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Abstract

Object recognition systems can be unreliable when run
in isolation depending on only image based features, but
their performance can be improved when takingscene
context into account. In this paper, we present tech-
niques to model and infer object labels in real scenes
based on a variety ofspatial relations– geometric fea-
tures which capturehow objects co-occur – and com-
pare their ef�cacy in the context of augmenting percep-
tion based object classi�cation in real-world table-top
scenes. We utilise a long-term dataset of of�ce table-
tops for qualitatively comparing the performances of
these techniques. On this dataset, we show that more
intricate techniques, have a superior performance but
do not generalise well on small training data. We also
show that techniques using coarser information perform
crudely but suf�ciently well in standalone scenarios and
generalise well on small training data. We conclude
the paper, expanding on the insights we have gained
through these comparisons and comment on a few fun-
damental topics with respect to long-term autonomous
robots.

1 Introduction
Human environments are characterized by the objects they
contain and if robots are to perform useful service tasks
for humans, it is crucial that they are able to locate and
identify a wide variety of objects in everyday environ-
ments. State-of-the-art object recognition/classi�cation typ-
ically relies on matching the features extracted with mod-
els built through machine learning techniques. As the num-
ber of object classes a given system is trained to recognise
increases, the uncertainty of individual object recognition
tends to increase - due to the high chance of existence of
overlapping features between the training examples of such
classes. The reliability of such recognisers is also affected
when used by real robots in everyday environments, as ob-
jects may be partially occluded by scene clutter or only visi-
ble from certain angles, both potentially reducing the visibil-
ity of features for their trained models. In this paper we ar-
gue that the performance of a robot on an object recognition
task can be increased by the addition ofcontextual knowl-
edgeabout the scene the objects are found in. In particular
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we demonstrate how models of thespatial con�gurationof
objects, learnt over prior observations of real scenes, can al-
low a robot to recognise the objects in novel scenes more
reliably.

Our work is performed in the context of developing a mo-
bile service robot for long-term autonomy in indoor human
environments, from of�ces to hospitals. The ability for a
robot to run for weeks or months in its task environment
opens up a new range of possibilities in terms of capabili-
ties. In particular, any task the robot performs will be done in
an environment it may have visited many times before, and
we wish to �nd ways to capture the contextual knowledge
gained from previous visits in a way that enables subsequent
behaviour to be improved. The use of context to improve
object recognition is just one example of this new intelligent
robotics paradigm.

In this paper we focus on the task oftable-top scene un-
derstanding, and more speci�cally what objects are present
on a table-top. Whilst the objects present on a single table
may change in position, their overall arrangement has some
regularity over time as in�uenced by the amount and type
of use to which the table is put. For example, if this table is
used for computing, then a (relatively static) monitor will be
present, with a keyboard in front of it and mouse to one side.
A drink, or paper and a pen, may be within an arm's length
of the keyboard, as may headphones or a cellphone. This
arrangement may vary across different tables in the same
building, but the overall pattern of arrangements will contain
some common underlying structure. It is this structure we
aim to exploit in order to improve the recognition of table-
top objects, e.g. knowing that the object to the right of a
keyboard is more likely to be a mouse than a cellphone.

As the absolute positions of objects on a table (or their rel-
ative positions with respect to some �xed part of the table) is
quite unlikely to generalise across a range of different tables,
we are investigatingrelationalmodels of space, i.e. ways of
encoding the position of a target object relative to the posi-
tion of one or more landmark objects. Using a data set of
table-top scenes (Thippur et al. 2014) (brie�y described in
Section 3.1), in this paper we explore the performance of a
variety of representations for relative object position, plus
inference techniques for operating on them, on the task of
table-top scene understanding (Section 4). In particular we
investigate representations that use varying forms of spatial



relations, from actual geometric and metric spatial relations
(MSR) such as distances and angles to more qualitative spa-
tial relations (QSR) such asLeft andBehindas a means for
capturing observations of object con�gurations over time.

The contributions this paper makes are: (1) A novel com-
parison between mechanisms for representing, learning and
inferring on object spatial con�gurations using spatial rela-
tions. (2) An evaluation of the use of these mechanisms for
augmenting a robot's vision basedperception system(PS).
(3) Our insight on the performances of the various context
based recognition systems.

It is unfortunate that we cannot avoid many acronyms in
this paper. However, to help the reader, we summarize all of
the acronyms in a table in Section (7).

2 Related Work
2.1 Spatial Relations Based Techniques
Spatial relations have been used previously to provide con-
textual information to vision-related work. Choi et al. (2010)
used a hierarchy of spatial relations alongside descriptive
features to support multiple object detections in a single im-
age. The work in Divvala et al. (2009) uses a set of con-
textual cues either depending on image properties such as
pixel neighbourhoods, adjacent frames in a video and other
image-based features; and on metadata properties such as
geotags, photographer ID, camera speci�cations etc. Most
importantly, they use spatial context con�gurations pro-
jected onto typical 2D images, size relationships between
object representations in the image and such, to obtain a
better semantic segmentation and object annotation in the
image. Our QSR models, in contrast to this work, are de-
pending solely on spatial relations in 3D while they use a
metric stochastic approach. We also only focus on a group-
label assignment problem for already detected objects.

Spatial relations and contextual information are com-
monly used in activity recognition from video streams.
For example, Dubba, Cohn, and Hogg (2010) demonstrate
the learning of activity phases in airport videos using spa-
tial relations between tracked objects, and Behera, Cohn,
and Hogg (2012) use spatial relations to monitor objects
and activities in videos of a constrained work�ow environ-
ment. Recent work has used object co-occurrence to pro-
vide context in visual tasks. Examples in 2D include ob-
ject co-occurrence statistics in class-based image segmen-
tation (Ladicky et al. 2013); and the use of object presence
to provide context in activity recognition (Li et al. 2012).
However, all this previous work is restricted to 2D images,
whereas our approaches work with spatial context in 3D
(RGB-D) data. Authors have also worked with spatial con-
text in 3D, including parsing a 2D image of a 3D scene into
a simulated 3D �eld before extracting geometric and con-
textual features between the objects (Xiao et al. 2012). Our
approaches to encoding 3D spatial context could be applied
in these cases, and we use richer, structured models of object
relations.

Apart from using the statistics of co-occurrence, a lot of
information can be exploited fromhowthe objects co-occur
in the scene, in particular the extrinsic geometric spatial re-

lations between the objects. Recent work in 3D semantic la-
belling has used such geometric information along with de-
scriptive intrinsic appearance features (Koppula et al. 2011).
They achieve a high classi�cation accuracy for a large set of
object-classes belonging to home and of�ce environments.
Scene similarity measurement and classi�cation based on
contextual information is conducted by Fisher, Savva, and
Hanrahan (2011). They also use spatial information for
context-based object search using Graph Kernel Methods.
The method is further developed to provide synthetic scene
examples using spatial relations (Fisher et al. 2012). In (Ay-
demir et al. 2011) spatial relations between smaller objects,
furniture and locations is used for pruning in object search
problems in human environments. In (Lin, Fidler, and Ur-
tasun 2013) a technique is developed for automatic anno-
tation of 3D objects. It uses intrinsic appearance features
and geometric features and is employed to build an ob-
ject and scene classi�er using conditional random �elds. In
(Kasper, Jakel, and Dillmann 2011) the authors utilise both
geometric single object features and pair-wise spatial rela-
tions between objects to develop an empirical base for scene
understanding. Recent studies (Southey and Little 2007;
Kasper, Jakel, and Dillmann 2011) compute statistics of
spatial relations of objects and use it for conditional ob-
ject recognition for service robotics. Finally, Ruiz-del So-
lar, Loncomilla, and Saavedra (2013) improve on (Aydemir
et al. 2011) by introducing the use of search-masks based
on primitive threshold-based distance based spatial relations
ranging from ”very far” to ” very near”. The authors in this
work also test only on a simulated environment.

Whilst our techniques are comparable to those in the lit-
erature (as above), our contribution comes from the explicit
comparison of different representations of spatial context
(metric vs qualitative) on a novel, long-term learning task.
Additionally our qualitative approach relies on many dif-
ferent kinds of spatial relationships which could be pro-
vided through other mechanisms than unsupervised machine
learning (e.g. through a human tutor describing a spatial
scene), and in this way bootstrap the system using expert
knowledge. The spatial relations discriminate object pairs
based on location, distance, size etc. We also evaluate our
comparison experiments on a recently developed real-world
dataset which could evolve into a benchmark for testing such
methods.

3 Evaluation Scenario
Our evaluation scenario stems from our interest in long-term
autonomy in real environments. The aim of our project is to
make long-term intelligent observation/surveillance robots
to assist humans working as security guards or personnel in
elderly care scenarios. Our techniques will run on a mobile
robot capable of patrolling a collection of of�ces a couple of
times during the day. The role of this robot is to inspect the
tables in these of�ces for certain conditions (e.g. checking
that laptops or con�dential papers have not been left unat-
tended in an insecure area). This robot is equipped with a
3D perception system(PS) which can segment potential ob-
jects from table-top backgrounds asobject clusters. It can
also use a pre-trained classi�ers to assign a distribution over



Figure 1. One table-top scene from the dataset (top), along with
its corresponding annotations (bottom).

category labels to each cluster (Aldoma et al. 2012). The task
we now address is – how can the spatial properties of the ob-
served object clusters be used to improve the performance
of the robot on this categorisation task beyond the baseline
provided by the unaugmented classi�er? We assume that the
robot has access to a database of labelled table-top scenes,
as would be captured on its previous patrols of the same of-
�ces, and must create a model from this data which it can
exploit for the labelling.

To provide a detailed exploration of approaches for rep-
resenting and reasoning with spatial context, we remove the
robot from the design and evaluation of techniques, and in-
stead use KTH-3D-TOTAL in place of the observations that
would have, in principle, been gathered by the robot on pre-
vious patrols. Evaluating on a dataset rather than a real robot
allows us to vary parameters in the experimental con�gu-
ration (e.g. initial classi�er labelling accuracy) in order to
consider a broader range of conditions that would otherwise
be possible. However, our evaluation setup (Section 5.1) is
constrained to conditions that re�ect the operation of the full
robot system (e.g. the order in which the observations are
gathered) (Kunze et al. 2014).

For our experiments, we focus on the problem ofjoint ob-
ject classi�cation; this is the task in which a set of detected
objects (at least 2 objects) are assigned class labels simulta-
neously, based on extracted features which could be single
object features, relational features, co-occurrence features
etc. It addresses the question of - “What is the best group
of label-�ts, collectively, to a group of objects?” rather than
“What is the collection of best label-�ts to individual ob-
jects, all takenseparatelyin the same group of objects?” In
all our experiments we are interested in observing the perfor-
mance of our methods (described in Section 4) on joint ob-
ject classi�cation using only spatial relational features (met-
ric or qualitative). At this point we would like to emphasize
the meanings of two important terms w.l.o.g for the methods
described later (in Section 4)
� Relatum: This is the object which is alandmarkor with

respect to which a spatial relation could be measured.

� Referant: This is the object to which a spatial relation is
measured with respect to the relatum.

For example, if we measure: “the mug is 22cm shorter than

the monitor” then, the spatial relation is “shorter than”;
“monitor” is the relatum and “mug” is the referant.

3.1 Dataset
To enable us to develop and test our techniques for spatial-
relation based scene understanding, we have used a dataset
of real world table-top scenes called KTH-3D-TOTAL
(Thippur et al. 2014). This dataset contains views of the
same set of tables captured repeatedly, across intervals of
a few hours, to over many days. There are some examples
of the table-tops from the dataset in Figure (2). Clearly,
the con�guration of the table has a lot of variation between
scenes and between different instances of the same scene.
Despite the credible variations in instances and structure,
there are still inherent contextual/semantic structures that
humans recognise – which is exactly what we want to model
and exploit.

The dataset contains the individual and group varia-
tion in object position and pose due to human interaction.
Each scene in the dataset is a registered point cloud ob-
tained from a continuous scan and hence contains a richer
and more robust snapshot of the table-top. These scenes
contain manually annotated objects on the table-tops with
multiple instances from about 10 object categories per
scene. The objects belong to the following super set of
categories-f Mouse, Keyboard, Monitor, Laptop, Cellphone,
Keys, Headphones, Telephone, Pencil, Eraser, Notebook,
Papers, Book, Pen, Highlighter, Marker, Folder, Pen-Stand,
Lamp, Mug, Flask, Glass, Jug, Bottleg.

4 Metric and Qualitative Spatial Context
The following sections present two approaches for learning
spatial relation models (SRMs) from observations of object
con�gurations. The �rst approach (Section 4.1) is based on
metric information, the second (Section 4.2) abstracts from
metric information to qualitative relations.

Whilst the metric approach is based on state-of-the-art
features, it produces a model which is useful only for joint
object classi�cation or collection of single object classi�-
cations. In contrast, the qualitative approach creates a rep-
resentation which can be used for a broader range of spa-
tial tasks: supervised object search, quick structure learning,
and even including language grounding and communicat-
ing for knowledge transfer. However, its coarser representa-
tional structure may prevent it from making highly accurate
distinctions during object classi�cation. This can be under-
stood better by seeing QSR as coarser or more discrete ver-
sions of the actual measurement based MSR. The classi�er
trained on QSR could thus be limited in accuracy because of
nature of the range of features available for it to discriminate
upon.

4.1 Metric Spatial Relations
Metric spatial relations (MSR) considered here are features
extracted based on relationships between actual measure-
ments observed about the objects.

Joint object classi�cation is performed using a voting
scheme based strategy that captures the spatial and semantic



Figure 2. Column-1 (L to R) shows the robot ROSIE (SCITOS G5 platform with additional 3D sensors) that is being used for deploying and
testing our current systems. Column-2 shows the table of the same person with changes in arrangement between the morning and evening on
the same day. Column-3 shows the table con�gurations of a different person 12 days apart (Thippur et al. 2014).

coherence of object arrangements in an indoor scene envi-
ronment by exploring the spatial relations of objects. De-
pending on what combination of relatums and referants are
considered and the spatial relations between them, we may
quite possibly obtain many label assignments to the same
referant with respect to the different relatums considered.
However, these label assignments can be weighted and these
count as weighted votes which, as detailed below and in (Al-
berti, Folkesson, and Jensfelt 2014), determine the �nal label
assignment to the referant.

Features and Spatial Relation Based Features:To
model the object categories and the relationships between
pairs of object categories, we use the sets proposed in (Al-
berti, Folkesson, and Jensfelt 2014) to capture the object ge-
ometry and the spatial distribution of objects in the scene.
Object pair featuresrepresent the pairwise spatial distribu-
tion of the objects,f oi ;o j as: Euclidean distance between ob-
ject centroids and its projection in the X-Y plane; bearing
between the two object centroids; ratio of object volumes;
vertical displacement between object centroids.

Learning Spatial Models: In the training phase, the re-
lationship of the different object category pairs are mod-
elled by applying a Gaussian Mixture Model on the multi-
dimensional feature space of object pair features set.

The Voting Scheme: In the inference phase, a voting
scheme is applied and a scoreScoreA (oi ; cp), is computed
for the assignment of each test object,oi , to each of the
possible categories,cp, based on the spatial relations with
the other objects.ScoreA (oi ; cp) is computed as the sum of
pairwise scoresthat involve the considered assignment:

ScoreA (oi ; cp) =
X

j 2f 1;:::;n g
j 6= i

X

q2f 1;:::;m g
q6= p

ScoreP ((oi ; cp); (oj ; cq)) ; (1)

wheren is the number of test objects andm is the number

of object categories. Thepairwise scoreis de�ned as:

ScoreP ((oi ; cp); (oj ; cq)) = ScoreOP ((oi ; oj ); (cp; cq))
(2)

The scoreScoreOP ((oi ; oj ); (cp; cq)) takes into account the
likelihood value of the category pair model – given the ex-
tracted features, corresponding to the conditional probabil-
ity of the features – given the trained models. The con�-
dence or probability value provided by a vision-based PS,
Cperc (oi ; cp), is also considered when it is available, in the
following manner:

ScoreOP ((oi ; oj ); (cp; cq)) = p(f oi ;o j jcp; cq)�

max(1; Ncp ;cq )
(1 + N tot )

; (3)

whereNcp ;cq is the number of scenes where bothcp andcq
are present andN tot is the total number of training scenes.
The numerator and denominator terms,max(1; Ncp ;cq )
and (1 + N tot ), ensure that occurrence and co-occurrence
weights are never0 or 1.

4.2 QSR-based techniques
Qualitative relational approaches abstract away the geomet-
ric information of a scene such as relative angles, rela-
tive distances, and relative sizes, and instead represent a
scene using �rst-order predicates such asleft-of, close-to,
andsmaller-than. Our work �rst generates these �rst-order
predicates from geometric descriptions, then builds a proba-
bilistic model to reason about the class of an object, without
knowing the geometric grounding of the state.

Qualitative Relations In this work we adopt a semi-
supervised approach to produce a symbolic description of
a geometric con�guration constructed from12 predicates:
4 directional,3 distance,3 size and2 projective. We chose
these directional and distance predicates as they seem lin-
guistically most common and are suggested as suf�cient to



describe the world (Freeman 1975). Unless mentioned oth-
erwise, the predicates are de�ned using arbitrary thresholds
which were hand tuned. Also the predicates are independent
of object category. For instance,close-torelationship w.r.t
Monitor is notdifferent from close-to w.r.t Mouse.

Directional predicates are created using theternary point
calculus(Moratz, Nebel, and Freksa 2003). The three po-
sitions in the calculus are theorigin, relatumandreferent.
In this work, origin corresponds to the position of therobot,
relatum to alandmarkobject, and the referent to another
objectunder consideration.Robotandlandmarkde�ne the
reference axis which partitions the surrounding horizontal
space. Then, the spatial relation is de�ned by the partition
in whichobjectlies with respect to the reference axis. In or-
der to determine the partition, i.e. the directional relation, we
calculate the relative angle� rel as follows:

� rel = tan � 1 yobj � yland

x robj � x land
� tan � 1 yland � yrobot

x land � x robot
(4)

� rel , is the angle between the reference axis, de�ned by
robot and landmark, and theobject point. Depending on
this angle we assign directional relations (behind, in-front-
of, left-of, right-of) to pairs of objects. When multiple as-
signments (such as front-right) are possible the predicate
with the most score is assigned and the rest discarded for
this experiment. This scoring scheme can also be used to
maintain such ambiguous assignments. Distributions can be
built using QSR scores independently in every predicate di-
mension.

Distancerelations are determined by clustering observed
geometric examples. A training set of object scenes is used
to derive cluster boundaries between a previously de�ned
number of clusters, each of which will correspond to a qual-
itative relation. Based on the membership of a geometric re-
lation to a cluster, the associated qualitative predicate is then
assigned to a pair of objects. In our technique we use three
different predicates:very-close-to, close-to, distant-to.

Size predicates compare dimensions of two objects in-
dependently along each axis leading to the three predicates
shorter-than, narrower-than, andthinner-than.

Projective connectivitybetween two objects uses Allen's
interval calculus (Allen and Allen 1983) on the projection
of the objects' axis-aligned bounding boxes onto the x or y
axis. Theoverlapspredicate is then extracted for each axis.

In every scene, given a set of objects, every object is con-
sidered as a landmark in turns and all remaining objects are
considered for extracting measurements for all of these pred-
icates.

Probabilistic QSR-based Reasoning Our objective is to
infer the types of all objects given a symbolic scene descrip-
tion

S = C1 ^ C2 ^ ::: ^ Cn (5)

whereCn is a clause in a description comprising of a relation
predicateR between two objectsOA andOB :

Cn = ( R OA OB ); (6)

for example(shorter-than object15 object7) .

To achieve this we formulate the problem probabilisti-
cally: from a training set of scene descriptions for which ob-
ject types are labelled, we use the occurrence count for each
relation to estimate the probability that it will hold given the
object types of its arguments:

p(RAB
n jL A ; L B ) =

NR n ;L A ;L B

NL A ;L B

(7)

whereRAB
n is one of the12symbolic relations between two

objectsOA and OB with class labelsL A ; L B , NL A ;L B is
the number of times that objects of typesL A andL B have
co-occurred across all training scenes, andNR n ;L A ;L B is the
number of times that relationRn has occurred between ob-
jects of typesL A andL B across all training scenes.

Then, given a new scene descriptionS for which the ob-
ject types are only known from perception with a certain
con�dence, we �nd all object labels simultaneously. Assum-
ing that one relation holding is independent of another hold-
ing, we can apply Bayes theorem successively to �nd the
labels of all objects:

p(L jR1; R2:::Rn ) /
Y

i =1 ::n

p(Ri jL )p(L ) (8)

whereL is a vector of class labels for the objects inS, and
Ri is thei th relation inS. The prior probability of the labels
p(L ) comes from the robot's perception model:

p(L ) =
Y

i =1 ::n

p(L n ) (9)

where alln object class labels are independent and provided
with their con�dencesp(L n ).

Finding the optimum class labelling estimateL̂ for the ob-
jects is then equivalent to �nding the maximum posterior in
Equation (8). To avoid computational arithmetic problems
when dealing with very small unnormalised probabilities,
we replace the product in Equation 8 with a sum of loga-
rithms:

L̂ = arg max
L

X

i =1 ::n

logp(Ri jL ) + log p(L ) (10)

We performed this maximisation using gradient ascent.

4.3 Spatial Relations Example
Consider the many instances of mice (referant) on table-tops
w.r.t their corresponding keyboards (relatum) assuming that
the robot (origin) is facing the table just as a human would
sit at the table and work.

For every instance of the object-pair, MSR and QSR fea-
tures be extracted. A MSR-based feature vector would be
comprised of real numbers from the actual geometric cal-
culations for distance, orientations, volume ratios, overlap
measures etc. In contrast, a QSR-based feature vector would
have every dimension range in[0; 1] re�ecting the extent of
alignment with the QSR.

Using this type of data we could model a distribution of
these feature vectors for both SRMs for “mice w.r.t key-
board”. For the MSR-based system, this is characterized
by the parameters of the learnt Gaussian Mixture Model



(means and covariances), whereas for the QSR-based sys-
tem, it could be a discrete distribution. An example of such
a distribution could be mouse w.r.t a keyboard is 0.75 right-
of, 0.20 in-front-of, 0.03 for left-of and 0.02 behind-of.

5 Experimental Evaluation
5.1 Experimental Setup
To compare the above approaches we chose the task of im-
proving object labelling using spatial contexts (Metric or
QSR) and we use the following experimental setup. The an-
notated dataset is split into training and test sets as described
below. For the test data we use a simulated PS to assign
class labels to objects along with con�dence values. We can
con�gure this simulated PS with a perceptual accuracy per-
centage, which describes the percentage of objects which are
assigned the correct label. We varied this percentage to ex-
plore how different perception systems will bene�t from our
work. We also varied the percentage of the available train-
ing data (TP) we used to train our models, to explore how
sensitive the approaches are to data availability – as this is
crucial in online learning applications (such as our long-term
autonomous patrolling robot).

Using this setup we performed two experiments with
different foldings of the data:leave-one-out-foldingsand
single-table-foldings. The leave-one-out-foldings experi-
ments evaluate how our approaches operate on unseen tables
(the ones left out) after training on all other tables. This is to
replicate the condition of a trained robot encountering a new
table, a likely situation in our application. The single-table-
foldings experiments evaluate how our approaches perform
only on a single person's table and more importantly – less
number of training samples. This is also an important use
case on our robot, where data from individual tables can be
separated by position in a global map. For the leave-one-out-
foldings experiments we split the data 70/30 into train and
test sets (i.e. 14/6 tables or 330/141 scenes), performing 4
folds, and in each fold the 6 left out tables were randomly
selected. For single-table-foldings we split the data 60/40,
working with approximately 18/12 scenes per table, with re-
sults averaged over 6 tables. In all cases we tested with raw
perception system accuracy values of 0%, 25%, 50%, 75%
and 100% and training percentage (TP) values of 10%, 20%
... 100% (of the assigned training set). When the accuracy
of PS is 100% it means that the perception system classi�es
the object to the correct class all the time with 100% con-
�dence. When the accuracy of PS is 0% it means that the
classi�cation is random with 100% con�dence.

For each experiment we apply both the metric spatial
model from Section (4.1) (labelled MSR below) and the
qualitative models from Section (4.2). As discussed above,
the MSR-based technique extracts features which can ac-
cept real or continuous values such as orientation angle, eu-
clidean distance etc. of the object w.r.t a landmark and hence
utilises a suitable inference mechanism based on Gaussian
Mixture Models. However, the QSR-based techniques can
be perceived as systems that operate on features obtained ac-
cording to pre-de�ned discretizations of the corresponding
type of features used by the MSR-based technique. There-
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Figure 3. Leave-one-out-foldings Experiments: Comparison of
our SRMs with different testing parameters. (a) MSR(� )-dotted
line, TDRC(� ), TDR(� ), TD(� ) and T(� ) techniques trained at 60%
of training fold. (b) MSR-based technique at different TPs. (c)
TDRC technique at different TPs. TP= 10%(� ) 60%(� ) 100%(� )
of 330 scenes – in (b,c). The error bars in all, capture themax
andmin value of the PS+SRM system accuracy when checked for
different foldings. Raw PS system accuracy is in (� ).

fore the QSR-based model requires a more appropriate in-
ference system, in this caseprobabilistic reasoning.

For the QSR-based techniques we explore the effects of
different combinations of qualitative relations. The QSR
techniques were successively expanded in order to function
on larger feature sets by including one extra type of more
complex relation in every successive version of the tech-
nique. Individual relations are labelled as follows: ternary
point calculus (T), qualitative distance (D), relative size (R),
projective connectivity (C). Combinations of labels re�ect
the combination of relations that were employed (e.g. T uses
only ternary point calculus QSR and TDRC uses all rela-
tions). Similarly, the MSR-based technique was tested with
different combinations of the features; However, we present
only the best comparable version of the MSR-based tech-
nique which works with all the features considered. To keep
fair contest between the techniques, the �nal set of features
for the MSR-based technique are: relative angle, relative dis-
tance, relative size along the 3 axes and projected connectiv-
ity along the 2 axes which correspond to the feature set used
by the QSR techniques.

5.2 Results and Analysis

The plots in Figure (3) are the results of the leave-one-out-
foldings experiments. Figure (3a) presents the comparison



of all our techniques with respect to changes in the accuracy
of the raw PS. The results show that for low perceptual ac-
curacy, all approaches offer an improvement beyond percep-
tion, but as perceptual accuracy increases the effect lessens,
with only the MSR-based technique offering any improve-
ment when the perceptual accuracy reaches 75%.

The different techniques presented encode different types
and amounts of information about scene context. The MSR-
based technique operates on more continuous features and
hence more detail thereby commensurately makes the most
improvement over raw PS compared to the QSR system,
given a substantial amount of training data. As additional
relations (and thus information) are added to the qualita-
tive relational approaches, a corresponding performance in-
crease occurs, although it appears that the connectivity rela-
tion does not have any effect on the results.

Spatial information alone is suf�cient to achieve a use-
ful classi�cation accuracy of 50% or higher for some tech-
niques (MSR, TDR(C)) – look at the performances in the
leave-one-out-foldings experiments at accuracy of PS at 0%.
At 100% all of the techniques are implemented such that
they are completely overshadowed by PS and do not affect
the PS+SRM accuracy. This is not the case for the T(D) ap-
proaches at 50% and 75% perceptual accuracy, where they
actually reduce the combined result below raw PS.

Notice that the accuracy of the TDR and TDRC tech-
niques are better than T or TD techniques by about 10-20%
consistently. The T and TD techniques use direction and dis-
tance only and with the variety of con�gurations in present
in the dataset, and the few coarse features used, it becomes
very hard to come up with distinguishing models for differ-
ent objects based only on these. For example, the distribution
of mugs, books and papers w.r.t monitor would look similar
if only T and D predicates are used. Adding the three pred-
icates for size removes this ambiguity because mugs, books
and papers always have a well de�ned set of dimensions
compared to each other. Then again the connectivity pred-
icates do not add too much more of a distinguishing capac-
ity because they also, with many examples, can have similar
looking distributions of measures. This result also makes it
evident that the main discriminative feature comes from the
object size relations. This occurs because even though the
accuracy of the perception system accuracy has increased
the accuracy of MSR and QSR systems have not increased
as they access training data of similar quantity and quality.

Figures (3b) and (3c) hence demonstrate the in�uence
of TP on our techniques. However, there is very small in-
cremental change in performance as the training set ranges
from 10% to 100% of the available training data. This exper-
iment shows that even though we have increased the number
of training data from about 35 scenes to 330 scenes the ef-
fect of availability of data is minimal. This is because the
multiple instances of most of the object categories occur-
ring in these scenes make the training of the relational mod-
els quite �at. For instance, the amount of spread of occur-
rences of mugs with respect to monitors becomes so wide
that training a Gaussian Mixture Model for modelling that
distribution yields one mixture component with a very large
footprint. This might even confuse the SRM and degrade the
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Figure 4. Single-table-foldings Experiments: Comparison of
our SRMs with different testing parameters. MSR(� )-dotted line,
TDRC(� ), TDR(� ), TD(� ) and T(� ) techniques trained at TP of (a)
10% (b) 30% (c) 70% (d) 100% of training data which is 36 scenes.
The error bars capture themax and min value of the PS+SRM
system accuracy when checked for different tables. Raw PS system
accuracy is in (� ).

performance of the classi�er.
Figure (4), shows the results of the single-table-foldings

experiments. As these were performed on only data from
a single table, much less data was available in each case
(100% TP is 36 scenes). When only very few training sam-
ples are available the MSR-based model is unable to gener-
alise, whereas the QSR models perform at about 50% (Fig-
ures 4a, 4b), bene�ting from the natural generalisation con-
tained in their coarser representation (e.g.right-of, nearer-
to which are ranges of values available to the MSR-based
technique)(Section 6). In cases where more data is avail-
able (Figures 4c, 4d), the results show a similar pattern to
the leave-one-out-foldings experiments, with the more de-
tailed model of MSR-based technique outperforming the
QSR techniques.

6 Discussion
The experiment tests the SRM techniques in an object classi-
�cation task, differing mainly in the variety of features they
utilise. The features used by the MSR-based technique are
mainly extracted from raw data on which spatial contex-
tual models are built. However, the QSR techniques use hu-
man de�ned feature sets with which we can well de�ne the
scenes in the world. They “extract” features by calculating
the alignment of the environment instance with these feature
de�nitions. In other words, the QSR techniques “learn how
likely it is that a given qualitative structure matches with the
world through the creation of a probabilistic model. This is
learning structure, but not actually learning spatial structure.

Let us take a look at the main advantages of QSR over
MSR. For an extreme example, consider a single instance
of mug with respect to the monitor. Let us say we know:



its centroid location (for MSR) and the fact that it isright-
of monitor (for QSR)(having previously de�ned this spa-
tial relationright-of). Subsequently, let us develop separate
generic models using both of these techniques. The MSR-
based model learns “all mugs are always atthat particular
single point and pose w.r.t the monitor” because of the single
data point available. The QSR technique learns “all mugs are
right-of monitor” andright-of de�nes a region (containing
an inherent generalisation) with respect to the monitor and
not a single point. Hence the QSR system can accommodate
to estimate the position of a mug in a new scene (assuming
that majority of the people are right handed and the mug is
usually to the right of the monitor on tables of right handed
people). It is thus evident that the latter will be able to gen-
eralise with just a few data points, because of the general-
isation contained in QSR featureright-of in contrast to the
MSR-based technique.

The MSR-based technique learns from features capable
of higher precision (more continuous values in comparison
to the QSR technique) and this needs a substantial amount
of data (about 40-50 instances) before a generic model can
be successfully learned. The features used by the QSR tech-
niques have an inherent generalisation and thus with very
low amounts (about 3-6 instances) of available data they are
still able to generate spatial relations models which gener-
alise crudely enough for lower accuracy functionalities (hy-
potheses bootstrapping).

The MSR-based technique, with suf�cient data, (assum-
ing the data it has observed is drawn from the same distribu-
tion it is yet to observe) will always perform better than the
QSR technique, because it will build a more speci�c model
that is best suited for the kind of environments it has seen
and is expecting to see. The QSR technique will build a good
model but still confound itself with the generalisations con-
tained in the de�nitions of the features. The QSR features,
though a boon for generalising in situations of less data, act
as unneeded hurdles when there is suf�cient data to build
more accurate models. In case we are uncertain if the train-
ing data is a good representation of the test data, then the
QSR techniques can be expected to offer a comparatively
more robust performance than the MSR-based techniques
because many outliers get subsumed within the coarseness
of representation in the QSR features which could otherwise
hurt the training of MSR-based models.

We think the main situation where pre-de�ned, linguisti-
cally suitable QSR are useful are when we suspect there is
structure present that the robot should learn, but we don't
have the data to support it yet (Section 5.2). QSR are also
of utility when the robot should report its knowledge to a
human and when it needs to use human guidance for under-
standing structure in the environment.

In summary, these results give us indications of what to
use when a real robot must start from little or no knowledge
about the environment and bootstrap by learning online from
its observations. This suggests that a long-term autonomous
environment-generic robot could begin operating and learn-
ing using a QSR-based technique out-of-the-box and grad-
ually adopt an MSR-based technique, once it (MSR-based
technique) is ready to deliver robustly and better than the

QSR-based technique. Then again, this is very application
speci�c.

QSR-based techniques have an edge over MSR-based
techniques if there is a need to transfer knowledge:robot !
humanor human! robot. We strongly believe that when
qualitative knowledge (in contrast to quantitative knowl-
edge) is shared between robots, in the scenario that they have
very little training data - then the inherent generalisations
in such descriptions lead to better generalising capabilities.
Thus, they (QSR techniques) might be better even in the
robot ! robot transfer of knowledge scenario. For example,
5 table-top scenes from robot-operation-site A and robot-
operation-site B each could help generalise better about
topological models than actual metric measurements of all
the object con�gurations from these 10 scenes.

7 Acronyms and Descriptions

Acronym Description

MSR Metric Spatial Relations

QSR Qualitative Spatial Relations

SRM Spatial Relation Model, which could be based
on MSR or QSR

PS Vision-based Perception System. This is un-
aided by any SRMs.

TP Training Percentage. This is the percentage of
available data used as Training Data in the ex-
periments. e.g. 10%, 70%

T (Ternary point calculus) based QSR technique.

TD (Ternary point calculus + Qualitative distance)
based QSR technique.

TDR (Ternary point calculus + Qualitative distance
+ Relative size) based QSR technique.

TDRC (Ternary point calculus + Qualitative distance
+ Relative size + Projective Connectivity)
based QSR technique.

8 Conclusions
We presented two techniques for learning spatial context
from observations of collections of objects, and for using
this learnt context to improve the performance of a percep-
tion system on an object classi�cation task. Our techniques
were evaluated on a long-term 3D table-top dataset. The re-
sults showed that spatial context knowledge can be used to
improve classi�cation results beyond that of raw perception
systems (i.e. 3D-vision-based object classi�ers which oper-
ates only on visual cues extracted from point cloud images).
Results also showed that different models can play different



roles in a robot system: more complex metric models using
learnt relational features appear to have better performance
when enough training data is available to allow them to
generalise, but coarser qualitative relational models perform
when only few training samples are available and the robot
needs to start functioning and learning in an online man-
ner. However, when there is need for any kind of knowledge
transfer, QSR-based techniques could be more ef�cient. In
the future we plan to extend this research to beyond table-
top scenes to full rooms, over longer periods of time, and
evaluate similar techniques in an online, active learning set-
ting on the robot operating in real-world scenarios. We are
also interested in delving the actual structure learning prob-
lem that stems from using such SRM-based description of
scenes.
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