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Abstract— We present a novel task scheduling algorithm for
use on mobile robots in real environments. The scheduling prob-
lem is formalised as mixed integer program, which is a standard
approach in the scheduling community. Our contribution is
the use of Allen’s interval algebra to prune the search to be
performed by the mixed integer program. This significantly
speeds up the algorithm. The proposed algorithm has been
used on several mobile robots in long-term autonomy scenarios,
where it schedules large sets containing a variety of tasks. The
proposed algorithm outperforms the state of the art by at least
one order of magnitude on both these real tasks and synthetic
datasets.

I. INTRODUCTION

Our lives are largely based on schedules, with our be-
haviour being strongly determined by time-dependent tasks,
e.g. we need to be at work, at meetings, at the airport to
take our plane for holiday, at specific times. If we are to use
autonomous service robots to assist us in our lives, such
a robot must respect such time constraints. For example,
imagine a user giving the task “Come to my office at 10:00
and collect a letter” to a robot. The task might not be valid
after this time, and if the robot fails to respect this time
constraint the users would have to do it themselves.

As part of STRANDS project1, we have deployed robots
in care and security scenarios, where people’s health and
property are involved (see Fig. 1). In the care scenario,
we cooperated with “Haus der Barmherzigkeit” – a facility
for elderly people in Austria. Our robot performed 1985
tasks during 14 days of deployment, including navigating
to the chapel or game room, and regularly checking the
emergency exits for obstructions. In the security scenario,
we cooperated with G4S. In one of their buildings the robot
performed 9631985 tasks during 16 days. For example, our
robot created 3D maps of rooms at scheduled times, checked
the position of fire extinguishers, and searched for objects
on desks. In such scenarios, tasks have strict deadlines and
their violation could cause significant risks to the property
and health of users.

A. Scheduling

Before providing a formal definition of our scheduling
problem (see Sec. II), we clarify the terms we use, in order
to be able to relate existing work with ours. In the literature,
the term “scheduling” is often misused to describe just the
ordering of tasks or to express the fact that a task has
time properties (whether or not their execution is organised
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with reference to these properties). For example, ordering
appeared (as scheduling) for the robot RHINO [1] and
expressing time constraints appeared (again as scheduling)
in the robot MINERVA [2] extending work from [3]. In our
work we tackle the pure scheduling problem: each task must
be assigned a time instant when its execution starts, while
time constraints (e.g. deadlines) are not violated.

The terms task, activity and action are also used differently
in literature. In this paper, a task has the time properties:
• release date r (the earliest time instant when a task can

start),
• deadline d,
• processing time p (how many time units a task con-

sumes),
• start time of execution s,
• end time of execution e.

We refer to these properties for a specific task j by adding
a subscript, e.g. rj is the release date for task j.

A task is also associated with an activity to perform, for
example “check the fire extinguisher”. An activity contains
different actions, for example “Go to loc5”, “take a picture
with robot’s camera”, “run object recognition” etc. Actions
are indivisible, they can be used in any combination to create
a new activity for a new task. In this work we only consider
scheduling at the level of tasks, and assume that the actions
which comprise an activity are fixed.

B. Scheduler requirements

We set the following requirements for a scheduler based
on the demands of our user scenarios. A scheduling problem

Fig. 1. The mobile robots Bob and Henry in the security and care scenario



is static (the set of tasks is known beforehand) [4], but
when a new task occurs a new scheduling problem is created
to replace the previous one. The speed of the algorithm is
generally more important than optimality of a final schedule,
as we prefer the robot to act within a reasonable time limit
when given a task. In this paper, we set this limit to three
minutes as an upper limit for people’s patience. The daily
routines provided to our robots require them to be able to
schedule 200 tasks. The deadlines and release dates of these
tasks must be respected. Tasks are performed in different
locations, thus a robot needs to travel between them. A
schedule must therefore take travel time into account.

C. Related Work

Two main approaches to solve the specified scheduling
problem exist: pure scheduling and temporal planning. The
boundary between these approaches is not clear [5]. The
scope of the following literature review is restricted to a
specific domain: a mobile robot performing tasks required
by a user.

1) Temporal planning: There are several ongoing projects
using temporal planning. The social robot Tangy schedules
multi-user activities, while considering users’ schedules [6].
It uses the OPTIC temporal planner [7] that uses PDDL to
specify a set of tasks, and users’ schedules are represented as
Timed Initial Literals (TILs) [8]. In [9], indoor and outdoor
robots cooperate in a senior residential facility. The specified
problem contains causal, temporal, resource and information
constraints and which are encoded as a configuration plan.
None of aforementioned approaches take space constraints
on objects into account. This is overcome in [10], where
authors proposed a new spatial knowledge representation
calculus ARA+.

Temporal planning techniques such as these offer expres-
siveness for task description (including objects, locations,
resources etc.). However, tasks are expressed as a conjunc-
tion of their goals, which can produce a large search space
for large problems, greatly slowing down the search for a
schedule. Since our system is required to schedule a high
number of tasks (up to 200), we decided to not use temporal
planning.

2) Scheduling: Simple Temporal Networks (STNs) [11]
and Mixed Integer Programming (MIP) are two techniques
well-known in the scheduling community. STNs are used in
a robot who monitors the activities of an elderly person [12].
The activities and their time relations are prepared by a carer
beforehand and they are mapped to a temporal constraint
language in O-Oscar architecture [13], which is built on top
of a STN. MIP is used in a scheduler proposed by Coltin et.
al [14] for the CoBots project [15], where multiple indoor
robots operate in an office building. Since this scheduler has
good robustness, it was also used in multi-robot systems
solving the Collection and Delivery Problem with Transfer
(CDP-T) [16]. Coltin et. al’s work has been used extensively
in experiments in real environments and it reliably solves
scheduling problems in a scenario similar to ours – fulfilling
users’ tasks in large office buildings. It also satisfies our

requirements for release dates, deadlines and it takes into
account travel times between locations.

In conclusion, scheduling is a suitable technique to execute
large sets of tasks, which have predefined activities. Due
to the match between Coltin’s et. al’s work and our own
requirements, we have chosen to base our own research on
their approach.

II. PROBLEM DEFINITION
Following the standard terminology in [17] a scheduling

problem in our domain can be specified as:

1| r, settingjk, d|
∑

C , (1)

where
• 1 refers to scheduling for a single robot.
• r restricts that tasks have release dates.
• settingjk stands for setting time between processing of

task j and task k.
• d refers to fact that deadlines must be respected.
•

∑
C is an optimisation criterion referred as total com-

pletion time.
The specified problem can be solved by a scheduler, which

receives an input set of tasks S = {j, k, l, . . . } and finds
time instants {sj , sk, sl, . . . }, when the execution of those
tasks must be started. As a single robot is assumed, the
scheduler must ensure that no tasks overlap. Therefore, it
finds such an ordering of the tasks in series, which minimises
the chosen optimisation criterion. Moreover, a scheduler
must respect the following properties of a task. The execution
of the task j can start at release date rj or later, and it must
end before or at deadline dj . Thus, the time window 〈rj , dj〉
is defined for each task. The activity for task j lasts from
start time instant sj to end time instant ej and consumes
pj units of time. pj is referred as the processing time. The
relation is sj + pj = ej . Following equation must hold:

sj , ej ∈ 〈rj , dj〉 . (2)

A robot starts to execute the task at location lsj and ends
at location lej . The setting time settingjk = time(lej , l

s
k) is

how long a robot travels from end location lej of task j to the
start location lsk of task k. To obtain this travel time when
using a real robot, we use a learning approach [18]. Note that
a robot may take a different amount of time to travel from
lej to lsk than in the reverse direction, due to environmental
constraints.

III. PRUNING SCHEDULER USING INTERVAL
ALGEBRA

The aforementioned scheduling problem is solved by our
proposed algorithm. The algorithm defines a set of con-
straints for each task. These constraints ensure that all the
time properties of the tasks are fulfilled and that no two
tasks overlap. These constraints are solved using MIP to find
the start instant for each task. In general, two orderings are
possible for a pair of tasks j, k, either “j precedes k” or “k
precedes j” (see Fig. 2). Solving the task constraints selects
one of these orderings (satisfying both the task constraints



Fig. 2. Visualisation of two possible situations for task j and k, which
has overlapping time windows. Tasks are same in both situations, but the
travel time differs. In this case, both situations are valid, as both tasks can
be finished before their deadlines.

and the global optimisation criteria). Whilst expressing a
scheduling problem as a set of constraints is a standard
approach in the scheduling community, our contribution
extends this through the use of Allen’s interval algebra [19]
to pre-select one of the possible orderings for each pair
of tasks. This local optimisation greatly reduces the effort
required by the constraint solver, but it does so at the cost of
pruning possible solutions from the search space (losing both
optimality and in some cases completeness). Our algorithm
works as follows:

A) Every possible pair of tasks from the set is analysed.
B) Allen’s interval algebra is used to prune possible

ordering for each pair.
C) The constraints are specified for chosen ordering.

Step C) is based on Coltin’s et al.’s work [14]. The other
steps represent the novel elements of our algorithm.

A. Analysis a Pair of Tasks

Having a pair of tasks j and k, four situations σ might
occur:
• only “j precedes k” is possible (σ0);
• only “k precedes j” is possible (σ1);
• both situations are possible (σ2);
• neither are possible (σ3).

The σ for any pair of tasks depends on the relationship
between their time windows (see Fig. 3). If the time windows
do not overlap, then determining the ordering is simple. If
the time windows do overlap use the following process to
determine which situation holds.

First, we compute the parameter

εo = min(dj − rk, dk − rj).

ε0 is positive if the time windows for tasks j and k overlap.
Then, we test, which ordering – j precedes k or k precedes j
– is possible. For each possible ordering, the maximal size of
an interval where both tasks can fit is ε1 = dk−rj and ε2 =
dj − rk, respectively. The following equations are tested:

ε1 ≥ pj + time(lej , l
s
k) + pk, (3)

ε2 ≥ pk + time(lek, l
s
j) + pj . (4)

Then,

• σ0 occurs iff only Eq. (3) holds;
• σ1 occurs iff only Eq. (4) holds;
• σ2 occurs iff both equations hold;
• σ3 occurs iff neither equation holds.

B. Pruning
When σ2 occurs, our algorithm picks one ordering con-

straint – j precedes k or k precedes j – which it considers
(locally) to be the best. This decision is made based on
the thirteen possible relations of two intervals described by
Allen’s interval algebra (see Fig. 3). For relations “overlaps”,
“starts”, “finishes” the ordering constraint is chosen by
testing the formula:

ε1 > ε2.

If the formula is true, then ordering j precedes k is chosen
and vice versa. This maximises the amount of time available
for the tasks.

For the remaining interval relations (j during k, k during
j and j equals k) the possible orderings are indistinguishable
using the previous rule. Therefore, we choose the ordering
constraint which locally minimises the global optimisation
criterion

∑
C. We calculate this for a pair of tasks as

follows. First, we calculate the criterion
∑
C0, assuming

task j precedes task k. As no other tasks are considered,
task j can start as soon as possible, followed by task k:

sj = rj
sk = rj + pj + time(lej , l

s
k).

(5)

Then, the criterion for this ordering is:∑
C0 = (ej−rj)+(ek−rk) = (sj+pj−rj)+(sk+pk−rk).

This can be simplified using (5) to:∑
C0 = pj + rj + pj + time(lej , l

s
k) + pk − rk. (6)

If the value of sk in (5) is smaller than release date rk, then
its assignment in (5) is not possible. Instead, we set sk = rk
and the criteria is simplified to:∑

C0 = pj + pk. (7)

Next we calculate the criterion
∑
C1, assuming the oppo-

site ordering – task k precedes task j. The criteria is similar

∑
C1 =


pk + rk + pk + time(lek, l

s
j) + pj − rj ,

when sj > rj ,;
pj + pk, when sj = rj ;

(8)

Finally we choose the ordering which produces the lowest∑
C value. If they are equal, then the order does not matter

and we choose task j to precedes task k.

C. Scheduler’s Constraints
Following the results of pruning we build a scheduling

problem by selectively applying the constraints proposed
by Coltin et al.2. Following (2), the first constraint we use
restricts the execution time of a task to its time window:

rj ≤ sj ∧ ej ≤ dj . (9)

2Note that in comparison to [14] we use d to denote the latest time by
which a task must end instead of the latest time when it task can start.
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Fig. 3. Thirteen combination of Allen’s interval algebra

If ε0 ≤ 0, task j does not overlap with task k therefore
no additional constraints are needed for this pair of tasks.
However, if ε0 > 0, we need to link the execution times sj
and sk by a second constraint in order to ensure that the tasks
will not overlap. Coltin et al. treat all overlaps as situation
σ2, but we distinguish between four situations:
• For σ0, i.e. j ordered before k:

sj + pj + time(lej , l
s
k)− sk ≤ 0. (10)

• For σ1, (the reverse of σ0) the constraint is

sk + pk + time(lek, l
s
j)− sj ≤ 0. (11)

• For σ2, as both orderings are possible, both preceding
constraints (10, 11) should be added using a disjunction
relation. It is this disjunction which enlarges the search
space for the constraint solver and slows down the
search for an optimal solution. However, all σ2 are
pruned to σ0 or σ1 by using

∑
C0 and

∑
C1.

• For σ3, there is a flaw in the input set and a schedule
is infeasible.

IV. EXPERIMENTS IN SIMULATION

We implemented both our proposed scheduler and the
state-of-the-art scheduler from Coltin et al. [14] in C++,
using SCIP 3.0.2 [20] to solve the constraints. Our code is
available as a ROS package3.

Properties of Simulation

We have compared the two schedulers on synthetic task
sets with the following properties. The input sets of tasks
are always feasible. The processing time pj is generated
using uniform distribution between values 2 min and 30 min.
The size of the time window 〈rj , dj〉 is set to be ρ-times
bigger than the processing time pj , when ρ is generated as
a random number with uniform distribution from interval
〈4, 100〉. Each set contains multiple groups of tasks, where all
tasks within a single group have one type of Allen’s relation.

3https://github.com/strands-project/strands executive

ω 1% 5% 25% 50% 100%

proposed t [s] 0.044 0.042 0.054 0.133 0.585

Coltin’s t [s] 0.101 188.116 - - -

TABLE I
ALGORITHMS’ DURATION DEPENDENT ON SIZE OF THE GROUP OF TASKS

n 10 20 100 200

proposed t [s] 0.003 0.006 0.097 0.585

Coltin’s t [s] 33.238 196.012 - -

TABLE II
ALGORITHMS’ DURATION DEPENDENT ON AMOUNT OF EQUAL TASKS

Hence, the release date rj and deadline dj of each task are
set based on chosen Allen’s relation to other tasks within the
group. The travel time between any two task locations is a
constant. All tests were run on a Lenovo ThinkPad E-540
with Intel i74702MQ Processor (6MB Cache, 800 MHz).

A. Overlapping Time Windows

The performance of the two algorithms only differs signif-
icantly when σ2 occurs (i.e. when our approach prunes away
possible solutions). To explore this case, ten sets containing
200 tasks each were generated. Each set consists of groups
of tasks, where the tasks within the group overlap in a
way such that the occurrence of situation σ2 is guaranteed,
but tasks from different groups do not overlap. The size
of the group ω is set as a ratio to the overall amount of
tasks. The results, presented in Table I, demonstrate that
the proposed scheduler is faster than Coltin’s et. al on
these problems. Moreover, increasing the group size leads
to significantly higher computation times for Coltin’s et. al
scheduler. This is mainly due to more possible combinations
of task ordering, which the solver needs to take into account.
We restrict ourselves to limit of three minutes to provide a
solution. Thus, we did not run Coltin’s scheduler for all cases
as the time increases exponentially. For the problems that
both schedulers solved, the difference in optimality criteria
between approaches is negligible.

B. Equal Time Windows

The situation when all tasks have similar time windows
(i.e. ω = 100 %) is even more challenging than the previous
situation. This is because there is no difference between
time intervals, thus all possible orderings of tasks have the
same optimum, but the solver is not aware of this. The
results from both schedulers running on sets of equal tasks
of increasing size are presented in Table II. A significant
time difference between the approaches can be observed for
a set containing only 10 tasks. Again, there is no difference
in final optimisation criteria.



Dataset Amount
of Sets

Both
failed

Proposed
failed

Coltin’s
failed

HdB 606 103 24 33

G4S 358 14 2 3

TABLE III
COMPARISON OF CASES WHERE NO VALID SCHEDULE IS FOUND

V. EXPERIMENTS IN REAL ENVIRONMENTS
As described in Section I, we ran a version of our sched-

uler on long-running autonomous robots in the our project’s
Haus der Barmherzigkeit care home scenario (abbreviated
HdB) and G4S security scenario. We recorded all sets of
tasks sent to the scheduler during these deployments and
now compare the two schedulers on these real-world task
sets. Many of the tasks in the sets were generated from a
daily routine given to the robot and thus have large equal
time windows (corresponding to morning, afternoon etc.). A
smaller proportion of tasks were generated on-demand by
users or other parts of the robot’s architecture. The nature of
the routine-based tasks means that situation σ2 often occurs.

A. Existence of infeasible sets

In contrast to the simulated data, infeasible sets can exist in
the data from the real environments. The proposed scheduler
can only detect infeasible sets via σ3, but other infeasible
sets are possible which do not trigger this situation. Coltin’s
scheduler can detect all infeasible sets, but only for the
problems it can solve completely (which is limited by the
size and nature of problems). Therefore, we cannot determine
if any given set is feasible or not. Instead we compare if the
schedulers fail to find a solution within the three minute limit.
Table III presents counts of three possible outcomes:
• both schedulers fail;
• the proposed scheduler fails but Coltin et. al’s succeeds,

(which occurs mainly for sets containing a small amount
of tasks);

• Coltin’s et al.’s scheduler fails but the one proposed
succeeds (which occurs mainly for sets containing a
large amount of tasks).

B. Speed of the schedulers

The results in Figures 4 and 5 (for the G4S and HdB
data, respectively) show that our proposed algorithm is sig-
nificantly faster than the state-of-the-art as the size input set
increases. It can be observed that the MIP problem specified
by the proposed scheduler is completely solved within the
three minute time limit for all sets. The word “completely”
refers to the fact that the SCIP solver returns the optimum
criterion for the specified MIP (which itself may be non-
optimal for the problem). In contrast, MIP problem specified
via Coltin et. al’s approach has a larger search space than
ours and it cannot be completely solved within the limit for
most of the sets. However, the solver is still able to provide
a solution when cut off as the limit is reached, but it cannot
determine if this is the optimal one or not.

Fig. 4. Comparison of the schedulers in the G4S scenario

C. Quality of the schedules

We can determine which scheduler performs better on
a task set by comparing the optimisation criteria of the
resulting schedules. The absolute value of this criteria varies
by task set, thus we compute the following normalised metric
to provide a general comparison:

∆C =

∑
Cp −

∑
Cc∑

Ch
, (12)

where:
•

∑
Cp is the optimisation criterion of the result from the

proposed scheduler,
•

∑
Cc is the optimisation criterion of the result from

Coltin et. al’s scheduler,
•

∑
Ch is the highest (i.e. worst) possible optimisation

criterion for the input set S, which is computed as:∑
Ch =

∑
j∈S

(dj − pj − rj).

The property ∆C ∈ 〈−1.0, 1.0〉 holds. This metric can be
computed only for such sets when both algorithms have
found a schedule. Negative values correspond to the fact
that the proposed algorithm has found a better criterion than
Coltin’s et al. and vice versa.

The ∆C values are displayed in lower graphs in Figures
4 and 5. In the graphs, sets to the left of the black dashed
line are those with small amounts of tasks for which the



solver has found the optimal solution for both schedulers.
Sets to the right of the line are those for which the solver has
found some solution for Coltin’s approach and the optimal
one for the proposed problem. In the G4S data (Fig. 4) the
proposed scheduler found mostly worse criterion values, but
the differences are negligible. In contrast, in the HdB data
(Fig. 5) the proposed scheduler found mostly better criterion.

Fig. 5. Comparison of the schedulers in the HdB scenario

VI. CONCLUSIONS

In this paper we presented a novel fast scheduler for use
on mobile robots. The main contribution of our work is the
use of Allen’s interval algebra to prune possible solutions
within the scheduler. Our experimental results have shown
that the proposed scheduler is able to quickly solve task sets
with large amounts of tasks, significantly outperforming a
state-of-the-art designed for the same domain. In addition,
the quality of the schedules found by our proposed approach
in a limited time window is often higher (based on the
optimisation criteria). This is despite the local nature of
the optimisations in our approach potentially ruling out
optimal and valid solutions. The proposed scheduler is open
source and was integrated into two mobile robots which
successfully performed 2948 tasks within 30 days in real-
world application scenarios.
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