
the target may be in (see Section III-C1); and 2) the prior and
an incrementally populated observation likelihood (at the level
of cells) are used for POMDP state estimation, resulting in a
posterior belief distribution that is used for subsequent action
selection (see Section III-C2).

1) Generating a Multinomial Prior From an Answer Set:
The conversion of relevant literals in an answer set to a multi-
nomial (probabilistic) prior over rooms is based on: 1) knowl-
edge of object classes and of specific object instances in the
domain; and 2) postulates that capture object cooccurrence re-
lationships. This paper illustrates this approach for visual target
localization—some postulates (and their representation) may
need to be revised for other sensors or domains.

Postulate 1: Existence of objects of a primary class (in a
room) provides support for the existence of other objects of
this class (in the room). The level of support is proportional to
the logarithm of the number of objects, inspired by Fechner’s
law,5 which states that subjective sensation is proportional to
the logarithm of stimulus intensity:

perception = ln(stimulus) + constant. (1)

This law has been applied to visual processing [31] and explored
in our previous work; here, we adapt it for the primary source
of information (visual cues). The support for the existence of a
specific target object in a room is given by

ψn =

{
0, if an = 0

ln(an ) + ξ, otherwise
(2)

where an is the number of (known) objects of the primary class
(of the target object) in the room, and ξ = 1 corresponds to
constant in (1). If there is only one instance of certain objects
in the domain (e.g., a fridge), this can be modeled using relevant
predicates to ensure appropriate counts.

Postulate 2: As the number of known subclasses of a class
increases, the influence exerted by the subclasses on each other
(proportionately) decreases. This computation is performed re-
cursively in the object hierarchy from each primary class to the
lowest common ancestor (LCA) of the primary class and target
object. Equation (2) is modified as

ψn =

⎧⎪⎪⎨
⎪⎪⎩

0, if an = 0

ln(an ) + ξ∏Hn

h=1 Wh

, otherwise
(3)

5Fechner’s law (1860) serves as the basis of modern psychophysics.
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where Hn is the height of the LCA of the target object and the
primary class under consideration. For a class node on the path
from the primary class to the LCA, Wh is the number of children
of the node at height h; W1 = 1 for primary classes because the
first postulate considers object instances.

Postulate 3: Each primary class with instances (in a room)
independently provides support for the target’s existence (in the
room). The evidence for the target’s existence in room k is thus
the summation of the evidence from N primary classes:

αk =
Nk∑
n=1

ψn,k =
Nk∑
n=1

ln(ak,n ) + ξ∏Hk , n

h=1 Wk,n,h

(4)

where Nk is the number of primary classes that have specific
object instances in room k. Equation (4) thus extends the defi-
nition of ψn from (3). The values of αk are computed using the
cardinality of the set of relevant answer set statements obtained
through inference in the KB. For target localization, these three
postulates (together) consider knowledge about the occurrence
of specific object classes in specific types of rooms; future work
may explore probabilistic models of these relationships learned
from historical data.

To convert the relevant statements in the answer set into a
multinomial prior that can be combined with the probabilistic
POMDP beliefs, let event Ek represent the target object’s ex-
istence in room k, and let E represent the target’s existence in
one of the rooms. Let pK B (Ek |E) be the probability that the
target is in room k given its existence in the domain. Based on
the current answer set, the entries of bK B , the multinomial prior
distribution over the rooms, are given by

bK B
k = pK B (Ek |E) = αk/α0 (5)

where α0 =
∑

k αk . As an example, in the simulated domain
in Fig. 2, let the target object be a printer that (unknown to the
robot) is on the floor of the study. Consider a subset of the
domain objects:

1 pillow : bedding : object, in bedroom

1 mattress : bedding : object, in bedroom

1 computer : computer− access : object, in study

1 fax : computer− access : object, in study

3 book : books− magazine : object, in study

2 magazine : book− magazine : object, in study

1 coffee machine : kitchenware : object, in kitchen

1 fridge : kitchenware : object, in kitchen

1 book : book− magazine : object, in kitchen

1 printer : computer− access : object, unknown

Integers at the beginning of each line represent the number of in-
stances of the corresponding objects. Each line also contains the
relevant subset of the object hierarchy, e.g., the class pillow is
a child of the classbedding, which is a child of classobject.
Let rooms in Fig. 2 be indexed in ascending order from left to
right. Consider α1 , the support for the target object (printer)

being in bedroom (i = 1). There are instances of pillow and
mattress in this room; therefore, N1 = 2. Since there is only
one pillow known to be in the bedroom, a1,1 = 1. The LCA of
the target object and class pillow is the root node (object);
therefore, H1,1 = 3. The evidence provided by sibling classes
is considered in a bottom-up manner, and the extent of sup-
port is diluted as we proceed up the hierarchy, with W1,1,1 = 1.
Since bedding and object have two and four children, re-
spectively, W1,1,2 = 2 and W1,1,3 = 4. The second object class
with an instance in the bedroom is mattress, and a1,2 = 1
because there is only one mattress—W1,2,1 = 1, W1,2,2 = 2,
and W1,2,3 = 4. The support for the printer’s existence in room
1 is then computed as α1 = 0.250 using (4). Following the same
procedure, the support vector for the target object’s existence in
the rooms is α = [0.250, 1.141, 0.375]. The multinomial prior
of the target’s existence in the rooms is then computed [using
(5)] as bK B = [0.142, 0.646, 0.212].

2) Computing Posterior Belief Using Bayes Rule: It is chal-
lenging to provide a Bayesian treatment for using the multino-
mial prior and the POMDP belief distribution to compute the
posterior belief of the target’s location in the domain. The KB
may contain incomplete or outdated information, sensor ob-
servations are imprecise, and actions are nondeterministic. In
addition, the answer set that informs the multinomial prior is
subject to nonmonotonic logical inference, making it difficult to
use a new prior to revise the posterior computed using the pre-
vious prior. To address these challenges, the fact that actions in
our domain do not change object locations is exploited to main-
tain the likelihood of the sequence of observations received by
the robot over time. The ith entry of this likelihood vector is
the likelihood of the sequence of observations conditioned on
si being the true location of the target object:

bOb
i,t = pi(o1:t |a1:t , bi,0:t) =

t∏
j=1

O(si, aj , oj ). (6)

Now, when an update to the KB causes a change in the answer
set, the Bayes rule is used to compute the revised posterior
belief b′ based on the multinomial prior and the likelihood of
the observation sequence:

b′i,t ∝ bOb
i,t · bK B

i . (7)

This update considers the current beliefs encoded in the KB and
all the observations used with the previous multinomial prior.
The update is performed at the level of cells by distributing the
multinomial prior for each room over the cells in the room. The
revised posterior belief of the target’s location is input to the
VS-POMDP policy to choose an action, causing the robot to
move and/or analyze an appropriate scene.

This belief update brings up an interesting, subtle, and im-
portant issue about (re)use of observational information in our
architecture. Each statement added to the KB corresponds to
a hypothesis, based on one or more observations over a time
period (0 : t), which has been elevated from being associ-
ated with a high probability to being associated with complete
certainty. Such a commitment made at time t is used for infer-
ence in the ASP KB. The corresponding multinomial is then
pushed back to the POMDP as the prior in (7) for the Bayes
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rule update (say, at time t + 1). Strictly speaking, the previous
observation sequence should be discarded at this point, which
can be accomplished by resetting the observation sequence like-
lihood to 1 when the new multinomial prior is obtained. This
observation discard strategy, however, also discards many ob-
servations with useful information that may not have yet had
a chance to support a commitment to the KB—the observation
sequence typically contains far more information than was used
to submit a single commitment. In addition, information about
events not directly relevant to the task may have revised the KB.
Thus, an observation reuse strategy, which does not reset the ob-
servation likelihood, allows additional inferences to be drawn
later on. While this reuse is strictly incorrect in Bayesian terms,
we verified experimentally that it significantly increases target
localization accuracy and decreases the localization time. Thus,
we retain it as a feature of our architecture that separates logical
inference from probabilistic inference. This separation is at the
heart of the inferential efficiency in our architecture that avoids
exact but inefficient probabilistic reasoning over the ASP KB.

D. Reasoning about Target Existence

It is possible that the object the robot is searching for does
not exist in the entire domain. The robot may also have access
to historical data from comparable domains that, if combined
correctly with the robot’s unreliable observations, can be used
to estimate the probability of the target’s existence in the current
(search) domain. Furthermore, the robot cannot search indefi-
nitely, but must choose when to give up the search if it cannot
find the object. Intuitively, the more certain the robot is that the
target exists in the domain, the longer it should persist before
giving up. However, this reasoning is not captured by standard
POMDP models; introducing such reasoning also negates the
invariance properties used to efficiently compute the convolu-
tional policies in our hierarchy of POMDPs. One significant
contribution of this paper is a metareasoning approach to com-
bine the historical data with domain knowledge and the current
observations to terminate search appropriately. Our approach
models the confidence in the historical data using a metaden-
sity over the probability that the target exists in the domain. In
the derivation below, we assume that the robot has to find one
instance of the target; we do not model the probability distribu-
tion over the number of instances of the target object type in the
domain.

Our metareasoning approach comprises three steps: 1) using
a beta density (a metadensity) to model prior knowledge from
historical data and the KB about the target’s existence in the do-
main; 2) maintaining the likelihood of the observation sequence
given the existence or non-existence of the target; and 3) using
the prior and the likelihood to obtain the posterior probability
of target’s existence in the domain. For localizing a specific ob-
ject, steps 2 and 3 are repeated until the robot makes a decision
about the presence or absence of the object in the domain (more
details below).

The prior probability that the target exists in the current do-
main is θ = P (E), the parameter of a Bernoulli distribution.
We, therefore, use a beta probability density function (PDF) as

a metadensity over θ, i.e., as the conjugate prior:

B(θ|α′, β′) =
Γ(α′ + β′)
Γ(α′)Γ(β′)

θα ′−1(1 − θβ ′−1) (8)

where the Gamma (Γ) function is used for normalization. The
parameters α′ and β′ are (respectively) the support for existence
and nonexistence of the target in the domain; these parameters
include the evidence from the answer set and counts of the
number of times the desired object was found to exist or not
exist during previous searches in other domains of the same type,
e.g., other offices. The beta PDF, thus, models the confidence
in the combination of the knowledge of the current domain and
historical data from comparable domains.

In addition to the beta PDF, the robot computes the likelihood
of the observation sequence at each time step given that the
desired target object exists or does not exist in the domain:

p(ot |E, at , bt) =
∑

∀i∈F oV O(ot , at , si) bt(i) if ot = o+

(9)
+ p(FP) ·

∑
∀i /∈F oV bt(i),

=
∑

∀i∈F oV O(ot , at , si) bt(i) otherwise

+ p(TN) ·
∑

∀i /∈F oV bt(i),

p(ot |¬E, at , bt) = p(FP), if ot = o+

= p(TN), otherwise

where p(FP ) and p(TN) are the false positive and true negative
rates, respectively, obtained experimentally and encoded in the
POMDP models, and FoV is the event that the target is in the
robot’s field of view. Since the current action (at) and belief (bt)
are known at each time step, they are occasionally omitted in
the equations below.

Given the prior and the observation likelihood, the posterior
probability of target’s existence in the domain is given by

p(E|o1:t) =
∫

θ

pθ (E|o1:t) p(θ)dθ (10)

where p(θ) is modeled by the beta PDF. For a given θ, the Bayes
rule can be used to iteratively compute

pθ (E|o1:t)

=
p(ot |E) pθ (E|o1:t−1)

p(ot |E) pθ (E|o1:t−1) + p(ot |¬E) pθ (¬E|o1:t−1)
(11)

where p(ot |E) and p(ot |¬E), shorthand for p(ot |E, at , bt) and
p(ot |¬E, at , bt), respectively, are computed using (9), and bt is
the result of state estimation in the VS-POMDP assuming that
the object exists. The posterior can be used for early termination
of the search for the target object if the probability of non-
existence of the target in the domain, p(¬E|o1:t), exceeds a
threshold (τ−), just as the existence of the object in a specific
room or cell can be confirmed when the mode of the belief (bt)
exceeds a threshold (τ+ ). However, it is difficult to compute the
integral in (10) in closed form, and therefore, we consider three
approximations.
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1) Expectation-Based Approach: The first approximation
strategy computes the posterior by considering the expectation
of the beta PDF as the prior probability of existence of the
target, i.e., p(E) = α ′

α ′+β ′ . The task of computing the posterior
collapses to a Bayesian update, as described in (11). Although
it simplifies the computation of the posterior, this strategy does
not use the beta PDF’s variance, which provides important in-
formation about the degree of belief associated with any specific
p(E). In other words, the metadensity is effectively discarded
and the estimated likelihood of existence is assumed to be cor-
rect, no matter how little or much data or knowledge the estimate
is based on.

2) Upper-Bound Approach: The second strategy also con-
siders a single value of θ from the beta PDF as the prior proba-
bility of existence of the target object in the domain. However,
this prior θ = p(E) is chosen such that

∫ θ

0 f(x)dx = valueub ,
where f(x) is the beta PDF. The motivation for this strategy is
to obtain a kind of upper bound on the value of the prior. For
instance, we use valueub = 0.9, i.e., if the robot decides to ter-
minate the trial for a specific target object, it would have arrived
at the same decision if it had started with any of the 90% of
the values of the prior θ sampled from the beta PDF. Similar to
the expectation-based approach, computing the posterior prob-
ability of existence of the target object collapses to a Bayesian
update [see (11)]. However, unlike the expectation-based strat-
egy, the beta PDF’s variance contributes to the selection of the
prior probability of the target object’s existence in the current
domain.

3) Monte–Carlo Sampling: The third strategy uses Monte–
Carlo (MC) sampling to estimate the integral in (10). In this
approach, the number of samples required to approximate the
integral may need to be revised during runtime to obtain a good
estimate of the expected value of the posterior. To perform a
belief update with the new samples, the likelihood of the obser-
vation sequence is maintained for metareasoning, similar to the
approach used in Section III-C2:

p(o1:t |E, a1:t , b0) = p(o1:t−1 |E, a1:t−1 , b0) · p(ot |E, at , bt)

p(o1:t |¬E, a1:t , b0) = p(o1:t−1 |¬E, a1:t−1 , b0)

· p(ot |¬E, at , bt) (12)

where p(ot |E, at , bt) and p(ot |¬E, at , bt) are given by (9). Note
the dependence of this calculation on the sequence of actions
a1:t and the initial VS-POMDP belief b0 . In the MC sampling
strategy, the robot first draws an initial number (Nmc

0 ) of samples
θi = p(E) from the beta PDF and, then, follows the following
iterative sequence.

1) Compute observation likelihood after the standard
POMDP belief update—(12).

2) For each sample θj , compute the posterior belief, where
η is a normalization term:

pj (E|o1:t) = η · p(o1:t |E, a1:t , b0) · pj (E)

pj (¬E|o1:t) = η · p(o1:t |¬E, a1:t , b0) · (1 − pj (E)).
(13)

3) Compute the MC approximation of the posterior in (10)
as: p(E|o1:t) = 1

N m c
t

∑
∀j pj (E|o1:t).

4) Recompute the number of samples needed:

Nmc
t =

{
zσ · stdev(pi(¬E|o1:t))
mean(pi(¬E|o1:t)) − τ−

}2

(14)

where the objective is to have enough samples to
make a decision about early termination with a de-
sired level of confidence (zσ = 1.645 for 90% level of
confidence).

5) If additional samples are required, draw these samples and
repeat steps 2 and 3 above.

This strategy requires more computational effort than the other
two strategies, but fully uses the variance of the beta PDF to
compute the desired posterior probability. We compare the three
strategies experimentally in Section IV.

Algorithm 1 summarizes the overall control loop for belief
update and metareasoning. The preprocessing step in line 1 in-
cludes, for instance, the creation of the initial VS-POMDP belief
using information from the answer set and drawing of the initial
set of samples from the beta PDF for the MC sampling strategy.
In each iteration, the robot performs a POMDP belief update
after executing an action and generating an observation (lines
4–6). If the KB is revised, the new answer set is used to compute
a multinomial prior and thus the corresponding posterior belief
distribution (lines 7–10). Next, the robot reasons about the target
object’s existence in the domain (lines 11 and 12); the optional
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postprocessing step in line 12 includes, for instance, the creation
and update of new samples for the MC sampling strategy. The
search for the desired object is terminated when it is localized
with high probability or the probability of its nonexistence in
the domain is high (lines 14–18). Although it is not shown in
Algorithm 1, it is also possible to terminate the search after a
fixed amount of time.

IV. EXPERIMENTAL SETUP AND RESULTS

Experiments were conducted in simulated domains and on
wheeled robots visually localizing target objects. The objective
was to evaluate three hypotheses: (H1) representing and reason-
ing with default knowledge in ASP can significantly reduce the
search space (and thus the time needed) to localize objects at
the level of rooms; (H2) using the proposed architecture sig-
nificantly increases target localization accuracy (at the level of
cells in rooms) and reduces the localization time in comparison
with using ASP or POMDPs individually, or using the previous
approach to generate and merge ASP and POMDP beliefs [2];
and (H3) metareasoning with domain-specific observations and
historical data enables robots to reliably and efficiently deter-
mine when a trial should be terminated, and strategies that use
the variance of the Beta PDF provide a good tradeoff between
accuracy and time. During the evaluation of hypotheses H1 and
H2, metareasoning is not included. Furthermore, the experimen-
tal trials thoroughly analyze the effects of incrementally revising
the KB.

Since experimental trials predominantly include the same set
of axioms, and separate experiments are conducted with and
without default knowledge (details below), the term “domain
knowledge” is used below to primarily refer to the percent-
age of objects whose room locations are known to the robot.
In each experimental trial, the ASP KB includes the hierarchy
of relevant object classes and a subset of specific object in-
stances. The robot’s initial cell-level location, target object(s),
and the cell-level location(s) of the target object(s) are chosen
randomly; the robot does not know the location of any tar-
get object. Although this random choice makes it difficult to
compute a meaningful estimate of variance in the experimen-
tal results, statistical significance is established through paired
trials. In each paired trial, for each approach being compared
(e.g., ASP+POMDP versus POMDP), the initial cell-level lo-
cation of the robot, the target(s), and the cell-level location(s)
of the target(s) are fixed, and the robot has the same amount
of domain knowledge. The robot confirms the location of an
object in a grid cell when the corresponding belief exceeds a
threshold (τ+ = 0.80); the threshold for claiming non-existence
of the target in the entire domain (τ−) varies between different
sets of trials (details below). Unless otherwise stated, there is
no time limit for an experimental trial. Target localization accu-
racy is considered to be maximum when the reported location
and the ground truth location of an object are identical (e.g.,
same grid cell). The accuracy falls off as a Gaussian function of
the distance between the reported location and the ground truth
location.

Fig. 4. Target localization accuracy using only ASP-based inference, with
and without default knowledge. The correct room locations of target objects
are in the top two choices in ≈90% of the trials with as little as 40% domain
knowledge; using default knowledge further improves the performance.

A. Experiments in Simulated Domains

The domain used for simulation experiments extends the il-
lustrative domain in Fig. 2 (with a bedroom, study, and
kitchen) by including one more room: livingroom. We
use learned object models [32] and observation models to sim-
ulate motion and perception. Fifty objects in ten different cat-
egories were simulated in these rooms, with each room com-
prising 25 cells. Each data point in the results described below
is the average of 5000 simulated trials, and time is measured in
simulation time units.

(H1) Using ASP: Fig. 4 summarizes experimental results in
which only the ASP KB is used to infer the target objects’ loca-
tions. ASP-based inference can only determine the room-level
location of the target object and cannot provide the cell-level
location of the object in a room. First, consider the experiments
in which default knowledge is not included in the KB. In these
trials, if the robot is given the room locations of all other objects
(i.e., all domain knowledge), it can correctly infer the room lo-
cation of the target. The accuracy decreases when the amount of
domain knowledge decreases, e.g., with 40% of domain knowl-
edge, the robot can correctly identify the target’s room location
with ≈0.7 accuracy. However, even when the locations of only
40% of the objects are known, the correct room location of any
specific target object is in the top two choices in ≈90% of the
trials.

The experimental trials were repeated after including default
knowledge about room locations of objects in the KB, e.g.,
“books are usually in the study.” Although such knowledge
can be useful, observations in the current domain may con-
tradict it, e.g., someone may have left a book in the bedroom
by mistake. As described in Section III-A, ASP provides good
expressiveness for defaults and exceptions to defaults, and sup-
ports non-monotonic logical inference. Fig. 4 shows that using
default knowledge improves accuracy in comparison with the
trials in which default knowledge is not used, especially when
the amount of domain knowledge considered is small(er). A
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Fig. 5. Target localization accuracy and localization time as a function of the
percentage of domain knowledge in the KB. The proposed architecture increases
target localization accuracy and reduces target localization time in comparison
with using only POMDPs. Paired trials establish statistical significance.

key outcome of ASP-based inference, especially with default
knowledge, is thus the significant reduction in the search space;
an indirect outcome is the reduction in the target localization
time. However, ASP (by itself) is not well suited to represent or
use the probabilistic information extracted by processing sensor
inputs.

(H2) Using ASP and POMDPs: The next set of experiments
used both the logical inference (ASP) and probabilistic plan-
ning (POMDPs) components to localize target objects. For any
given target, ASP-based inference provides a multinomial prior
for POMDP state estimation, with the posterior beliefs used to
determine the robot’s sensing and navigation actions for local-
izing the target. Fig. 5 summarizes the experimental results as a
function of the amount of domain knowledge used to generate
ASP-based beliefs; the blue-colored plot with triangular mark-
ers depicts the target localization time, and the red-colored plot
with star-shaped markers depicts the target localization accuracy
(measured at the cell level). Trials corresponding to each sam-
ple point on the localization time plot were terminated when the
belief in a specific cell exceeded the threshold (τ+ = 0.8); trials
corresponding to the localization accuracy plot were terminated
after 100 time units.

Trials corresponding to 0 on the x-axis represent the use of
only the hierarchy of POMDPs—see Section III-B and [28].
The results indicate that using our proposed approach to com-
pute the posterior belief significantly increases the target lo-
calization accuracy. Some of the localization errors are due to
the room-level support for target existence provided by related
objects. This problem is more pronounced when the amount
of domain knowledge included in the KB is small, causing the
robot to explore irrelevant locations and provide an incorrect
result when the time limit is exceeded and/or some observations
are incorrect; given more time, the robot is able to recover from
these errors. As the robot obtains more domain knowledge, the
localization accuracy steadily improves. For instance, over tri-
als in which the robot knows the room location of all objects
except the target, accuracy is 0.96 and errors are due to the
target object being close to the edge of two or more cells. To
establish statistical significance, we conducted paired trials; in
each set of trials using just POMDPs or ASP and POMDPs,
the initial cell-level locations of the robot and the target(s) were
fixed, and the robot started with the same amount of domain

Fig. 6. Analysis of approaches for generating posterior belief, and the effects
of revising the KB; using ASP inference-based multinomial priors for POMDP
state estimation significantly reduces localization errors, and incrementally
revising the KB further improves the accuracy.

knowledge, e.g., room locations of 40% of the domain objects.
The improvement in localization time over 1000 trials (each)
is significant at the 95% significance level with the p-value
<10−24 . Our architecture, thus, exploits the complementary
strengths of logical inference and probabilistic planning to sig-
nificantly reduce the localization time while also increasing the
localization accuracy.

Posterior belief generation: Next, we evaluated our pro-
posed approach for obtaining the posterior belief of the target’s
cell-level location using the ASP-based multinomial prior for
POMDP state estimation and analyzed the effects of incremen-
tally revising the KB. The KB was initialized with 20% domain
knowledge in each trial, and information about a few randomly
chosen objects was added periodically to simulate learning from
sensor inputs. Inference in the revised ASP program provides
new multinomial priors for POMDP state estimation and subse-
quent action selection. Each trial terminates when the belief in
a cell exceeds 0.8 or the time limit of 100 units is exceeded. To
make the trials more challenging, some extra (Gaussian) noise
was added to the observations received by the robot.

Our proposed approach for generating the posterior belief of
the target’s (cell) location (“dynamic KB”; Section III-C2) was
compared with two approaches: 1) not revising the KB that is
populated with 20% domain knowledge at the beginning of each
trial (“static KB”); and 2) using relative trust factors to merge
a heuristically generated ASP-based belief distribution with the
POMDP belief distribution (“trust factor”) [2]. The trust factor
approach did not encode default knowledge, used heuristics to
convert answer sets from a static KB to a belief distribution,
and performed weighted averaging of this distribution and the
POMDP belief distribution using the r-norm measure. To enable
comparison with such an approach, trials were conducted with-
out default knowledge in the KB, and Fig. 6 summarizes the
results in the form of cumulative distribution function (CDF)
plots. The x-axis represents the localization error in units of
grid cells, and the y-axis represents the percentage of trials with
errors below a specific value. For instance, with our approach,
≈80% of the trials have a localization error of ≤4 units, while
only 66% of the trials provide similar accuracy when trust fac-
tors are used—even with a static KB, our approach results
in better performance than using trust factors. Although not
shown in Fig. 6, using trust factors may also result in lower
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Fig. 7. Metareasoning with historical data reduces target localization time
(by early termination) and (indirectly) increases the localization accuracy. The
three approximation strategies trade-off between accuracy and time. Paired trials
establish statistical significance of the results.

localization accuracy than not using ASP-based inference—
based on the choice of the relative weights, it is possible for
an incorrect ASP-based belief to overwhelm the POMDP be-
lief distribution that is revised based on actual observations.
Similar results were obtained in trials conducted after chang-
ing the amount of initial domain knowledge. Including default
knowledge further increases the target localization accuracy and
decreases the target localization time of our proposed approach.
Furthermore, paired trials established the statistical significance
of the performance of the proposed approach (with or without a
static KB) in comparison with the trust factor approach; p-values
of 3.9 × 10−69 , 1.3 × 10−9 , and 2.4 × 10−30 for dynamic KB
versus trust factor, dynamic versus static KB, and static KB
versus trust factor, respectively.

(H3) Metareasoning strategies: Experiments were then con-
ducted to evaluate the benefits of metareasoning with historical
data in conjunction with observations in the current domain.
To isolate the effect of using observations, the KB is static in
each trial, and the target is randomly selected to be present
or absent (unknown to the robot). The “baseline” strategy ter-
minates the trial when the probability of one of the grid cells
exceeds the preset threshold (τ+ = 0.8) or the trial takes longer
than a given time limit. This strategy is compared with the ac-
tion selection policies corresponding to the three approximation
strategies (“expectation,” “upper bound,” and “sampling”) de-
scribed in Section III-D. Each of these three policies terminate
a trial early if the probability of the target’s nonexistence in
the domain exceeds a preset threshold (τ−)—we experimented
with different values of this threshold, as described below. All
four policies include our proposed approach of using ASP-based
multinomial prior for POMDP state estimation.

Fig. 7 summarizes the results (τ− = 0.7), with the localiza-
tion time and accuracy on the x-axis and y-axis, respectively.
The black plot with plus-shaped markers depicts the average
results with the baseline strategy and specific time limits; the
robot can localize the target more accurately if given more time.
However, in trials in which the target object does not exist in
the domain, the baseline strategy cannot terminate trials early.
The action selection policies based on the three proposed ap-
proximation strategies enable early termination by updating the
belief of the target’s existence in the domain using historical

Fig. 8. Localization time as a function of prior knowledge of the target’s
existence in the domain. Prior knowledge is encoded as a Beta PDF—parameters
(a, b) of the PDF denote the support for the existence and nonexistence of the
target based on historical data from comparable domains.

data and observations. The results indicate that all three approx-
imation strategies provide significantly lower target localization
time in comparison with the baseline strategy; an indirect con-
sequence is the increase in localization accuracy. For instance,
to obtain a target localization accuracy of 0.85, the sampling-
based strategy takes ≈67 time units, while the baseline strategy
needs ≈85 units. The three proposed strategies also result in
different tradeoffs between computational efficiency and target
localization accuracy (and time). For instance, the expectation-
based strategy provides the lowest localization time, but the
localization accuracy is also the lowest among the approxima-
tion strategies. The upper bound strategy, on the other hand, has
the highest localization time but provides the highest localiza-
tion accuracy. The sampling-based strategy provides a tradeoff
between accuracy and time. Overall, the sampling-based and up-
per bound strategies result in better performance because they
better exploit the variance of the beta PDF.

To evaluate the effect of the variance of the Beta PDF, i.e.,
the degree of belief associated with the Bernoulli variable for
the likelihood of the target’s existence in the domain, the target
localization time was computed using the three approximation
strategies for different values of the beta PDF’s parameters. In
these trials, τ− was set to a (higher) value of 0.85 to encourage
the robot to be more certain of the target’s nonexistence before
abandoning search. As a representative example, Fig. 8 summa-
rizes the target localization time for three different sets of values
of the beta PDF’s parameters. Each parameter set, e.g., (6, 2)
and (30, 10), corresponds to the same expected value of the prior
probability of target’s existence in the domain; the variance is,
however, different. Unknown to the robot, the target exists (does
not exist) in the domain for 50% of the trials. The results do not
differ for the expectation-based strategy that does not use the
beta PDF’s variance. For each of the other two strategies, the
localization time is lower within each parameter set, e.g., (6, 2)
and (30, 10), if the variance associated with the prior is lower.
Higher variance represents a lower degree of belief in the cor-
responding Bernoulli variable for the likelihood of the target’s
existence and results in the robot being more conservative about
terminating the trials early—the upper bound strategy has a pa-
rameter (valueub ) to control the extent to which the robot is
conservative in its decisions. Furthermore, the upper bound and
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Fig. 9. (a) Map of the domain, which is learned and revised by the robot using laser range data—obstacles are inflated to a distance that is based on the robot’s
inscribed radius. (b) Wheeled robot platform (Erratic) used for experimental trials.

Fig. 10. Pictorial representation of a subset of nodes in the ROS implementa-
tion of our architecture.

sampling strategies approach the expectation-based strategy in
the limit of infinite historical data.

B. Experiments on a Physical Robot

Experiments were also conducted on a physical robot de-
ployed on two floors of an office building. Fig. 9(a) shows part
of the map of the third floor with semantic labels assigned to
specific rooms. Fig. 9(b) shows the test platform—a wheeled
robot equipped with cameras, laser range finder (30 m, ±135◦),
microphones, and an on-board computer with 4-G RAM and
2-GHz Dual-Core processor.

Algorithms were implemented on the robot using the robot
operating system (ROS) [33]. Fig. 10 shows ROS nodes corre-
sponding to modules for path planning, localization, mapping,
and acquisition of sensor data. Visual object recognition is based
on learned object models that consist of appearance-based and
contextual visual cues [32]. Laser range data are used by the
robot to localize itself in the domain map, detect obstacles and
to determine room accessibility, e.g., if doors are open or closed.

Fig. 11. Some target objects used in the experimental trials on the wheeled
robot platform.

TABLE I
TARGET LOCALIZATION TIME OF A HEURISTIC POLICY, AND A POLICY BASED

ON ONLY POMDPS, EXPRESSED AS A FACTOR OF THE TARGET

LOCALIZATION TIME USING OUR ARCHITECTURE

Search strategies Localization time for specific targets

Microwave Humanoid

Heuristic 2.96 1.78
POMDP only 1.96 1.32
ASP + POMDP 1 1

Our architecture significantly reduces the target localiza-
tion time while successfully localizing the targets in all the
trials.

While moving between locations, the robot also periodically
processes low-resolution images.

For any given task, our architecture enables the robot to per-
form nonmonotonic logical inference in the ASP KB to provide
a prior for POMDP state estimation, while POMDP planning
provides a sequence of actions for visual information processing
and navigation. Action execution requires the robot to move to
specific locations and/or visually analyze specific scenes. The
execution of each such action invokes an implementation of
the corresponding algorithm in ROS, e.g., use of an existing
algorithm for visual object recognition, or use of existing ROS
algorithms for path planning and controlling the robot’s move-
ment. The observations obtained by executing the sensor input
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Fig. 12. Screenshots of an experimental trial in which the target is the humanoid seen in the last row. Screenshots show an external view of the robot, location
of the robot in the (learned) map of the domain, and the robot’s view, which lags slightly behind the robot’s actual location: (a) robot starts in a map with some
known semantic labels and plans a path (pink line) to the first location (“main office”), trading off the distance to be moved against the likelihood of finding the
target; (b) the robot about to reach the first location; (c) the robot processing images of a specific scene; (d) belief update after the target was not detected in this
location; (e) the robot plans a path (pink line) to the next (likely) target location (“robot lab”); (f) the robot avoids the obstacle (human) on its way to this location;
(g) the robot analyzes images of the scene and obtains the first positive observation of the target; (h) the robot moves closer to confirm the target’s presence and to
accurately localize the target. The robot dynamically revises the domain map and periodically processes images at low resolution as it moves between locations.

processing algorithms are sent to our architecture. However, not
all motion goals can be achieved, e.g., a room may be inacces-
sible. In such situations, failure and relevant information (e.g.,
inaccessibility of rooms) will be reported to the ASP KB. For
local path planning between two specific grid cells, we used
an existing ROS path planner that builds on the A* algorithm
and uses existing algorithms in ROS such as trajectory rollout
and dynamic window for obstacle avoidance. These algorithms
related to path planning have been integrated in the ROS node,

move_base. The communication between our architecture and
the path planner is achieved through the ROS actionlib module
that provides goal, feedback, and result messages. Specific
motion commands are sent to the platform driver by publishing
to ROS topic cmd_vel. Fig. 11 shows examples of target objects
in this domain.

1) Experimental results: We describe a representative sub-
set of the experiment trials in which the target objects were:
1) a microwave oven; and 2) a humanoid. We compared our
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architecture with two baseline policies for action selection: 1)
a heuristic policy that makes greedy action choices based on
the current probabilistic belief; and 2) a policy based on just
the hierarchy of POMDPs [28]. Trials using each of the three
strategies were paired, i.e., a set of trials with the three strategies
used the same (randomly chosen) initial location for the robot
and the same locations for the target objects. In some trials,
the targets were placed in default locations, e.g., kitchen for the
microwave, and lab or office for the humanoid robot. In other
trials, the targets were placed in random locations. The robot
does not know the ground truth locations of the target objects in
any trial, but it has the learned visual models for a set of objects,
a learned domain map, and some domain knowledge (including
default knowledge in some trials).

Table I summarizes the results of a set of 50 trials for two
representative target objects (microwave and humanoid)—the
results show a trend similar to that observed in the trials in
simulated domains (see Section IV-A). The actual target local-
ization time can vary substantially depending on the location
of the target and the initial position of the robot. We, therefore,
report the target localization time of the two baseline strategies
as a factor of the target localization time using our architec-
ture. The results for these (and other target objects) indicate
that our architecture significantly reduces the target localization
time while successfully localizing the target objects in all the
trials. For instance, the target localization time using just the
POMDPs is ≈1.6 times, averaged across targets in addition to
those considered in Table I, the target localization time using our
architecture, while the factor is ≈2.4 for the heuristic/greedy
policy. The results corresponding to the paired trials indicate
that the improvement is statistically significant, e.g., p-value
∈ [0.008, 0.03] when the target localization time obtained using
our architecture is compared with that using only the hierarchy
of POMDPs for localizing objects.

2) Representative Trials: Consider two experimental trials
on the mobile robot deployed in an indoor office domain. Fig. 12
shows screenshots at various stages of the first experimental trial.
The robot uses a learned map with known semantic labels and
the target object to be localized is the humanoid observed in the
last row. The screenshots capture specific steps in the sequence
of actions executed by the robot as it analyzes different images
of a specific subset of scenes. The robot dynamically revises the
map and periodically processes images (at low resolution) as it
moves between desired locations. The corresponding video is
available online at http://youtu.be/CvKJyCI_YNE.

Consider another experimental trial to illustrate the early ter-
mination of unachievable tasks. The target object was a hu-
manoid that (unknown to the robot) actually did not exist in the
domain. Prior domain knowledge indicated that the target was
likely to be in one of the two labs in the learned domain map. The
robot first explored the lab that was closest: the robot lab. When
the robot did not find the desired target after a careful visual anal-
ysis of the lab, the robot investigated the other lab. When it could
not find the target object in this lab either, sufficient belief had
been accumulated in favor of the target’s nonexistence in the do-
main; as described in Section III-D, the robot then terminated the

trial without investigating other rooms. The corresponding video
is available online at http://youtu.be/2U6oOTuEd-Q.

V. CONCLUSION

This paper has described an architecture that integrates the
complementary strengths of declarative programming and prob-
abilistic graphical models for KR and reasoning in robotics.
ASP, a declarative language, is used to represent incomplete do-
main knowledge, including default knowledge that holds in all
but a few exceptional situations. A hierarchy of POMDPs, an in-
stance of probabilistic sequential decision making, is used to au-
tomatically tailor sensor input processing and navigation to tasks
at hand, probabilistically modeling the associated uncertainty.
An answer set obtained through nonmonotonic logical infer-
ence in the ASP KB generates a multinomial prior for POMDP
state estimation, using the corresponding posterior belief distri-
bution for action selection. Inference in the KB and historical
data from comparable domains are also used to generate a beta
PDF. Metareasoning with this PDF and observations enables the
robot to identify eventualities not modeled by the hierarchy of
POMDPs, resulting in early termination of unachievable tasks.
Experimental results on a robot visually localizing objects in an
office domain show that the architecture supports qualitative and
quantitative representations of knowledge and uncertainty and
creates a continuous loop of nonmonotonic logical inference,
probabilistic planning, and knowledge revision.

The architecture opens many directions for future research.
First, the KB is currently not very large and uses hand-coded
rules. However, ASP is capable of efficient inference in large
KBs [34]—future work will scale the current approach to larger
KBs and investigate the learning of rules. We will also evaluate
the architecture’s capabilities for other tasks such as surveillance
and reconnaissance. Second, the architecture currently only uses
the inference capabilities of ASP—future work will explore the
planning and diagnosis capabilities of ASP in conjunction with
the probabilistic reasoning capabilities of POMDPs [27]. Third,
we are investigating the integration of learning algorithms with
our architecture. The long-term objective is to explore a tighter
coupling between declarative programming and probabilistic
graphical models for KR, reasoning, and learning, enabling the
deployment of robots that can collaborate with humans in com-
plex application domains.
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Mixed Logical Inference and Probabilistic Planning
for Robots in Unreliable Worlds

Shiqi Zhang, Mohan Sridharan, and Jeremy L. Wyatt

Abstract—Deployment of robots in practical domains poses key
knowledge representation and reasoning challenges. Robots need
to represent and reason with incomplete domain knowledge, ac-
quiring and using sensor inputs based on need and availability. This
paper presents an architecture that exploits the complementary
strengths of declarative programming and probabilistic graphi-
cal models as a step toward addressing these challenges. Answer
Set Prolog (ASP), a declarative language, is used to represent,
and perform inference with, incomplete domain knowledge, in-
cluding default information that holds in all but a few exceptional
situations. A hierarchy of partially observable Markov decision
processes (POMDPs) probabilistically models the uncertainty in
sensor input processing and navigation. Nonmonotonic logical in-
ference in ASP is used to generate a multinomial prior for proba-
bilistic state estimation with the hierarchy of POMDPs. It is also
used with historical data to construct a beta (meta) density model
of priors for metareasoning and early termination of trials when
appropriate. Robots equipped with this architecture automatically
tailor sensor input processing and navigation to tasks at hand, re-
vising existing knowledge using information extracted from sensor
inputs. The architecture is empirically evaluated in simulation and
on a mobile robot visually localizing objects in indoor domains.

Index Terms—Bayes methods, decision theory, intelligent
robots, knowledge representation, logic programming, stochastic
processes.

I. INTRODUCTION

MOBILE robots are increasingly being deployed in prac-
tical application domains such as healthcare, disaster

rescue, and navigation. These robots receive far more raw data
from sensors than is possible to process in real time, and it
is difficult to equip the robots with accurate and complete do-
main knowledge. Human participants, if any, may not have the
time and expertise to provide elaborate and accurate feedback.
Furthermore, the descriptions of knowledge and uncertainty ob-
tained from different sources may complement or contradict
each other. Widespread deployment of robots thus poses the
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fundamental challenge of enabling them to represent and rea-
son with qualitative and quantitative descriptions of incomplete
domain knowledge and the associated uncertainty, acquiring and
using sensor inputs based on need and availability.

Although probabilistic graphical models such as partially ob-
servable Markov decision processes (POMDPs) have been used
to plan sensing and navigation on robots by probabilistically
modeling the associated uncertainty, it is difficult to represent
and reason with commonsense knowledge in such formulations.
Declarative languages such as Answer Set Prolog (ASP) are
well suited for knowledge representation (KR) and nonmono-
tonic logical reasoning, but they do not support probabilistic
modeling of uncertainty [1]. Prior work integrating ASP with hi-
erarchical POMDPs [2] did not support key capabilities such as
default reasoning, incremental bidirectional flow of information
between the commonsense inference and probabilistic reasoning
components, and metareasoning with observations and histori-
cal data. The architecture described in this paper addresses these
limitations by making the following novel contributions:

1) richer representation and inference in ASP with incom-
plete domain knowledge, which includes default informa-
tion that holds in all but a few exceptional situations, to
effectively reduce the task completion time;

2) use of ASP-based inference to heuristically generate a
multinomial prior for the POMDP state estimation that
is used to plan sensing and navigation, with the subse-
quent observations adding relevant statements to the ASP
knowledge base (KB);

3) metareasoning with observations and a beta density model
of priors based on historical data, supporting early ter-
mination of tasks that cannot be accomplished with the
existing models.

The architecture thus establishes a continuous loop of nonmono-
tonic logical inference, probabilistic planning, and incremental
knowledge revision. The architecture is grounded and evaluated
in simulation and on mobile robots localizing (i.e., determining
the location of) objects in indoor domains.

II. RELATED WORK

Researchers have used probabilistic graphical models such
as POMDPs to formulate planning, sensing, navigation, and
interaction on robots [3]–[5]. However, these formulations, by
themselves, are not well suited for commonsense reasoning. In
parallel, research in classical planning has provided sophisti-
cated algorithms for KR and logical reasoning [6], which have
been used on mobile robots [7]. However, these algorithms typi-
cally require a significant amount of prior knowledge regarding
the domain, and the preconditions and effects of the actions.

1552-3098 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Many algorithms also do not support merging of new unreli-
able information (e.g., from sensors) with the current beliefs in
a KB. ASP, a nonmonotonic logic programming paradigm, is
well suited for representing and reasoning with commonsense
knowledge [1], [8]. It has been used in cognitive robotics [9],
e.g., for reasoning by simulated robot housekeepers [10] and
for representing domain knowledge learned through natural lan-
guage processing [11]. However, ASP does not support quantita-
tive models of uncertainty, whereas a lot of information available
to robots is represented probabilistically so as to quantitatively
model the uncertainty in sensing and acting.

Robotics researchers have developed algorithms that support
logical and probabilistic reasoning for task, motion, or behavior
planning [3], [12]. Semantic maps and commonsense knowledge
have been used with probabilistic algorithms to locate targets
and for open-world planning [13]. Declarative programming and
continuous-time planners have been used for path planning in
mobile robot teams [14], and a probabilistic extension of ASP
has been combined with POMDPs for commonsense inference
and probabilistic planning in human–robot dialog [15]. Princi-
pled algorithms developed to combine logical and probabilis-
tic reasoning include the Markov logic network that combines
probabilistic graphical models and first-order logic, assigning
weights to logic formulas [16], and Bayesian logic that relaxes
the unique name constraint of first-order probabilistic languages
to provide a compact representation of distributions over vary-
ing sets of objects [17]. Other examples include independent
choice logic [18], PRISM [19], probabilistic first-order logic
[20], first-order relational POMDPs [21], and probabilistic ex-
tensions to ASP [22], [23]. However, these algorithms are lim-
ited in their ability to support the desired KR and reasoning
capabilities for human–robot collaboration. Algorithms based
on first-order logic do not provide the desired expressiveness
for capabilities such as default reasoning, e.g., it is not always
possible to express degrees of belief quantitatively. Other al-
gorithms based on logic programming do not support one or
more of the capabilities such as reasoning about relations as in
causal Bayesian networks, incremental addition of probabilistic
information, reasoning with large probabilistic components, or
dynamic addition of variables with different ranges [22]. The
architecture described in this paper is a step toward achieving
these capabilities. Key limitations of prior work on integrating
ASP and POMDPs [2] are addressed by supporting default rea-
soning, generating priors based on ASP inference for POMDP
state estimation, and metareasoning with observations and his-
torical data from comparable domains. Preliminary versions of
some of these contributions are documented in workshop papers
[24], [25]. This paper provides a detailed description of the novel
contributions, supported by extensive experimental evaluation
in simulation and on a mobile robot.

III. PROBLEM FORMULATION

Fig. 1 depicts the control architecture, whose components are
illustrated and evaluated in this paper for visual target localiza-
tion. A mobile robot determines the locations of desired objects
in an indoor domain using (primarily) visual data. It is assumed
that the robot revises the domain map and estimates its own

Fig. 1. Architecture integrates KR, nonmonotonic logical inference, and prob-
abilistic planning.

location using laser range data and has learned object models
and semantic labels for rooms.

The ASP KB contains statements describing domain ob-
jects and relations between them, including default informa-
tion that holds in all but a few exceptional situations. Currently,
some statements are hand-coded (e.g., axioms), while others
are learned from sensor inputs and historical data. For any given
task, inference in the KB provides an Answer Set, a set of ground
literals representing the current beliefs based on nonmonotonic
logical inference in the KB (see Section III-A). In parallel, the
given task (e.g., to localize a specific object) is formulated as a
POMDP that probabilistically captures the uncertainty in sens-
ing and navigation (see Section III-B). The answer set heuristi-
cally generates a multinomial prior for the POMDP state estima-
tion, and action selection is based on the posterior distribution
(see Section III-C). The answer set and historical data from
comparable domains also populate a beta density that defines
a prior for metareasoning with observations in the current do-
main, supporting early termination of tasks when appropriate
(see Section III-D). A robot equipped with this architecture ob-
tains observations from algorithms activated when needed (e.g.,
for visual object recognition) and algorithms that are always in
use (e.g., obstacle avoidance using range data). Relevant ob-
servations (e.g., of the target object) update the POMDP belief
distribution, and a belief with high certainty commits an ap-
propriate statement to the ASP KB. Some observations may
also identify domain changes, e.g., using range data to identify
changes in the map of the domain, which are also used to revise
the KB. If the revised KB provides a new multinomial prior,
it is combined with the likelihood of the observation sequence
to obtain the revised posterior for action selection. The follow-
ing sections focus on the new contributions of this paper; other
components are summarized for completeness. For target local-
ization, inference in the ASP KB is at the coarser resolution of
rooms or places, while the POMDP solver works at the finer
resolution of grid cells in rooms.

A. Knowledge Representation with Answer Set Prolog

ASP is a declarative language that can represent recur-
sive definitions, defaults, causal relations, special forms of
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self-reference, and language constructs that occur frequently
in nonmathematical domains and are difficult to express in
classical logic formalisms [8]. ASP is based on the stable
model (answer set) semantics of logic programs and research
in nonmonotonic logics [1]. ASP can draw conclusions due to
lack of evidence to the contrary, using concepts such as default
negation (negation by failure) and epistemic disjunction. For
instance, unlike “¬a,” which implies that “a is believed to
be false,” “not a” only implies that “a is not believed to
be true”; and unlike “p ∨ ¬p” in propositional logic, “p
or ¬p” is not a tautology. ASP also supports nonmonotonic
reasoning—adding a statement can reduce the set of inferred
consequences—reasoning in large KBs, and reasoning with
quantifiers. These capabilities have led to the use of ASP by an
international research community.

The following basic definitions will be used in this paper [1].
Variable and object constants are terms, and a function of terms
is a term; terms with no symbols and no variables are ground.
A predicate of terms is an atom; it is ground if all its terms are
ground. An atom or its negation is a literal: ground atoms and
their negations are ground literals. Statics are domain properties
whose truth values cannot be changed by actions, and fluents are
properties that can be changed by actions. A basic fluent, also
called an inertial fluent in the KR literature, is subject to inertial
laws and can be directly changed by actions, while a defined
fluent cannot be directly changed by an action, is defined in
terms of other fluents, and is not subject to laws of inertia.

An ASP program (Π) has a sorted signature Σ and ax-
ioms of the form: l0 or . . . or li ← li+1 , . . . , lm , not lm+1 ,
. . . , not ln . Each l in the axiom is a literal of Σ. The sorts
in the illustrative example are object, class, and room; sorts
can have subsorts, e.g., fridge, printer, and book are subsorts
of object. Σ = 〈O,F ,P,V 〉 defines the names of objects,1

functions, predicates, and variables available for use. Each func-
tion or predicate is defined in terms of the sorts of its arguments,
e.g., predicatein(object, room) can represent the relation
in(fridge1, kitchen). Program Π is thus a collection
of statements describing domain objects and relations between
them. The ground literals in an answer set obtained by solving Π
represent beliefs of an agent associated with Π. Since program
consequences are statements that are true in all such belief sets,
the following discussion assumes that inference in the ASP KB
produces only one answer set.

Unlike prior work that combined ASP and POMDPs [2], the
KB in this paper includes default knowledge and relationships
in a complex domain, e.g., the simulated domain in Fig. 2,
and the effects of incremental knowledge revision are analyzed
thoroughly. The KB includes a hierarchy of object classes; leaf
nodes are object instances, and parents of leaf nodes are primary
classes. Information extracted from historical data helps identify
some relations between object classes, creating some nodes and
links between the root node and primary classes. Robots use
information extracted from sensor inputs to add object instances
and revise the KB.

1Unlike the sort object, elements of O are object constants (or symbols).

Fig. 2. Illustrative simulated domain used for experimental evaluation, with
a bedroom, study, and kitchen. The computer, fax machine, and printer are
usually in the study; books are on the bookshelf; and kitchenware is in the
kitchen. However, there are some exceptions, e.g., cookbooks are in the kitchen.

Predicates in the KB are applied recursively when appropri-
ate. The statics of the domain include is(object, class),
which describes class membership of an object, and sub-
class(class, class), which describes class hierarchy.
The basic fluents of the domain includein(object, room),
which describes the room location of an object, acces-
sible(room), which states if a room is accessible, and
on(object, object), which states if an object is on an-
other object. The defined fluent exists(class, room)
implies that an instance of a specific class exists in a specific
room. The sort step is included for temporal reasoning, and
the relation holds(fluent, step) implies that a particu-
lar fluent holds true at a particular timestep. The KB includes
reasoning rules such as

1) holds(exists(C, R), I) ← holds(in(O, R), I), is(O, C).

2) holds(exists(C1, R), I) ← holds(exists(C2, R), I),

subclass(C2, C1).

3) ¬holds(in(O, R2), I) ← holds(in(O, R1), I), R1! = R2.

The first rule states that if an object O of class C is in room R, an
object of class C is inferred to exist in R; the second rule applies
the existence predicate recursively in the class hierarchy; and
the third rule states that an object’s location is unique. The KB
also includes the closed world assumption for defined fluents,
and inertial axioms that state that the value of a basic fluent
F remains unchanged unless there is explicit evidence to the
contrary:

holds(F, I + 1) ← holds(F, I), not ¬holds(F, I + 1).

¬ holds(F, I + 1) ← ¬holds(F, I), not holds(F, I + 1).

As an example of nonmonotonic reasoning in ASP, con-
sider an ASP program that includes statements step(1..2),
is(prml, book),2 and holds(in(prml, study),
1). Inference produces the answer set3 with statements (ex-
cluding existing statements) holds(in(prml, study),
2) and holds(exists(book, study), 2). However,

2The “prml” is a specific book: Pattern Recognition and Machine Learning.
3We use SPARC [26] to solve ASP programs, as described later.
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adding the statement holds(in(prml, bedroom), 2)
results in an answer set that revises the outcomes of the previous
inference step by adding ¬ holds(in(prml, study),
2) and holds(exists(book, bedroom), 2).

Robots collaborating with humans frequently receive domain
knowledge that is true in all but a few exceptional situations.
An example of such default domain knowledge in the simulated
domain of Fig. 2 would be “the microwave is usually in the
kitchen.” Although such (qualitative) commonsense knowledge
can be very useful, meaningful representation of, and reasoning
with, such knowledge is challenging. For instance, if the logical
statement corresponding to a default is assigned a high proba-
bility, the robot’s performance (based on this knowledge) may
be sensitive to the choice of this probability, and it will be dif-
ficult to represent exceptions to such defaults. ASP provides an
elegant representation for defaults and exceptions (if any). One
significant addition to the ASP component of the architecture is
the inclusion of such default knowledge about object locations.
Consider the statement “books are typically in the study,” which
can be represented in ASP as

in(X, study) ← book(X), not ab(din(X)),

not ¬in(X, study)
whereab(d(X)) implies “X is abnormal with respect to d” and
supports the encoding of exceptions to defaults. For instance,
while textbooks are likely to be in the study, cookbooks are
more likely to be in the kitchen. We can first encode the class
hierarchy of books in the KB:

book(X) ← textbook(X)

book(X) ← cookbook(X).

We can then encode weak exceptions and a strong exception to
the default as

ab(din(X)) ← cookbook(X). %weak exception

ab(din(X)) ← not¬cookbook(X), book(X).

%weak exception

¬in(X, study) ← cookbook(X). %strong exception

where the two forms of the weak exception render the default
inapplicable, while the strong exception directly falsifies the
default. Assume that the weak exception has been included in
the KB and consider the following statements:

textbook(prml)

cookbook(spices).

Inference produces in(prml, study) but does not make
any claim about the location of spices, i.e., it is unknown if
this cookbook is in the study or not. For visual target local-
ization, the KB includes information about the default locations
of objects; see Section IV.

Inconsistencies caused by the addition of incorrect informa-
tion to the ASP KB can be corrected by subsequent sensor inputs.
ASP also provides planning and diagnosis capabilities [1] not
used in this paper but included in other work [27]. Although ASP

Fig. 3. Overview of the hierarchy of POMDPs for acquiring and processing
visual inputs for target localization.

has been used in the development of agent architectures, ASP
does not support probabilistic modeling of uncertainty, and ar-
chitectures that combine ASP with probabilistic reasoning lack
key representation and reasoning capabilities (see Section II).
The contributions of this paper are a significant step toward
addressing these limitations.

B. Planning Under Uncertainty with Partially Observable
Markov Decision Processes

A robot that can localize itself has to account for the un-
certainty in navigation and sensing as it moves and analyzes
images of specific scenes to accurately localize an object. The
robot must also pick a sequence of places to search; within the
Bayesian framework, the active sensing, information process-
ing, and navigation are formulated as a probabilistic sequen-
tial decision making task and, more specifically, as a POMDP.
Since it is computationally intractable to solve (and plan with)
practical-sized POMDPs in real time, our prior work intro-
duced a hierarchical decomposition of the POMDP formulation
[28]—Fig. 3 summarizes this decomposition. For a specific tar-
get, the 3-D area is represented as a discrete 2-D grid, each grid
cell storing the probability of target existence. The visual search
(VS)-POMDP plans an action sequence to analyze a sequence
of scenes, with the objective of maximizing the information
gain. For each scene, the scene processing (SP)-POMDP plans
the processing of regions of images of the scene using available
algorithms. This hierarchical decomposition supports automatic
belief propagation between the levels of the hierarchy and auto-
matic model creation at each level [28], [29]. Thus, ASP-based
inference operates at the (abstract) level of rooms, and POMDPs
plan at the higher resolution of cells. The salient features of the
hierarchy of POMDPs are described briefly for completeness.

For locating a specific object in a grid with N cells, the VS-
POMDP is the tuple 〈S,A,Z, T,O,R〉. Each entry in the set
of states S corresponds to the event that the target is in a spe-
cific grid cell, and executing one of the actions in A causes the
robot to move and analyze a specific cell4; Z : {present, absent}
is the observation set that indicates if the target is detected.

4The set A also includes terminal actions to terminate plan execution.
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T : S × A × S ′ → [0, 1] is the state transition function, and
O : S × A × Z → [0, 1] is the observation function. Since the
state is not directly observable, the robot maintains a probabil-
ity distribution b over the states; each entry bi, i ∈ [1, N ] of this
belief state is the probability of the corresponding state si . Un-
certainty in the belief distribution is measured by computing its
entropy. To maximize information gain, the reward for action at

is defined as the actual reduction in entropy between belief state
bt and the resultant belief state bt+1 . Thus, R : B × B′ → R is
the reward specification, where B is the space of belief states.
The observation function is learned by the robot as a function of
its position, the target’s position, the camera’s field of view, and
the observation functions of the hierarchy’s lower levels. Given
the tuple, a POMDP solver can be used to compute a policy
that maps belief states to actions by minimizing entropy over a
planning horizon. This formulation can become computation-
ally intractable for real-time operation because the number of
grid cells can increase significantly in complex domains. Our
previous work [28] addressed this challenge by enabling robots
to learn a convolutional policy kernel from the policy for a small
region, exploiting the rotation and shift invariance properties of
visual search. This kernel is convolved with larger maps to ef-
ficiently generate appropriate policies. Furthermore, movement
between grid cells is assigned a cost proportional to the distance
to be traveled.

For any chosen scene, the SP-POMDP plans the sequence
of visual input processing algorithms to be executed on a se-
quence of salient regions of interest (ROIs) in images of the
scene. The SP-POMDP may have one or two layers depending
on scene complexity, i.e., the number of ROIs and types of fea-
tures extracted from images of the scene. For instance, each ROI
extracted from an image of the scene is modeled as a lower level
(LL) POMDP. Each LL policy provides the sequence of algo-
rithms to apply on a specific ROI to detect the desired object,
e.g., algorithms to determine the dominant color or shape in the
ROI. LL policies of all image ROIs are used to automatically
create a high-level (HL) POMDP. Executing an action in the HL
policy directs attention to a specific ROI. Executing the corre-
sponding LL policy (until termination) provides an observation
that causes an HL belief update and an action choice. These
steps are repeated until a decision is made about the presence
or absence of the target in the image. This decision provides an
observation in the VS-POMDP, resulting in a belief update and
an action choice in the form of a scene for subsequent analysis.
This process continues until the belief of the target’s presence
in a grid cell exceeds a preset threshold (i.e., robot claims that
the target has been found and localized), or a time limit is ex-
ceeded (i.e., target is not found). The entire hierarchy is tailored
automatically to tasks at hand—see [28] and [29] for details.

C. Integrating Logical and Probabilistic Beliefs

The answer set obtained by inference in the ASP KB repre-
sents the current logically expressed beliefs of the robot (see
Section III-A), which can be used to guide the probabilistic
planning of sensor input processing and navigation. However,
these beliefs are not compatible with the probabilistic belief dis-

tributions used by the hierarchy of POMDPs (see Section III-B).
Previous work heuristically generated an ASP-based belief dis-
tribution from a predominantly static KB and used a generalized
form of linear and logarithmic averaging methods (r-norm) [30]
for weighted averaging of this belief distribution and the be-
lief distribution modeled by the POMDPs [2]. In this paper, we
present an approach that supports an incremental bidirectional
flow of information between the commonsense inference and
probabilistic reasoning components—the approach consists of
two steps: 1) the count of relevant literals in the answer set is
used to (heuristically) create a multinomial prior over rooms
the target may be in (see Section III-C1); and 2) the prior and
an incrementally populated observation likelihood (at the level
of cells) are used for POMDP state estimation, resulting in a
posterior belief distribution that is used for subsequent action
selection (see Section III-C2).

1) Generating a Multinomial Prior From an Answer Set:
The conversion of relevant literals in an answer set to a multi-
nomial (probabilistic) prior over rooms is based on: 1) knowl-
edge of object classes and of specific object instances in the
domain; and 2) postulates that capture object cooccurrence re-
lationships. This paper illustrates this approach for visual target
localization—some postulates (and their representation) may
need to be revised for other sensors or domains.

Postulate 1: Existence of objects of a primary class (in a
room) provides support for the existence of other objects of
this class (in the room). The level of support is proportional to
the logarithm of the number of objects, inspired by Fechner’s
law,5 which states that subjective sensation is proportional to
the logarithm of stimulus intensity:

perception = ln(stimulus) + constant. (1)

This law has been applied to visual processing [31] and explored
in our previous work; here, we adapt it for the primary source
of information (visual cues). The support for the existence of a
specific target object in a room is given by

ψn =

{
0, if an = 0

ln(an ) + ξ, otherwise
(2)

where an is the number of (known) objects of the primary class
(of the target object) in the room, and ξ = 1 corresponds to
constant in (1). If there is only one instance of certain objects
in the domain (e.g., a fridge), this can be modeled using relevant
predicates to ensure appropriate counts.

Postulate 2: As the number of known subclasses of a class
increases, the influence exerted by the subclasses on each other
(proportionately) decreases. This computation is performed re-
cursively in the object hierarchy from each primary class to the
lowest common ancestor (LCA) of the primary class and target
object. Equation (2) is modified as

ψn =

⎧⎪⎪⎨
⎪⎪⎩

0, if an = 0

ln(an ) + ξ∏Hn

h=1 Wh

, otherwise
(3)

5Fechner’s law (1860) serves as the basis of modern psychophysics.
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where Hn is the height of the LCA of the target object and the
primary class under consideration. For a class node on the path
from the primary class to the LCA, Wh is the number of children
of the node at height h; W1 = 1 for primary classes because the
first postulate considers object instances.

Postulate 3: Each primary class with instances (in a room)
independently provides support for the target’s existence (in the
room). The evidence for the target’s existence in room k is thus
the summation of the evidence from N primary classes:

αk =
Nk∑
n=1

ψn,k =
Nk∑
n=1

ln(ak,n ) + ξ∏Hk , n

h=1 Wk,n,h

(4)

where Nk is the number of primary classes that have specific
object instances in room k. Equation (4) thus extends the defi-
nition of ψn from (3). The values of αk are computed using the
cardinality of the set of relevant answer set statements obtained
through inference in the KB. For target localization, these three
postulates (together) consider knowledge about the occurrence
of specific object classes in specific types of rooms; future work
may explore probabilistic models of these relationships learned
from historical data.

To convert the relevant statements in the answer set into a
multinomial prior that can be combined with the probabilistic
POMDP beliefs, let event Ek represent the target object’s ex-
istence in room k, and let E represent the target’s existence in
one of the rooms. Let pK B (Ek |E) be the probability that the
target is in room k given its existence in the domain. Based on
the current answer set, the entries of bK B , the multinomial prior
distribution over the rooms, are given by

bK B
k = pK B (Ek |E) = αk/α0 (5)

where α0 =
∑

k αk . As an example, in the simulated domain
in Fig. 2, let the target object be a printer that (unknown to the
robot) is on the floor of the study. Consider a subset of the
domain objects:

1 pillow : bedding : object, in bedroom

1 mattress : bedding : object, in bedroom

1 computer : computer− access : object, in study

1 fax : computer− access : object, in study

3 book : books− magazine : object, in study

2 magazine : book− magazine : object, in study

1 coffee machine : kitchenware : object, in kitchen

1 fridge : kitchenware : object, in kitchen

1 book : book− magazine : object, in kitchen

1 printer : computer− access : object, unknown

Integers at the beginning of each line represent the number of in-
stances of the corresponding objects. Each line also contains the
relevant subset of the object hierarchy, e.g., the class pillow is
a child of the classbedding, which is a child of classobject.
Let rooms in Fig. 2 be indexed in ascending order from left to
right. Consider α1 , the support for the target object (printer)

being in bedroom (i = 1). There are instances of pillow and
mattress in this room; therefore, N1 = 2. Since there is only
one pillow known to be in the bedroom, a1,1 = 1. The LCA of
the target object and class pillow is the root node (object);
therefore, H1,1 = 3. The evidence provided by sibling classes
is considered in a bottom-up manner, and the extent of sup-
port is diluted as we proceed up the hierarchy, with W1,1,1 = 1.
Since bedding and object have two and four children, re-
spectively, W1,1,2 = 2 and W1,1,3 = 4. The second object class
with an instance in the bedroom is mattress, and a1,2 = 1
because there is only one mattress—W1,2,1 = 1, W1,2,2 = 2,
and W1,2,3 = 4. The support for the printer’s existence in room
1 is then computed as α1 = 0.250 using (4). Following the same
procedure, the support vector for the target object’s existence in
the rooms is α = [0.250, 1.141, 0.375]. The multinomial prior
of the target’s existence in the rooms is then computed [using
(5)] as bK B = [0.142, 0.646, 0.212].

2) Computing Posterior Belief Using Bayes Rule: It is chal-
lenging to provide a Bayesian treatment for using the multino-
mial prior and the POMDP belief distribution to compute the
posterior belief of the target’s location in the domain. The KB
may contain incomplete or outdated information, sensor ob-
servations are imprecise, and actions are nondeterministic. In
addition, the answer set that informs the multinomial prior is
subject to nonmonotonic logical inference, making it difficult to
use a new prior to revise the posterior computed using the pre-
vious prior. To address these challenges, the fact that actions in
our domain do not change object locations is exploited to main-
tain the likelihood of the sequence of observations received by
the robot over time. The ith entry of this likelihood vector is
the likelihood of the sequence of observations conditioned on
si being the true location of the target object:

bOb
i,t = pi(o1:t |a1:t , bi,0:t) =

t∏
j=1

O(si, aj , oj ). (6)

Now, when an update to the KB causes a change in the answer
set, the Bayes rule is used to compute the revised posterior
belief b′ based on the multinomial prior and the likelihood of
the observation sequence:

b′i,t ∝ bOb
i,t · bK B

i . (7)

This update considers the current beliefs encoded in the KB and
all the observations used with the previous multinomial prior.
The update is performed at the level of cells by distributing the
multinomial prior for each room over the cells in the room. The
revised posterior belief of the target’s location is input to the
VS-POMDP policy to choose an action, causing the robot to
move and/or analyze an appropriate scene.

This belief update brings up an interesting, subtle, and im-
portant issue about (re)use of observational information in our
architecture. Each statement added to the KB corresponds to
a hypothesis, based on one or more observations over a time
period (0 : t), which has been elevated from being associ-
ated with a high probability to being associated with complete
certainty. Such a commitment made at time t is used for infer-
ence in the ASP KB. The corresponding multinomial is then
pushed back to the POMDP as the prior in (7) for the Bayes
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rule update (say, at time t + 1). Strictly speaking, the previous
observation sequence should be discarded at this point, which
can be accomplished by resetting the observation sequence like-
lihood to 1 when the new multinomial prior is obtained. This
observation discard strategy, however, also discards many ob-
servations with useful information that may not have yet had
a chance to support a commitment to the KB—the observation
sequence typically contains far more information than was used
to submit a single commitment. In addition, information about
events not directly relevant to the task may have revised the KB.
Thus, an observation reuse strategy, which does not reset the ob-
servation likelihood, allows additional inferences to be drawn
later on. While this reuse is strictly incorrect in Bayesian terms,
we verified experimentally that it significantly increases target
localization accuracy and decreases the localization time. Thus,
we retain it as a feature of our architecture that separates logical
inference from probabilistic inference. This separation is at the
heart of the inferential efficiency in our architecture that avoids
exact but inefficient probabilistic reasoning over the ASP KB.

D. Reasoning about Target Existence

It is possible that the object the robot is searching for does
not exist in the entire domain. The robot may also have access
to historical data from comparable domains that, if combined
correctly with the robot’s unreliable observations, can be used
to estimate the probability of the target’s existence in the current
(search) domain. Furthermore, the robot cannot search indefi-
nitely, but must choose when to give up the search if it cannot
find the object. Intuitively, the more certain the robot is that the
target exists in the domain, the longer it should persist before
giving up. However, this reasoning is not captured by standard
POMDP models; introducing such reasoning also negates the
invariance properties used to efficiently compute the convolu-
tional policies in our hierarchy of POMDPs. One significant
contribution of this paper is a metareasoning approach to com-
bine the historical data with domain knowledge and the current
observations to terminate search appropriately. Our approach
models the confidence in the historical data using a metaden-
sity over the probability that the target exists in the domain. In
the derivation below, we assume that the robot has to find one
instance of the target; we do not model the probability distribu-
tion over the number of instances of the target object type in the
domain.

Our metareasoning approach comprises three steps: 1) using
a beta density (a metadensity) to model prior knowledge from
historical data and the KB about the target’s existence in the do-
main; 2) maintaining the likelihood of the observation sequence
given the existence or non-existence of the target; and 3) using
the prior and the likelihood to obtain the posterior probability
of target’s existence in the domain. For localizing a specific ob-
ject, steps 2 and 3 are repeated until the robot makes a decision
about the presence or absence of the object in the domain (more
details below).

The prior probability that the target exists in the current do-
main is θ = P (E), the parameter of a Bernoulli distribution.
We, therefore, use a beta probability density function (PDF) as

a metadensity over θ, i.e., as the conjugate prior:

B(θ|α′, β′) =
Γ(α′ + β′)
Γ(α′)Γ(β′)

θα ′−1(1 − θβ ′−1) (8)

where the Gamma (Γ) function is used for normalization. The
parameters α′ and β′ are (respectively) the support for existence
and nonexistence of the target in the domain; these parameters
include the evidence from the answer set and counts of the
number of times the desired object was found to exist or not
exist during previous searches in other domains of the same type,
e.g., other offices. The beta PDF, thus, models the confidence
in the combination of the knowledge of the current domain and
historical data from comparable domains.

In addition to the beta PDF, the robot computes the likelihood
of the observation sequence at each time step given that the
desired target object exists or does not exist in the domain:

p(ot |E, at , bt) =
∑

∀i∈F oV O(ot , at , si) bt(i) if ot = o+

(9)
+ p(FP) ·

∑
∀i /∈F oV bt(i),

=
∑

∀i∈F oV O(ot , at , si) bt(i) otherwise

+ p(TN) ·
∑

∀i /∈F oV bt(i),

p(ot |¬E, at , bt) = p(FP), if ot = o+

= p(TN), otherwise

where p(FP ) and p(TN) are the false positive and true negative
rates, respectively, obtained experimentally and encoded in the
POMDP models, and FoV is the event that the target is in the
robot’s field of view. Since the current action (at) and belief (bt)
are known at each time step, they are occasionally omitted in
the equations below.

Given the prior and the observation likelihood, the posterior
probability of target’s existence in the domain is given by

p(E|o1:t) =
∫

θ

pθ (E|o1:t) p(θ)dθ (10)

where p(θ) is modeled by the beta PDF. For a given θ, the Bayes
rule can be used to iteratively compute

pθ (E|o1:t)

=
p(ot |E) pθ (E|o1:t−1)

p(ot |E) pθ (E|o1:t−1) + p(ot |¬E) pθ (¬E|o1:t−1)
(11)

where p(ot |E) and p(ot |¬E), shorthand for p(ot |E, at , bt) and
p(ot |¬E, at , bt), respectively, are computed using (9), and bt is
the result of state estimation in the VS-POMDP assuming that
the object exists. The posterior can be used for early termination
of the search for the target object if the probability of non-
existence of the target in the domain, p(¬E|o1:t), exceeds a
threshold (τ−), just as the existence of the object in a specific
room or cell can be confirmed when the mode of the belief (bt)
exceeds a threshold (τ+ ). However, it is difficult to compute the
integral in (10) in closed form, and therefore, we consider three
approximations.
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1) Expectation-Based Approach: The first approximation
strategy computes the posterior by considering the expectation
of the beta PDF as the prior probability of existence of the
target, i.e., p(E) = α ′

α ′+β ′ . The task of computing the posterior
collapses to a Bayesian update, as described in (11). Although
it simplifies the computation of the posterior, this strategy does
not use the beta PDF’s variance, which provides important in-
formation about the degree of belief associated with any specific
p(E). In other words, the metadensity is effectively discarded
and the estimated likelihood of existence is assumed to be cor-
rect, no matter how little or much data or knowledge the estimate
is based on.

2) Upper-Bound Approach: The second strategy also con-
siders a single value of θ from the beta PDF as the prior proba-
bility of existence of the target object in the domain. However,
this prior θ = p(E) is chosen such that

∫ θ

0 f(x)dx = valueub ,
where f(x) is the beta PDF. The motivation for this strategy is
to obtain a kind of upper bound on the value of the prior. For
instance, we use valueub = 0.9, i.e., if the robot decides to ter-
minate the trial for a specific target object, it would have arrived
at the same decision if it had started with any of the 90% of
the values of the prior θ sampled from the beta PDF. Similar to
the expectation-based approach, computing the posterior prob-
ability of existence of the target object collapses to a Bayesian
update [see (11)]. However, unlike the expectation-based strat-
egy, the beta PDF’s variance contributes to the selection of the
prior probability of the target object’s existence in the current
domain.

3) Monte–Carlo Sampling: The third strategy uses Monte–
Carlo (MC) sampling to estimate the integral in (10). In this
approach, the number of samples required to approximate the
integral may need to be revised during runtime to obtain a good
estimate of the expected value of the posterior. To perform a
belief update with the new samples, the likelihood of the obser-
vation sequence is maintained for metareasoning, similar to the
approach used in Section III-C2:

p(o1:t |E, a1:t , b0) = p(o1:t−1 |E, a1:t−1 , b0) · p(ot |E, at , bt)

p(o1:t |¬E, a1:t , b0) = p(o1:t−1 |¬E, a1:t−1 , b0)

· p(ot |¬E, at , bt) (12)

where p(ot |E, at , bt) and p(ot |¬E, at , bt) are given by (9). Note
the dependence of this calculation on the sequence of actions
a1:t and the initial VS-POMDP belief b0 . In the MC sampling
strategy, the robot first draws an initial number (Nmc

0 ) of samples
θi = p(E) from the beta PDF and, then, follows the following
iterative sequence.

1) Compute observation likelihood after the standard
POMDP belief update—(12).

2) For each sample θj , compute the posterior belief, where
η is a normalization term:

pj (E|o1:t) = η · p(o1:t |E, a1:t , b0) · pj (E)

pj (¬E|o1:t) = η · p(o1:t |¬E, a1:t , b0) · (1 − pj (E)).
(13)

3) Compute the MC approximation of the posterior in (10)
as: p(E|o1:t) = 1

N m c
t

∑
∀j pj (E|o1:t).

4) Recompute the number of samples needed:

Nmc
t =

{
zσ · stdev(pi(¬E|o1:t))
mean(pi(¬E|o1:t)) − τ−

}2

(14)

where the objective is to have enough samples to
make a decision about early termination with a de-
sired level of confidence (zσ = 1.645 for 90% level of
confidence).

5) If additional samples are required, draw these samples and
repeat steps 2 and 3 above.

This strategy requires more computational effort than the other
two strategies, but fully uses the variance of the beta PDF to
compute the desired posterior probability. We compare the three
strategies experimentally in Section IV.

Algorithm 1 summarizes the overall control loop for belief
update and metareasoning. The preprocessing step in line 1 in-
cludes, for instance, the creation of the initial VS-POMDP belief
using information from the answer set and drawing of the initial
set of samples from the beta PDF for the MC sampling strategy.
In each iteration, the robot performs a POMDP belief update
after executing an action and generating an observation (lines
4–6). If the KB is revised, the new answer set is used to compute
a multinomial prior and thus the corresponding posterior belief
distribution (lines 7–10). Next, the robot reasons about the target
object’s existence in the domain (lines 11 and 12); the optional
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postprocessing step in line 12 includes, for instance, the creation
and update of new samples for the MC sampling strategy. The
search for the desired object is terminated when it is localized
with high probability or the probability of its nonexistence in
the domain is high (lines 14–18). Although it is not shown in
Algorithm 1, it is also possible to terminate the search after a
fixed amount of time.

IV. EXPERIMENTAL SETUP AND RESULTS

Experiments were conducted in simulated domains and on
wheeled robots visually localizing target objects. The objective
was to evaluate three hypotheses: (H1) representing and reason-
ing with default knowledge in ASP can significantly reduce the
search space (and thus the time needed) to localize objects at
the level of rooms; (H2) using the proposed architecture sig-
nificantly increases target localization accuracy (at the level of
cells in rooms) and reduces the localization time in comparison
with using ASP or POMDPs individually, or using the previous
approach to generate and merge ASP and POMDP beliefs [2];
and (H3) metareasoning with domain-specific observations and
historical data enables robots to reliably and efficiently deter-
mine when a trial should be terminated, and strategies that use
the variance of the Beta PDF provide a good tradeoff between
accuracy and time. During the evaluation of hypotheses H1 and
H2, metareasoning is not included. Furthermore, the experimen-
tal trials thoroughly analyze the effects of incrementally revising
the KB.

Since experimental trials predominantly include the same set
of axioms, and separate experiments are conducted with and
without default knowledge (details below), the term “domain
knowledge” is used below to primarily refer to the percent-
age of objects whose room locations are known to the robot.
In each experimental trial, the ASP KB includes the hierarchy
of relevant object classes and a subset of specific object in-
stances. The robot’s initial cell-level location, target object(s),
and the cell-level location(s) of the target object(s) are chosen
randomly; the robot does not know the location of any tar-
get object. Although this random choice makes it difficult to
compute a meaningful estimate of variance in the experimen-
tal results, statistical significance is established through paired
trials. In each paired trial, for each approach being compared
(e.g., ASP+POMDP versus POMDP), the initial cell-level lo-
cation of the robot, the target(s), and the cell-level location(s)
of the target(s) are fixed, and the robot has the same amount
of domain knowledge. The robot confirms the location of an
object in a grid cell when the corresponding belief exceeds a
threshold (τ+ = 0.80); the threshold for claiming non-existence
of the target in the entire domain (τ−) varies between different
sets of trials (details below). Unless otherwise stated, there is
no time limit for an experimental trial. Target localization accu-
racy is considered to be maximum when the reported location
and the ground truth location of an object are identical (e.g.,
same grid cell). The accuracy falls off as a Gaussian function of
the distance between the reported location and the ground truth
location.

Fig. 4. Target localization accuracy using only ASP-based inference, with
and without default knowledge. The correct room locations of target objects
are in the top two choices in ≈90% of the trials with as little as 40% domain
knowledge; using default knowledge further improves the performance.

A. Experiments in Simulated Domains

The domain used for simulation experiments extends the il-
lustrative domain in Fig. 2 (with a bedroom, study, and
kitchen) by including one more room: livingroom. We
use learned object models [32] and observation models to sim-
ulate motion and perception. Fifty objects in ten different cat-
egories were simulated in these rooms, with each room com-
prising 25 cells. Each data point in the results described below
is the average of 5000 simulated trials, and time is measured in
simulation time units.

(H1) Using ASP: Fig. 4 summarizes experimental results in
which only the ASP KB is used to infer the target objects’ loca-
tions. ASP-based inference can only determine the room-level
location of the target object and cannot provide the cell-level
location of the object in a room. First, consider the experiments
in which default knowledge is not included in the KB. In these
trials, if the robot is given the room locations of all other objects
(i.e., all domain knowledge), it can correctly infer the room lo-
cation of the target. The accuracy decreases when the amount of
domain knowledge decreases, e.g., with 40% of domain knowl-
edge, the robot can correctly identify the target’s room location
with ≈0.7 accuracy. However, even when the locations of only
40% of the objects are known, the correct room location of any
specific target object is in the top two choices in ≈90% of the
trials.

The experimental trials were repeated after including default
knowledge about room locations of objects in the KB, e.g.,
“books are usually in the study.” Although such knowledge
can be useful, observations in the current domain may con-
tradict it, e.g., someone may have left a book in the bedroom
by mistake. As described in Section III-A, ASP provides good
expressiveness for defaults and exceptions to defaults, and sup-
ports non-monotonic logical inference. Fig. 4 shows that using
default knowledge improves accuracy in comparison with the
trials in which default knowledge is not used, especially when
the amount of domain knowledge considered is small(er). A
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Fig. 5. Target localization accuracy and localization time as a function of the
percentage of domain knowledge in the KB. The proposed architecture increases
target localization accuracy and reduces target localization time in comparison
with using only POMDPs. Paired trials establish statistical significance.

key outcome of ASP-based inference, especially with default
knowledge, is thus the significant reduction in the search space;
an indirect outcome is the reduction in the target localization
time. However, ASP (by itself) is not well suited to represent or
use the probabilistic information extracted by processing sensor
inputs.

(H2) Using ASP and POMDPs: The next set of experiments
used both the logical inference (ASP) and probabilistic plan-
ning (POMDPs) components to localize target objects. For any
given target, ASP-based inference provides a multinomial prior
for POMDP state estimation, with the posterior beliefs used to
determine the robot’s sensing and navigation actions for local-
izing the target. Fig. 5 summarizes the experimental results as a
function of the amount of domain knowledge used to generate
ASP-based beliefs; the blue-colored plot with triangular mark-
ers depicts the target localization time, and the red-colored plot
with star-shaped markers depicts the target localization accuracy
(measured at the cell level). Trials corresponding to each sam-
ple point on the localization time plot were terminated when the
belief in a specific cell exceeded the threshold (τ+ = 0.8); trials
corresponding to the localization accuracy plot were terminated
after 100 time units.

Trials corresponding to 0 on the x-axis represent the use of
only the hierarchy of POMDPs—see Section III-B and [28].
The results indicate that using our proposed approach to com-
pute the posterior belief significantly increases the target lo-
calization accuracy. Some of the localization errors are due to
the room-level support for target existence provided by related
objects. This problem is more pronounced when the amount
of domain knowledge included in the KB is small, causing the
robot to explore irrelevant locations and provide an incorrect
result when the time limit is exceeded and/or some observations
are incorrect; given more time, the robot is able to recover from
these errors. As the robot obtains more domain knowledge, the
localization accuracy steadily improves. For instance, over tri-
als in which the robot knows the room location of all objects
except the target, accuracy is 0.96 and errors are due to the
target object being close to the edge of two or more cells. To
establish statistical significance, we conducted paired trials; in
each set of trials using just POMDPs or ASP and POMDPs,
the initial cell-level locations of the robot and the target(s) were
fixed, and the robot started with the same amount of domain

Fig. 6. Analysis of approaches for generating posterior belief, and the effects
of revising the KB; using ASP inference-based multinomial priors for POMDP
state estimation significantly reduces localization errors, and incrementally
revising the KB further improves the accuracy.

knowledge, e.g., room locations of 40% of the domain objects.
The improvement in localization time over 1000 trials (each)
is significant at the 95% significance level with the p-value
<10−24 . Our architecture, thus, exploits the complementary
strengths of logical inference and probabilistic planning to sig-
nificantly reduce the localization time while also increasing the
localization accuracy.

Posterior belief generation: Next, we evaluated our pro-
posed approach for obtaining the posterior belief of the target’s
cell-level location using the ASP-based multinomial prior for
POMDP state estimation and analyzed the effects of incremen-
tally revising the KB. The KB was initialized with 20% domain
knowledge in each trial, and information about a few randomly
chosen objects was added periodically to simulate learning from
sensor inputs. Inference in the revised ASP program provides
new multinomial priors for POMDP state estimation and subse-
quent action selection. Each trial terminates when the belief in
a cell exceeds 0.8 or the time limit of 100 units is exceeded. To
make the trials more challenging, some extra (Gaussian) noise
was added to the observations received by the robot.

Our proposed approach for generating the posterior belief of
the target’s (cell) location (“dynamic KB”; Section III-C2) was
compared with two approaches: 1) not revising the KB that is
populated with 20% domain knowledge at the beginning of each
trial (“static KB”); and 2) using relative trust factors to merge
a heuristically generated ASP-based belief distribution with the
POMDP belief distribution (“trust factor”) [2]. The trust factor
approach did not encode default knowledge, used heuristics to
convert answer sets from a static KB to a belief distribution,
and performed weighted averaging of this distribution and the
POMDP belief distribution using the r-norm measure. To enable
comparison with such an approach, trials were conducted with-
out default knowledge in the KB, and Fig. 6 summarizes the
results in the form of cumulative distribution function (CDF)
plots. The x-axis represents the localization error in units of
grid cells, and the y-axis represents the percentage of trials with
errors below a specific value. For instance, with our approach,
≈80% of the trials have a localization error of ≤4 units, while
only 66% of the trials provide similar accuracy when trust fac-
tors are used—even with a static KB, our approach results
in better performance than using trust factors. Although not
shown in Fig. 6, using trust factors may also result in lower
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Fig. 7. Metareasoning with historical data reduces target localization time
(by early termination) and (indirectly) increases the localization accuracy. The
three approximation strategies trade-off between accuracy and time. Paired trials
establish statistical significance of the results.

localization accuracy than not using ASP-based inference—
based on the choice of the relative weights, it is possible for
an incorrect ASP-based belief to overwhelm the POMDP be-
lief distribution that is revised based on actual observations.
Similar results were obtained in trials conducted after chang-
ing the amount of initial domain knowledge. Including default
knowledge further increases the target localization accuracy and
decreases the target localization time of our proposed approach.
Furthermore, paired trials established the statistical significance
of the performance of the proposed approach (with or without a
static KB) in comparison with the trust factor approach; p-values
of 3.9 × 10−69 , 1.3 × 10−9 , and 2.4 × 10−30 for dynamic KB
versus trust factor, dynamic versus static KB, and static KB
versus trust factor, respectively.

(H3) Metareasoning strategies: Experiments were then con-
ducted to evaluate the benefits of metareasoning with historical
data in conjunction with observations in the current domain.
To isolate the effect of using observations, the KB is static in
each trial, and the target is randomly selected to be present
or absent (unknown to the robot). The “baseline” strategy ter-
minates the trial when the probability of one of the grid cells
exceeds the preset threshold (τ+ = 0.8) or the trial takes longer
than a given time limit. This strategy is compared with the ac-
tion selection policies corresponding to the three approximation
strategies (“expectation,” “upper bound,” and “sampling”) de-
scribed in Section III-D. Each of these three policies terminate
a trial early if the probability of the target’s nonexistence in
the domain exceeds a preset threshold (τ−)—we experimented
with different values of this threshold, as described below. All
four policies include our proposed approach of using ASP-based
multinomial prior for POMDP state estimation.

Fig. 7 summarizes the results (τ− = 0.7), with the localiza-
tion time and accuracy on the x-axis and y-axis, respectively.
The black plot with plus-shaped markers depicts the average
results with the baseline strategy and specific time limits; the
robot can localize the target more accurately if given more time.
However, in trials in which the target object does not exist in
the domain, the baseline strategy cannot terminate trials early.
The action selection policies based on the three proposed ap-
proximation strategies enable early termination by updating the
belief of the target’s existence in the domain using historical

Fig. 8. Localization time as a function of prior knowledge of the target’s
existence in the domain. Prior knowledge is encoded as a Beta PDF—parameters
(a, b) of the PDF denote the support for the existence and nonexistence of the
target based on historical data from comparable domains.

data and observations. The results indicate that all three approx-
imation strategies provide significantly lower target localization
time in comparison with the baseline strategy; an indirect con-
sequence is the increase in localization accuracy. For instance,
to obtain a target localization accuracy of 0.85, the sampling-
based strategy takes ≈67 time units, while the baseline strategy
needs ≈85 units. The three proposed strategies also result in
different tradeoffs between computational efficiency and target
localization accuracy (and time). For instance, the expectation-
based strategy provides the lowest localization time, but the
localization accuracy is also the lowest among the approxima-
tion strategies. The upper bound strategy, on the other hand, has
the highest localization time but provides the highest localiza-
tion accuracy. The sampling-based strategy provides a tradeoff
between accuracy and time. Overall, the sampling-based and up-
per bound strategies result in better performance because they
better exploit the variance of the beta PDF.

To evaluate the effect of the variance of the Beta PDF, i.e.,
the degree of belief associated with the Bernoulli variable for
the likelihood of the target’s existence in the domain, the target
localization time was computed using the three approximation
strategies for different values of the beta PDF’s parameters. In
these trials, τ− was set to a (higher) value of 0.85 to encourage
the robot to be more certain of the target’s nonexistence before
abandoning search. As a representative example, Fig. 8 summa-
rizes the target localization time for three different sets of values
of the beta PDF’s parameters. Each parameter set, e.g., (6, 2)
and (30, 10), corresponds to the same expected value of the prior
probability of target’s existence in the domain; the variance is,
however, different. Unknown to the robot, the target exists (does
not exist) in the domain for 50% of the trials. The results do not
differ for the expectation-based strategy that does not use the
beta PDF’s variance. For each of the other two strategies, the
localization time is lower within each parameter set, e.g., (6, 2)
and (30, 10), if the variance associated with the prior is lower.
Higher variance represents a lower degree of belief in the cor-
responding Bernoulli variable for the likelihood of the target’s
existence and results in the robot being more conservative about
terminating the trials early—the upper bound strategy has a pa-
rameter (valueub ) to control the extent to which the robot is
conservative in its decisions. Furthermore, the upper bound and
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Fig. 9. (a) Map of the domain, which is learned and revised by the robot using laser range data—obstacles are inflated to a distance that is based on the robot’s
inscribed radius. (b) Wheeled robot platform (Erratic) used for experimental trials.

Fig. 10. Pictorial representation of a subset of nodes in the ROS implementa-
tion of our architecture.

sampling strategies approach the expectation-based strategy in
the limit of infinite historical data.

B. Experiments on a Physical Robot

Experiments were also conducted on a physical robot de-
ployed on two floors of an office building. Fig. 9(a) shows part
of the map of the third floor with semantic labels assigned to
specific rooms. Fig. 9(b) shows the test platform—a wheeled
robot equipped with cameras, laser range finder (30 m, ±135◦),
microphones, and an on-board computer with 4-G RAM and
2-GHz Dual-Core processor.

Algorithms were implemented on the robot using the robot
operating system (ROS) [33]. Fig. 10 shows ROS nodes corre-
sponding to modules for path planning, localization, mapping,
and acquisition of sensor data. Visual object recognition is based
on learned object models that consist of appearance-based and
contextual visual cues [32]. Laser range data are used by the
robot to localize itself in the domain map, detect obstacles and
to determine room accessibility, e.g., if doors are open or closed.

Fig. 11. Some target objects used in the experimental trials on the wheeled
robot platform.

TABLE I
TARGET LOCALIZATION TIME OF A HEURISTIC POLICY, AND A POLICY BASED

ON ONLY POMDPS, EXPRESSED AS A FACTOR OF THE TARGET

LOCALIZATION TIME USING OUR ARCHITECTURE

Search strategies Localization time for specific targets

Microwave Humanoid

Heuristic 2.96 1.78
POMDP only 1.96 1.32
ASP + POMDP 1 1

Our architecture significantly reduces the target localiza-
tion time while successfully localizing the targets in all the
trials.

While moving between locations, the robot also periodically
processes low-resolution images.

For any given task, our architecture enables the robot to per-
form nonmonotonic logical inference in the ASP KB to provide
a prior for POMDP state estimation, while POMDP planning
provides a sequence of actions for visual information processing
and navigation. Action execution requires the robot to move to
specific locations and/or visually analyze specific scenes. The
execution of each such action invokes an implementation of
the corresponding algorithm in ROS, e.g., use of an existing
algorithm for visual object recognition, or use of existing ROS
algorithms for path planning and controlling the robot’s move-
ment. The observations obtained by executing the sensor input
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Fig. 12. Screenshots of an experimental trial in which the target is the humanoid seen in the last row. Screenshots show an external view of the robot, location
of the robot in the (learned) map of the domain, and the robot’s view, which lags slightly behind the robot’s actual location: (a) robot starts in a map with some
known semantic labels and plans a path (pink line) to the first location (“main office”), trading off the distance to be moved against the likelihood of finding the
target; (b) the robot about to reach the first location; (c) the robot processing images of a specific scene; (d) belief update after the target was not detected in this
location; (e) the robot plans a path (pink line) to the next (likely) target location (“robot lab”); (f) the robot avoids the obstacle (human) on its way to this location;
(g) the robot analyzes images of the scene and obtains the first positive observation of the target; (h) the robot moves closer to confirm the target’s presence and to
accurately localize the target. The robot dynamically revises the domain map and periodically processes images at low resolution as it moves between locations.

processing algorithms are sent to our architecture. However, not
all motion goals can be achieved, e.g., a room may be inacces-
sible. In such situations, failure and relevant information (e.g.,
inaccessibility of rooms) will be reported to the ASP KB. For
local path planning between two specific grid cells, we used
an existing ROS path planner that builds on the A* algorithm
and uses existing algorithms in ROS such as trajectory rollout
and dynamic window for obstacle avoidance. These algorithms
related to path planning have been integrated in the ROS node,

move_base. The communication between our architecture and
the path planner is achieved through the ROS actionlib module
that provides goal, feedback, and result messages. Specific
motion commands are sent to the platform driver by publishing
to ROS topic cmd_vel. Fig. 11 shows examples of target objects
in this domain.

1) Experimental results: We describe a representative sub-
set of the experiment trials in which the target objects were:
1) a microwave oven; and 2) a humanoid. We compared our
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architecture with two baseline policies for action selection: 1)
a heuristic policy that makes greedy action choices based on
the current probabilistic belief; and 2) a policy based on just
the hierarchy of POMDPs [28]. Trials using each of the three
strategies were paired, i.e., a set of trials with the three strategies
used the same (randomly chosen) initial location for the robot
and the same locations for the target objects. In some trials,
the targets were placed in default locations, e.g., kitchen for the
microwave, and lab or office for the humanoid robot. In other
trials, the targets were placed in random locations. The robot
does not know the ground truth locations of the target objects in
any trial, but it has the learned visual models for a set of objects,
a learned domain map, and some domain knowledge (including
default knowledge in some trials).

Table I summarizes the results of a set of 50 trials for two
representative target objects (microwave and humanoid)—the
results show a trend similar to that observed in the trials in
simulated domains (see Section IV-A). The actual target local-
ization time can vary substantially depending on the location
of the target and the initial position of the robot. We, therefore,
report the target localization time of the two baseline strategies
as a factor of the target localization time using our architec-
ture. The results for these (and other target objects) indicate
that our architecture significantly reduces the target localization
time while successfully localizing the target objects in all the
trials. For instance, the target localization time using just the
POMDPs is ≈1.6 times, averaged across targets in addition to
those considered in Table I, the target localization time using our
architecture, while the factor is ≈2.4 for the heuristic/greedy
policy. The results corresponding to the paired trials indicate
that the improvement is statistically significant, e.g., p-value
∈ [0.008, 0.03] when the target localization time obtained using
our architecture is compared with that using only the hierarchy
of POMDPs for localizing objects.

2) Representative Trials: Consider two experimental trials
on the mobile robot deployed in an indoor office domain. Fig. 12
shows screenshots at various stages of the first experimental trial.
The robot uses a learned map with known semantic labels and
the target object to be localized is the humanoid observed in the
last row. The screenshots capture specific steps in the sequence
of actions executed by the robot as it analyzes different images
of a specific subset of scenes. The robot dynamically revises the
map and periodically processes images (at low resolution) as it
moves between desired locations. The corresponding video is
available online at http://youtu.be/CvKJyCI_YNE.

Consider another experimental trial to illustrate the early ter-
mination of unachievable tasks. The target object was a hu-
manoid that (unknown to the robot) actually did not exist in the
domain. Prior domain knowledge indicated that the target was
likely to be in one of the two labs in the learned domain map. The
robot first explored the lab that was closest: the robot lab. When
the robot did not find the desired target after a careful visual anal-
ysis of the lab, the robot investigated the other lab. When it could
not find the target object in this lab either, sufficient belief had
been accumulated in favor of the target’s nonexistence in the do-
main; as described in Section III-D, the robot then terminated the

trial without investigating other rooms. The corresponding video
is available online at http://youtu.be/2U6oOTuEd-Q.

V. CONCLUSION

This paper has described an architecture that integrates the
complementary strengths of declarative programming and prob-
abilistic graphical models for KR and reasoning in robotics.
ASP, a declarative language, is used to represent incomplete do-
main knowledge, including default knowledge that holds in all
but a few exceptional situations. A hierarchy of POMDPs, an in-
stance of probabilistic sequential decision making, is used to au-
tomatically tailor sensor input processing and navigation to tasks
at hand, probabilistically modeling the associated uncertainty.
An answer set obtained through nonmonotonic logical infer-
ence in the ASP KB generates a multinomial prior for POMDP
state estimation, using the corresponding posterior belief distri-
bution for action selection. Inference in the KB and historical
data from comparable domains are also used to generate a beta
PDF. Metareasoning with this PDF and observations enables the
robot to identify eventualities not modeled by the hierarchy of
POMDPs, resulting in early termination of unachievable tasks.
Experimental results on a robot visually localizing objects in an
office domain show that the architecture supports qualitative and
quantitative representations of knowledge and uncertainty and
creates a continuous loop of nonmonotonic logical inference,
probabilistic planning, and knowledge revision.

The architecture opens many directions for future research.
First, the KB is currently not very large and uses hand-coded
rules. However, ASP is capable of efficient inference in large
KBs [34]—future work will scale the current approach to larger
KBs and investigate the learning of rules. We will also evaluate
the architecture’s capabilities for other tasks such as surveillance
and reconnaissance. Second, the architecture currently only uses
the inference capabilities of ASP—future work will explore the
planning and diagnosis capabilities of ASP in conjunction with
the probabilistic reasoning capabilities of POMDPs [27]. Third,
we are investigating the integration of learning algorithms with
our architecture. The long-term objective is to explore a tighter
coupling between declarative programming and probabilistic
graphical models for KR, reasoning, and learning, enabling the
deployment of robots that can collaborate with humans in com-
plex application domains.
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