
Learning by Observation Using Qualitative Spatial
Relations

Jay Young and Nick Hawes
Intelligent Robotics Lab

The University of Birmingham
United Kingdom

ABSTRACT
We present an approach to the problem of learning by observation
in spatially-situated tasks, whereby an agent learns to imitate the
behaviour of an observed expert with no interaction and limited
observations. The form of knowledge representation used for these
observations is crucial, and we apply Qualitative Spatial-Relational
representations to compress continuous, metric state-spaces into
symbolic states to maximise the generalisability of learned models
and minimise knowledge engineering. Our system self-configures
these representations of the world to discover configurations of fea-
tures most relevant to the task, and thus build good predictive mod-
els. We then show how these models can be employed by situated
agents to control their behaviour, closing the loop from observation
to practical implementation. We evaluate our approach in the simu-
lated RoboCup Soccer domain, and successfully demonstrate how
a system using our approach closely mimics the behaviour of both
synthetic (AI controlled) soccer players, and also human-controlled
players, through observation.

Categories and Subject Descriptors
[Machine Learning]: Learning Settings—Learning from demon-
stration

General Terms
Design, Experimentation, Human Factors

Keywords
Learning by Observation;Qualitative Spatial Representations;RoboCup
Soccer

1. INTRODUCTION
Engineering AI systems is a non-trivial task, which is why sys-

tems that can learn solutions to problems are desireable. In some
cases, learning AI systems may be able to display better perfor-
mance than if they were being programmed by a human developer.
Learning-by-doing techniques (e.g. reinforcement learning) can be
risky due to the need for trial-and-error which can be dangerous
and expensive in certain domains (such as robotics). Alternatively,
if an expert agent already exist for a target domain, then a system
can learn to replicate a behaviour itself by observing the expert.

Appears in: Proceedings of the 14th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2015), Bor-
dini, Elkind, Weiss, Yolum (eds.), May, 4–8, 2015, Istanbul, Turkey.
Copyright c� 2015, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

This is known as learning by observation (LbO) [19]. When de-
signing any learning system, we must consider how it will represent
its environment. Quantitative representations, i.e. representations
which use real numbers (to measure, for example, position, area,
time etc.) are highly precise, but can be brittle when a system must
generalise. Uncertain observations (due to noisy sensors or dy-
namic environments) exasperate this problem. Many LbO tasks are
characterised by access to limited training data, so representations
that offer good generalisation to scenarios which are previously un-
seen, but are related to the observed expert data, are essential.

In our work we approach the problem of LbO using Qualitative
Spatial Relations (QSRs) to represent observations of the continu-
ous, adversarial, spatially-situated domains in which we learn, pre-
dict and ultimately replicate the behaviour of entities. We use qual-
itative representations to discretise over the continuous variables
which typically describe the behaviour of mobile entities, such as
position, orientation and velocity, replacing them instead with sym-
bolic representations, where these symbols represent ranges of pos-
sible continuous values. These techniques may also be relational,
encoding information about relative properties that hold between
entities at a given instant [10]. Such an encoding provides addi-
tional explanatory power in co-operative or adversarial domains
where decision making is typically based on relationships between
entities.

For example, consider a simple scenario from soccer – that of
a player attempting to shoot a ball into a goal which is defended
by a goalkeeper. When shooting at the goal, the relative angles
between the player, goalkeeper and goal posts are important. The
goalkeeper would like to minimise the angle between himself and
a goalpost with respect to the other player, so as to make the shot
more difficult for the opponent, whereas the player would prefer to
widen the angle to make the shot easier. As there may be a range
of angles that are satisfactory to either player, decision making in
this task may be interpreted in a qualitative, relational context, with
action selection being dependent on the relations that hold in the
scene.

This paper makes the following contributions:

• A novel integration of qualitative spatial representations for
learning by observation in RoboCup Soccer.

• Experimental comparisons between metric and qualitative rep-
resentations across different task configurations, using a va-
riety of learning mechanisms.

• An extension of this study to the problem of learning by ob-
servation of human behaviour.

• A study of a situated agent using behaviour models learned
from observing both synthetic and human experts.



2. LEARNING BY OBSERVATION
We adopt the LbO formalism of [19], of which we now give a

brief overview. Let BC be the behaviour of an expert agent C, and
let E be an environment. A behaviour is the controller that the ex-
pert uses in order to determine which actions to execute. During
operation, this behaviour is expressed as a Behaviour Trace BT

representing the actions the expert performs over a period of oper-
ation. The behaviour trace of an expert is then:

BTC = [(t1, x1), ..., (tn, xn)]

where t is a time index, and x is an action. The environment E over
time is represented by an input trace, where y is a state description:

IT = [(t1, y1), ..., (tn, yn)]

The combination of a behaviour trace and an input trace produces
a Learning Trace LT :

LT = [(t1, x1, y1), ...(tn, xn, yn)]

The LbO task is to learn a behaviour B which behaves the same
way as the expert agents in the environment E, given the same
inputs LT1, ..., LTn. Given limited training data, it is possible for
an LbO agent to be presented with previously unseen states when
acting. Given a non-deterministic expert, it is possible for the same
controller to yield multiple BT s. In both cases we require that the
LbO agent is able to perform appropriately.

In addition to this formalism, the work of [8] identifies a pipeline
for the practical implementation of a Learning by Observation sys-
tem. Our own system adopts this pipeline, and our version of it is
shown in Figure 3. The pipeline given by Floyd features the fol-
lowing major steps.

1. Modeling Concerning the initial setup of the observing agent –
determining how information about the environment and the
entities within it will be provided.

2. Observation At this stage the agent observes an expert engag-
ing in some task, the observations of which are provided in
the format described in the modeling stage.

3. Pre-Processing Here, an agent may engage in information ex-
traction to determine what parts of the observed input are
relevant, and how to map those inputs to the desired outputs.

4. Deployment This phase involves learning, using the data from
the previous phase to build a predictive model, which is then
installed on a situated agent and used as a controller. In ref-
erence to the formalism, this is equivalent to constructing B,
and some function f(B) which provides the practical ma-
chinery for implementing the learned behaviour on a situated
agent.

In this work, contributions are made to all steps of this frame-
work in showing how such a system can be fully implemented. We
are particularly interested in the form of knowledge representation
available to a LbO system, how that representation can be exploited
by machine learning, and the mechanisms of deployment to best
make use of those models. In practice, these are not at all iso-
lated steps, but are interconnected in various ways, which we will
explore later. One main difference between our implementation of
this pipeline and that used in the work of [8], is that our approach to
generalisation is performed as part of step 1, at the representation
phase, rather than as a pre-processing step where learning traces
are later examined and generalised.

3. ROBOCUP SOCCER
We apply LbO to the keepaway subproblem of RoboCup Soccer.

The RoboCup 2D simulator is a widely-used multi-agent testbed
which simulates games of soccer played by individual agents (play-
ers) in 2D. At any point in time, all players have a 2D pose (i.e. a
2D position and orientation) and the ball has a 2D position. Play-
ers have the ability to sense the ball and the other players, but this
sensing is both spatially restricted and noisy. Given this limited
sensing, on each time step each player must select an action: kick,
dash, turn, tackle or catch, each of which may have continuous pa-
rameters (e.g. the power of a kick, or the degree of a turn). On each
time step, the simulator provides access to the metric positions of
all game elements (including static features such as the position of
the goals), plus the actions the agents took. We refer to this data as
the game’s state.

3.1 RoboCup Keepaway
The keepaway subproblem takes place in a limited area and fea-

tures two competing teams: one trying to maintain control of the
ball, the other trying to gain control of the ball. Figure 1 shows a
typical 3v2 keepaway scenario. The keeper team is situated around
the borders of the keepaway area, with the opposing team in the
centre. The game is split into slices called episodes, wherein a sin-
gle episode continues so long as the keeper team controls the ball.
As soon as control is lost to the other team (or the ball leaves the
keepaway area), a new episode starts. In this work we make use
of benchmark agents that play the keepaway task1 [27, 29]. These
agents follow hand-coded policies, and provide a baseline level of
performance, so can be considered experts in the domain.

4. RELATED WORK
[19] identify terms in the literature such as learning from demon-

stration, learning by imitation, programming by demonstration, or
apprenticeship learning as being synonymous with learning by ob-
servation. There is a wide range of related work under these var-
ious monikers, particularly in robotics [14]. The work of [7] uses
behaviour traces of humans to train AI agents in tactical decision-
making, and work by [8] has looked at learning by observation in
the RoboCup Soccer domain, and [30]. [2] use traces of human
behaviour to train agents to behave as more realistic opponents in a
computer game.

A variety of techniques have been previously applied to behaviour
learning in the RoboCup domain, including reinforcement learning
approaches [31, 12, 24, 18] which consider learning tasks by doing,
rather than observing experts. The work of [8] is the state-of-the-art
in terms of learning by observation in the RoboCup domain, how-
ever Floyd evaluates active learning, whereby in addition to initial
training data, an expert is available for the learning agent to request
help from when confronted with significantly unfamiliar scenarios.
This is discovered to provide improved performance over passive
learning, however an LbO agent may not always have such a capa-
bility for active learning. In our work, we consider entirely passive
learning whereby an agent is only given access to a limited amount
of examples, and no communication with an expert is possible. In
both cases however, one problem LbO systems face is that they
must find ways to extract the most information from the data they
have been given – be it because requesting help from an expert
is expensive, or the available training data is finite or incomplete.
Floyd[8] approaches this by building statistical models of environ-
mental features to extract those which provide the most informa-
tion about the expert agent’s behaviour. We approach the problem
1http://github.com/tjpalmer/keepaway



Figure 1: A 3vs2 keepaway Scenario

first with the application of qualitative-relational abstractions, and
then use a learning approach that builds a similar statistical model,
however now of abstract spatial relations. QSRs have been used
to learn and recognise the activities of agents in videos [25] and
[3]. These approaches typically form predictive models using se-
quences of relations over time. To model behaviour in complex,
continuous domains, we make use of similar representations.

Relational information has often been included in behaviour learn-
ing tasks, highlighting its value. In [20], activity recognition is ac-
complished in a basketball domain using a state-space composed
of relational symbols. In many cases relational information takes
the form of variables encoding task-specific knowledge, which are
often continuously-valued. [5] characterises player behaviour in
RoboCup using relational sequence models using pre-defined re-
lational symbols over the action space such as dribble, shoot and
pass, abstracting over atomic actions. In [24] agents are provided
continuous, relational variables such as the “angle between the
opponent goal and the ball”, and the twelve additional variables
added to the state space of [31] are almost entirely relational in na-
ture, including such things as the “Angle of the opponent in relation
to the agent’s body”. In [15] similar state variables are used, such
as MyDistanceToSecondVisibleOpponent and MyAngleToFirstVisi-
bleTeammate. Much of the existing work employs what are essen-
tially metric-relational representations. While such representations
have the advantage of encoding relational information, which can
be beneficial, they are still brittle due to being real-valued, and are
often compiled on an unprincipled, ad-hoc basis. The representa-
tion employed by our work captures relational information by de-
fault, without encoding any task-specific data (such as the domain-
specific relational symbols mentioned previously), but instead we
explore the capabilities and characteristics of discrete qualitative-
relational representations.

5. QUALITATIVE STATE GENERATION
Our LbO system operates on a sequence of qualitative states,

where each state describes the the world at a discrete time step.
The qualitative state is a vector of binary relations provided by sev-
eral qualitative spatial-relational calculi, which we combine into
a unified representation. Given the metric state of the world ob-
served by an agent, the QSRs we use discretise it in a variety of
ways. The Star Calculus (SC) provides binary relations for rep-
resenting the qualitative direction between entities in space with
respect to one-another [22]. SC employs angular zoning based
on either the parameter m (yielding zones of size 360/m, which
we use), or through the specification of an arbitrary sequence of
angles. We also employ the measure of qualitative distance pro-
posed by [6] whereby the distance between two entities A and
B is expressed in terms of the presence of B in one of a set of
distinct, non-overlapping distance intervals relative to A, yielding

Figure 2: Left: A set of four angular zones egocentric with re-
spect to a player, such that the 0th zone is always aligned with
the orientation of the player’s body. Right: A homogeneous
distance system with four relations.

doughnut-like spatial regions. An illustration is shown in Figure
2. The Qualitative Trajectory Calculus (QTC) provides qualita-
tive information about the relative motion of entities [32], such
as moving away/towards or faster/slower. We employ the QTCB

(Basic) variant of this calculi. As with the Star and qualitative dis-
tance calculi described above, QSR representations may have sev-
eral parameters associated with them that determine the level of
granularity of the discretisation they provide. Changing these pa-
rameters produces different binary relations in the resulting QSR
state. When learning, different QSRs, or sets of them, may pro-
vide more predictive power than others, and this predictive power
may also vary with action.Therefore we utilise a generate-and-test
search [23] to find the most informative QSR representation for
each action. This allows us to use QSRs tailored to each action,
rather than the single monolithic representations used in previous
work on similar QSR-based approaches [33]. We do this using a
Monte-Carlo search (as opposed to an exhaustive grid search [4])
through the space of possible QSR representation parametrisations
to find those that provide informative features. We evaluate can-
didates in the classifier-representation pair space with a ten-fold
cross-validation, taking the Matthews Correlation Coefficient as a
measure of performance [17]. We regularise this using the squared
L2 norm over the representation complexity – i.e. in our case the
granularity of the calculi – which applies a penalty for complexity
[21], meaning the search prefers conservative representations. We
build a classifier-representation pair for each action, and combine
them using a one-vs-all approach into our predictive model.

6. LEARNING ROBOCUP ACTIONS
Figure 3 shows a high-level overview of our system. Using the

benchmark agents of Stone [27] we generated datasets for three
common keepaway configurations – 3vs2, 4vs3 and 5vs4 – pro-
ducing 1000 episodes per configuration. In the raw data extracted
from the RoboCup simulator for this task, the behaviour traces con-
tain the action chosen by each agent on each time step along with
their continuous parameters (e.g. kick(64) or dash(99)), as well
as the metric state of the world. We discard the continuous param-
eters from the actions, leaving only the action class. This makes
the classification/prediction problem easier, as we do not require a
class for every observed parametrisation of each action. We will
show later how the continuous parameters can be recovered for use
by a situated agent. The metric observations are transformed into
a set of QSR features using the calculi described previously. We
use this to produce a model which predicts the action an agent will
take given the state of the world it can observe, treating the learning
problem as one of classification.

Comparing the performance of classifiers is not as straightfor-



Figure 3: System Overview

ward as just looking at their prediction accuracy. The data features
significant class imbalance – the balance of kick, dash and turn ac-
tions being 11%, 22% and 66% respectively. Figure 4 shows a com-
parison between three different learning algorithms – a Bayesian
Network, the C4.5 decision-tree classifier and a Support-Vector
Machine – using both the underlying metric and automatically-
configured QSR representations, evaluated on ten-fold cross-validation.
The implementations of the learning mechanisms were taken from
the Weka toolkit [11], and standard hyper-parameter optimisation
was performed. For the SVM we utilised a radial basis function
and C of 1.0. For the C4.5 classifier a confidence factor of 0.27
was used.

The results show that we are able to predict these discrete ac-
tions with a high degree of accuracy (97% for the C4.5 classifier)
when utilising the QSR-based representation scheme. Utilising the
raw metric data provides generally worse results for all learning
algorithms.

As described above, [8] also investigated learning by observa-
tion in RoboCup. In addition to their active learning approach, they
presented a passive approach which is directly comparable with our
work. [8] evaluated their system by predicting the behaviour of the
Krislet team, a simple reactive agent system that chases the ball
around the pitch, and kicks it towards the opponent’s goal [16].
They also tried to predict the behaviour of the CMUnited team, a
complex, champion system that employs layered learning, internal
world models and multiple behavioural states [28]. This work uses
the full-pitch, full-game scenario, as opposed to keepaway. We re-
peated their experiments with our QSR-based approach, a present
directly-comparable results in Figure 5. In all cases we outper-
form their approach. We put this down to our system being able to
represent relations between objects, as well as information about
their relative motion. This allows for a richer representation of the
world, which allows the C4.5 classifier to more closely model the
way the expert programs were written. This is most clear in the
results for the Krislet agent, which is a simple reactive program,

0 10 20 30 40 50 60 70 80 90 100

C4.5+QSR

C4.5+Metric

SVM+Metric

SVM+QSR

BayesNet+Metric

BayesNet+QSR

% Accuracy

Turn
Dash
Kick

1

Figure 4: Per-class performance of classifiers in the 3vs2 sce-
nario with synthetic agents. Black dots indicate the average
performance of a given classifier.

Expert Overall Kick Dash Turn
Our Work Krislet 94% 96% 94% 92%
Floyd [8] Krislet 61% 27% 71% 83%
Our Work CMUnited 64% 57% 70% 66%
Floyd [8] CMUnited 50% 58% 55% 50%

Figure 5: Comparison between our work and the work of
Floyd, predicting discrete action labels.



0 10 20 30 40 50 60 70 80 90 100

C4.5+QSR

C4.5+Metric

SVM+Metric

SVM+QSR

BayesNet+Metric

BayesNet+QSR

% Accuracy

Turn
Dash
Kick

1

Figure 6: Performance of each learning mechanism on predict-
ing the behaviour of human players in the 3vs2 scenario.

written as a decision tree based on spatial information gathered by
the agent. In contrast, our system, as Floyd’s, struggles to predict
the behaviour of CMUnited, which utilises a learning architecture
as well as an internal world model with temporal components. We
are as yet unable to capture these expert-internal changes purely
through state observation. This highlights a limit on the efficacy of
our approach.

6.1 Learning models of human behaviour
In addition to working with benchmark software agents, we also

gathered a dataset from human operators controlling a team of RoboCup
players in realtime. Using a standard game controller, human oper-
ators were able to move players around the game environment and
interact with it from the birds-eye view provided by the RoboCup
Soccer Simulator visualiser. This is in contrast to the noisy and
limited field of view provided to synthetic agents.

We collected 200 episode traces of the 3vs2 game configura-
tion, wherein three human players each controlled a member of
the keeper team, and the taker team was controlled by the bench-
mark agents used in the previous evaluation. This allowed us to
create models of human behaviour using the same technique de-
scribed previously. The predictive results are shown in Figure 6,
evaluated using ten-fold cross-validation. Our QSR approach again
outperforms the metric representation in general, and C4.5 shows
an advantage over other classifiers on the data. This demonstrates
that QSRs can encode human behaviour as well as that of artifi-
cial agents, and that a decision tree can provide a strong predictive
model for that behaviour.

7. PLAYING KEEPAWAY
So far we have mainly discussed classification results and the

building of behaviour models, but we now take the important step
of showing how these models can be deployed within situated agents
to perform the behaviours they have learned from observation of
both synthetic and human experts. We have developed the first
agent to use QSR-based learned behaviour models in the RoboCup
soccer domain. Deploying a learning by observation model poses
several novel problems to which we have provided solutions. Model
deployment is accomplished through a player agent which provides

LbO Agents Benchmark Agents Avg. Episode Length
0 3 131
1 2 127
2 1 124
3 0 121

Figure 7: Effects of replacement of pre-programmed bench-
mark agents in the keeper team with agents using be-
haviour models generated by observing those benchmark
agents (C4.5+QSR).

its perception of the environment as input to a pre-trained classi-
fier, and, on each simulator step, uses the resulting classification to
perform action selection. To achieve this, we must not only con-
sider the (discrete) output of the classifier, but also the parametrisa-
tion of RoboCup actions, which we had previously not considered.
To do this, we utilise a rough predictive model of the physics of
RoboCup Soccer, provided by the parameters of the simulator de-
scribing such things as the ball weight, maximum speed, movement
decay, wind resistance and so on. This allows us to simulate the re-
sult of actions, producing a distribution over potential future states.
For example, we can produce a prediction of the position of the
ball n frames after executing a kick action with a specified parame-
ter. We then match the qualitative versions of these predicted states
with the QSR states observed in the training data – the states subse-
quent to the one in which the expert executed the predicted action.
The closeness of this match provides an objective function to ex-
plore the space of possible action parameters, over which we again
employ a Monte-Carlo search. We generate candidate parameters,
predict their result over a finite time horizon (in our case 10 fu-
ture frames), to find those that result in qualitative state sequences
most similar to those observed in the training data. In our exper-
iments this procedure yields an error rate of 24% when compared
with the actual parameters chosen by the expert agent. This may
seem high, however in practice miscalculated parameters may not
greatly influence behaviour. For instance there may be little practi-
cal difference between a turn of 30� and one of 31�, but this is still
counted as a miscalculation.

While software agents performed actions with real-valued pa-
rameters, the human operators could only choose from a discretised
action set with fixed parameters, e.g. a weak, medium or strong
kick, all taking their direction from the way the player currently
faced. This allowed us to forego parameter recovery with the mod-
els based on human data, instead we concatenated action classes
with their fixed parameters to create distinct classes in the data.

8. EXPERIMENTS AND RESULTS
Our study of model deployment is restricted to the 3vs2 keep-

away scenario, and only the C4.5 classifier, due to space constraints.
We tested our system by replacing an increasing number of the
benchmark keeper team’s players with players controlled by our
system. This allows us to evaluate the performance of the LbO
agents, not only when teamed with the original hand-coded agents,
but also when teamed other LbO agents. As the goal of the keeper
team is to maximise episode duration (by keeping the ball), we
evaluate our system using the metric of average episode duration
over 200 episodes.

Figure 7 presents the results of the systematic replacement of
benchmark agents by agents deploying LbO behaviour models. Av-
erage episode length decreases consistently as LbO agents are swapped
in, showing that these agents cannot completely recreate the ob-
served expert behaviour. This is largely due to misclassifications,



System Rep. Avg. Episode Length
Human Controller - 156 ± 14
Benchmark Agents - 131 ± 18
LbO (Human) QSR 134 ± 17
LbO (Benchmark) QSR 121 ± 12
LbO (Human) Metric 76 ± 32
LbO (Benchmark) Metric 65 ± 37
Random - 60 ± 20

Figure 8: Average episode duration in simulator steps show-
ing variation in performance after learning from both human
and benchmark agents. C4.5 is used for both metric and QSR-
based approaches.

and errors in their ability to select parameters of actions. Some
misclassifications are more severe than others – missing a common
action, like a turn or dash on one frame may not have a major im-
pact, however missing a rare, important action such as a kick may
be unrecoverable. The same issue arises when selecting parameters
for actions. We find that these kinds of errors have the side-effect
of landing agents in states that they had not previously observed be-
fore. This leads to a feedback loop: the agent will make a mistake,
enter into states it is not familiar with, perform poorly, and perfor-
mance will degrade. This highlights a limitation of our approach
so far, and may indicate a good point where reinforcement learning
approaches could be integrated into the process. Future work will
look at how our approach can be used to jump-start an RL system,
potentially using an algorithm such as SARSA [13].

Figure 8 presents a comparison between the QSR and metric rep-
resentations when all 3 keeper agents are replaced, and also the
difference in performance of models learnt by observing synthetic
and human experts. Again the QSR representation outperforms the
metric, and there is a larger drop in performance on the human
data than synthetic in terms of average episode length in simula-
tor steps. The larger deficit on human data can be explained by
the fact that the human experts were actually naïve users who had
not played RoboCup previously. They therefore had to learn whilst
playing and being observed. This is visible in the data, where hu-
man episode duration starts low but increases after approximately
20 episodes. The models learnt from humans include these initial
episodes, and thus may include errors introduced by the expert –
for instance, if the humans pressed a button in error. Human con-
trollers required a handful of trials before they were comfortable
and competent with the simulator and control mechanism. This is
not the case for the benchmark agents which perform consistently
throughout. Discarding the initial 20 episodes from the human data
produces average episode lengths of 139 and 96 for QSR and met-
ric representations respectively (an improvement of 5 and 10). This
is an interesting result, but discarding this data may not be the best
option – we suspect it could be harnessed to provide an agent with
a more thorough understanding of the task domain, by observing
directly the process of an expert attempting to accomplish some
goal.

Our results show that we are able to represent and model a richer
variety of behaviours than the existing work by employing qualita-
tive, relational representations, and configuring them automatically.
However, a weakness of our approach in the deployment phase is
that our agents will also mimic the mistakes of an expert. This is
because, bestowed with no a priori task information, learner agents
cannot tell beneficial behaviours from detrimental ones. If an ex-
pert agent is observed losing control of the ball, a learner agent,
later put in the same scenario, will select actions that lead to the

same detrimental result. So far our system is most capable of learn-
ing reactive behaviours – such as the benchmark keepaway agents
and the Krislet agent. But this also extends to the way human play-
ers approached the task, which we have shown the ability to capture
and replicate. Our system re-configured its representations of the
world in order to find those that gave it better predictive power over
the behaviour it had observed. For instance, as mentioned previ-
ously, the Krislet agent simply kicks the ball towards a goal when
it is nearby. Looking at our model, we see that the representation
associated with the classifier for the kick action shows a small num-
ber of finely-grained ringed distance intervals. For its configuration
of the Star calculus, it favoured relatively wide discretisations of
the view cone of around 20�. This means that the representation-
classifier pair discovered the underlying control rule of the agent –
when the ball is within reach, in front of the player, kick it. The
QSR relations used in this are the presence of the ball within the
most central of the Star relations (directly in front of the player),
and within one of the closest distance rings. Without these sym-
bols being present, the model switches to another classifier. If the
ball is not close to the Krislet agent, it will turn and dash towards
it. This rule is captured by other relations, such as a further-off
distance ring that encodes that the player is far from the ball, or a
Star relation that shows it is not facing the ball. While Krislet is a
very simple agent, it serves to illustrate how our system harnesses
QSRs to build predictive models, and the same principles apply for
the models of more complex agents such as human players and the
benchmark keepaway players.

In our results, we observed that the C4.5 algorithm proved to
be extremely fast in terms of training time, and well-suited to the
QSR representation which takes the form of a boolean vector. We
will next look in to how this speed can be harnessed to build agents
that learn by observation on-line, rather than relying on a separate
training phase. Other learning mechanisms often benefit from some
pre-processing step – feature selection, clustering etc. – which may
be slow, or result in a deformation of the state space. This causes
problems later on if, for instance, a feature thought previously to
be irrelevant suddenly becomes relevant (perhaps in an edge case)
– this then requires tackling the problem of how (or if) this change
is detected, and how any pre-processing steps should be reapplied
to take the new worth of the feature into account. Using C4.5, this
can be solved through a re-training approach due to the speed of the
algorithm. Our experience is that this would not be possible using
the other learners we evaluated, either due to their relatively high
training times.

The work of [26] discusses the problem of ad-hoc teamwork,
whereby an agent must co-operate with teammates it has never seen
before, cannot communicate with, and who all might follow differ-
ent policies, potentially in a task it has no experience of itself. Here
we expect LbO systems like ours to be key to allowing an agent to
meaningfully contribute to a team effort by imitating the behaviour
of its teammates. In our own evaluation, we stick to imitating a
single set of behaviours in a limited domain, however there is no
reason why, in more complex scenarios, a LbO system would not
be able to fulfil a multitude of team roles, perhaps even utilising a
behaviour model that is the union of many different observed be-
haviours. For instance, in the 2014 Computer Poker Competition
[1], the winning agent used a model trained on observations of a
range of previous competition winners. Here is where we expect
the capacity for a LbO system to surpass the performance of the
experts it observes lies. In some scenarios though, doing only as
well as the expert may be the desired outcome – for instance, if the
expert is only available for a short time, or the availability of traces
of the expert’s behaviour are limited (as in our system). The main



performance hit from our LbO approach is that it does not treat
the expert as an oracle – other LbO approaches, such as that of [9]
gather cases where the agent was uncertain of what to do to be pre-
sented to the expert later in order to improve performance. This
procedure can be repeated an unlimited number of times. Here,
we do not have such a luxury, as we assume the expert is inacces-
sible, meaning our agent typically fails in scenarios where it has
no reference point in the underlying expert trace. Regardless, we
demonstrate that our work still beats the state-of-the-art in LbO in
our chosen domain.

9. CONCLUSION
We presented an approach to the problem of learning by obser-

vation in spatially situated tasks, specifically considering how en-
vironmental observations should be represented, comparing both
quantitative and qualitative representations, aiming to maximise
the generalisability of learned models and minimise knowledge en-
gineering. Our system achieved this by self-configuring its own
qualitative-relational representation of the world, to discover con-
figurations of spatial-relational features most relevant to the task.
We showed that using this approach, it is possible to produce be-
haviour models of both synthetic, pre-programmed agents, as well
as human-controlled agents, with a high degree of accuracy. We
then showed how these models can be deployed within situated
agents to control their behaviour, closing the loop from observation
to practical implementation in a real-world system. Our work was
evaluated in the domain of RoboCup Soccer keepaway – a complex,
multi-agent, co-operative and adversarial domain – and shown to
outperform current state-of-the-art approaches, which rely on ex-
tensive knowledge engineering and/or quantitative representations.
Our agent is the first LbO agent based on QSRs to be deployed in
the RoboCup domain.

The research leading to these results has received funding from the Euro-
pean Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement No 600623 and the EPSRC grant EP/K014293/1.

REFERENCES
[1] AAAI. Computer Poker Competition. AAAI Workshop on Computer

Poker and Imperfect Information, 2014.
[2] C. Bauckhage, C. Thurau, and G. Sagerer. Learning human-like

opponent behavior for interactive computer games. Pattern
Recognition, pages 148–155, 2003.

[3] A. Behera, D. Hogg, and A. Cohn. Egocentric activity monitoring
and recovery. Computer Vision ACCV 2012, pages 7–9, 2013.

[4] J. Bergstra and Y. Bengio. Random search for hyper-parameter
optimization. The Journal of Machine Learning Research,
13:281–305, 2012.

[5] G. Bombini, N. D. Mauro, S. Ferilli, and F. Esposito. Classifying
Agent Behaviour through Relational Sequential Patterns.
Proceedings of the 4th KES international conference on Agent and
multi-agent systems, pages 273–282, 2010.

[6] E. Clementini. Qualitative representation of positional information.
Artificial Intelligence, 95:317–356, 1997.

[7] H. K. G. Fernlund, A. J. Gonzalez, M. Georgiopoulos, and R. F.
DeMara. Learning tactical human behavior through observation of
human performance. IEEE transactions on systems, man, and
cybernetics. Part B, Cybernetics, 36(1):128–40, Mar. 2006.

[8] M. Floyd. A General-Purpose Framework for Learning by
Observation. PhD thesis, Carleton University, 2013.

[9] M. Floyd and B. Esfandiari. Building Learning by Observation
Agents Using jLOAF. Workshop on Case-Based Reasoning for
Computer Games: 19th international conference on Case-Based
Reasoning, (Figure 1):37–41, 2011.

[10] L. Frommberger. Qualitative Spatial Abstraction in Reinforcement
Learning. PhD thesis, University of Bremen, 2010.

[11] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The WEKA data mining software: an update. SIGKDD
Explorations, 11(1):10–18, 2009.

[12] T. Jung and D. Polani. Learning RoboCup-Keepaway with Kernels.
JMLR: Workshop and Conference Proceedings, 1:33–57, 2012.

[13] L. Kaelbling, M. Littman, and A. Moore. Reinforcement learning: A
survey. arXiv preprint cs/9605103, 4:237–285, 1996.

[14] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto. Robot
learning from demonstration by constructing skill trees. The
International Journal of Robotics Research, 31(3):360–375, Dec.
2011.

[15] S. Konur, A. Ferrein, and G. Lakemeyer. Learning decision trees for
action selection in soccer agents. ECAI-04 Workshop on Agents in
dynamic and real-time environments, 2004.

[16] K. Langner. The Krislet Java Client -
http://www.engsoc.org/˜kevlam/, 1999.

[17] B. W. Matthews. Comparison of the predicted and observed
secondary structure of T4 phage lysozyme. Biochimica et biophysica
acta, 405(2):442–451, 1975.

[18] M. Molineaux, D. W. Aha, and G. Sukthankar. Beating the Defense :
Using Plan Recognition to Inform Learning Agents. Proceedings of
Florida Artifical Intelligence Research Society, 2008.

[19] J. Montana and A. Gonzalez. Towards a unified framework for
learning from observation. IJCAI Workshop on Agents Learning
Interactively from Human Teachers, 2011.

[20] V. I. Morariu and L. S. Davis. Multi-agent event recognition in
structured scenarios. Cvpr 2011, (1):3289–3296, June 2011.

[21] L. Moseley. Introduction to Machine Learning, volume 1. Pitman
Publishing, London, 1988.

[22] J. Renz and D. Mitra. Qualitative direction calculi with arbitrary
granularity. Lecture notes in computer science, 3157:65–77, 2004.

[23] D. Sculley. Results from a semi-supervised feature learning
competition. NIPS Workshop on Deep Learning and Unsupervised
Feature Learning,, 2011.

[24] K. Shimada, Y. Takahashi, and M. Asada. Efficient Behavior
Learning by Utilizing Estimated State Value of Self and Teammates.
Robot Soccer World Cup XIII, pages 1–11, 2010.

[25] M. Sridhar and A. Cohn. Unsupervised learning of event classes from
video. AAAI, pages 1631–1638, 2010.

[26] P. Stone, G. Kaminka, and S. Kraus. Ad hoc autonomous agent
teams: Collaboration without pre-coordination. AAAI’10, 2010.

[27] P. Stone, G. Kuhlmann, M. Taylor, and Y. Liu. Keepaway soccer:
From machine learning testbed to benchmark. RoboCup 2005: Robot
Soccer . . . , 2006.

[28] P. Stone, P. Riley, and M. Veloso. The CMUnited-99 champion
simulator team. RoboCup-99: Robot soccer world cup III, (Section
2), 2000.

[29] P. Stone, R. S. Sutton, and G. Kuhlmann. Reinforcement Learning for
RoboCup-Soccer Keepaway. Adaptive Behavior, pages 1–50, 2005.

[30] K. Sullivan and S. Luke. Real-Time Training of Team Soccer
Behaviors. RoboCup 2012: Robot Soccer World Cup XVI, 2013.

[31] D. C. D. L. Vieira, P. J. L. Adeodato, and P. M. Gon. Improving
Reinforcement Learning Algorithms by the Use of Data Mining
Techniques for Feature and Action Selection. IEEE International
Conference on Systems Man and Cybernetics, pages 1863–1870,
2010.

[32] N. Weghe, A. Cohn, G. Tre, and P. Maeyer. A qualitative trajectory
calculus as a basis for representing moving objects in geographical
information systems. Control and Cybernetics, 35(1), 2006.

[33] J. Young and N. Hawes. Predicting Situated Behaviour Using
Sequences Of Abstract Spatial Relations. In Proceedings of the AAAI
2013 Fall Symposium How Should Intelligence be Abstracted in AI
Research: MDPs, Symbolic Representations, Artificial Neural
Networks, or _____?, 2013.


