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Abstract

Despite 3D object recognition being an ongoing re-
search field for many years, state-of-the-art methods
still face problems in real-world situations with clut-
ter, occlusion or non-textured objects. To overcome
these problems, recent approaches use multi-view se-
tups exploiting beneficial vantage points of the environ-
ment. Minimizing the assumptions on the scene and
objects of interest made by these systems, we present
an efficient online multi-view method, which integrates
information of the captured environment merging in-
dividual single-view recognition outputs. Our method
achieves state-of-the-art results for the Willow dataset
at reduced computational time. Further evaluations on
the more challenging TUW dataset show an increase
in f-score and object pose accuracy over the number of
observations.

1 Introduction

Object recognition with 3D pose estimation is an ac-
tive research area, where many promising approaches
have been introduced recently [3, 10–12]. Many of
these methods share common problems when faced
with challenging real-world scenes, where objects are
partially occluded, are far away (and thus cover only a
small image area) or lack distinctive features. Most of
these problems can be alleviated by choosing a better
view point, e.g. nearer to an object or looking behind
an occluder. Particularly in robotics, the camera does
not have to be static. As a mobile robot moves around
in the environment, it will encounter many views of the
current scene. While a particular object might be oc-
cluded or displays only a poorly textured surface from
one view, chances are good that the same object will
appear much more favourably in some other view.

Regarding typical every-day indoor environments,
the majority of the scene is static, especially objects
(it is mostly people that cause movement). Exploiting
this static information, we propose a method working
on RGB-D data that continuously transfers hypotheses
constructed at various vantage points into a common
framework to gather the maximum amount of infor-
mation for all objects in the scene, and thus overcome
the problem of single particularly poor views. Con-
trary to existing batch methods [1,3], the proposed ap-
proach enables the system to improve recognition on-
line (i.e. with each new observation) using a dynamic
graph representation of the observed environment. Ad-
ditionally, we provide an in-depth evaluation of our
proposed method on two publicly available datasets
containing heavily cluttered RGB-D scenes and com-
pare it to state-of-the-art systems. In particular, we
show the improvement of the recognition performance

over the number of observations.

2 Related Work

Focusing on recent methods deployed on single-view
RGB-D data, Xie et al [12] proposed dense SIFT fea-
ture extraction followed by a RANSAC pose estima-
tion stage to generate hypotheses, which are verified
by means of a multimodal (color, shape and gradi-
ents) scoring scheme. Tang et al [11] extracts table
planes from RGB-D data, clusters points above by Eu-
clidean distance and finds candidate models of textured
objects by matching SIFT features. Hinterstoisser et
al [7] proposed a multimodal template (color gradi-
ents and surface normals) based matching approach to
handle objects without texture. Although these meth-
ods show excellent performance in particular scenarios,
they are either computationally expensive, have many
assumptions on the scene layout, require textured ob-
jects or show limited recognition results when objects
become partially occluded. For an extensive review of
available approaches for object recognition and pose
estimation from single images please refer to [6].

To avoid the computational cost of an accurate full
multi-view generalized camera approach, , Collet and
Srinivasa [3] obtain efficient recognition and full-pose
estimation by an introspective multi-view method that
uses a multi-step optimization technique.

Instead of using a static camera rig with known
extrinsic parameters, general views without the prior
knowledge of the relative pose to a common coordinate
system allow us to use our method on more general se-
tups covering a wider field of view or seeing the scene
from a completely other perspective for instance. It
shows that recognition of heavily occluded objects is
still possible when a hypothesis is generated from a
better viewpoint with respect to the occluded object.
Furthermore, instead of using a Mean Shift clustering
approach together with RANSAC for hypothesis re-
finement, we build a graph out of single-view hypothe-
ses and use a 3D hypothesis verification approach [1].

Lai et al. [8] proposed a method for semantic 3D
scene labelling based on single-detections, which i) re-
constructs the 3D scene, ii) detects possible objects in
each RGB-D frame, iii) projects the single-view scores
into the reconstructed scene and iv) enforces label con-
sistency through a voxel-based MRF. Our method en-
forces global consistency by a suitable 3D hypothesis
verification stage and uses shared single-view recogni-
tion results among different frames to aid during the
reconstruction stage. The advantage of object detec-
tion while mapping an environment has been recently
shown in [5, 10] within a joint detection, tracking and
mapping framework. Please note that recent RGB-D
mapping methods require a continuous stream of data



which is not always available for existing recognition
datasets (e.g. Challenge, TUW or Willow datasets).

The approach proposed in this work is an online
multi-view object instance recognition method based
on [1], which merges single-view results in a batch to
generate ground-truth data of a static environment.

3 Approach
Sensing a static environment over a particular obser-

vation time by an RGB-D sensor from different vantage
points, the goal of the proposed method is to recognize
pre-trained modelsM and their respective 6DoF pose
at each time step k using information from current and
previous observations as depicted in Fig. 1.

3.1 Single-view recognition
The single-view recognizer generates for each scene

point cloud Sk captured at time k a set of candidate
objects (hypotheses) potentially present in the scene
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where Hk is the number of constructed hypotheses,
ojk ∈ M the object identity and P j

k a 4 × 4 homoge-
neous transformation matrix defining the 6DoF object
pose with respect to the reference frame of Sk.

To deploy the algorithm in a wide range of recog-
nition problems, object hypotheses are obtained us-
ing the single-view recognition system proposed by Al-
doma et al. [2], which uses a combination of 2D and
3D (local and global) recognition pipelines and exploits
the different strengths of the individual algorithms (i.e.
using texture as well as geometry information). After
individual pose refinement by ICP, a final verification
stage returns the subset of hypotheses Ĥk that best
represents the scene Sk with respect to a global opti-
mality criterion [2].

3.2 Multi-view representation
To exploit the information gain from multiple views
{Sk}K−1

k=0 of an environment, we create an undirected

graph with vertices {Vk}K−1
k=0 representing single-view

information and edges {Ek}K−1
k=0 connecting the views.

For each snapshot of the scene, a vertex
VK = (SK , ĤK) is connected to existing vertices that
share a common object hypothesis (i.e. hypotheses
with the same model identity o) by edges

EK = {EK,k}K−1
k=0 , EK,k =

{
elK,k

}EK,k
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, (2)

elK,k =
(
olK,k,T

l
K,k, ϑ

l
K,k,K, k

)
, (3)

where T l
K,k is a 4×4 homogeneous transformation ma-

trix describing the relative pose between SK and Sk

estimated by the common hypothesis olK,k. The qual-

ity of the registration between SK and Sk by T l
K,k is

measured by the edge weight ϑl
K,k, which takes into

account visibility consistency, relative overlap between
views and the normal angle between corresponding
point pairs1. EK,k is the total number of shared hy-
potheses between verified single- and multi-view hy-
potheses ĤK and Ĥk+ . Given olK,k is shared amongst

1For a more detailed definition of ϑ please refer to [1].

hypotheses ha
K and hb

k, the transformation is estimated
by

T l
K,k = P a

K
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. (4)

A fully connected graph G is therefore obtained if
there are enough common object hypotheses for each
vertex. To avoid isolated vertices in G (e.g. no recog-
nized object) or, in case of weak object pose estimates,
to possibly obtain a better estimate, additional edges
are created by means of visual features of the scene it-
self. In particular, each view Vk is matched to VK using
a first nearest neighbour strategy with respect to their
respective SIFT features yielding a correspondence set
between both frames from which a rigid transforma-
tion is estimated. In our implementation, geometri-
cally consistent correspondences [2] with a consensus
set of at least 15 correspondences are used to effectively
extend EK,k. While this scene to scene edges usually
provide good transformation estimates for textured en-
vironments, transformations estimated by common ob-
ject hypotheses can often improve registration perfor-
mance for camera poses, which are too far away to each
other to reliably match scene features.

3.3 Hypotheses projection and scene recon-
struction

Using the graph representation G, individual single-
view information is merged into a global representation
of the scene by the estimated camera poses. To reduce
the computational complexity, we only select the edge
within EK,k with the lowest edge weight ϑ and remove
all remaining ones. Since wrong pose estimates would
decrease the quality of the reconstructed environment,
we isolate VK if the edge weight is larger than a pre-
defined threshold effectively ignoring multi-view infor-
mation at this point and building subgraphs for future
observations. Choosing the subgraph containing the
most recent observation VK , we build a 3D+RGB re-
construction of the scene as well as a multi-view model
candidate set HK+ by traversing this subgraph and
compounding ĤK with all verified multi-view sets Ĥk+

generated in previous observations, which are trans-
formed into the reference frame of VK .

3.4 3D+RGB hypothesis verification
At this end, we verify our merged hypotheses HK+

against the reconstructed environment by a 3D verifi-
cation stage [1]. Since small pairwise registration er-
rors get accumulated over multiple edges, poses of all
overlapping views are optimized by a global registra-
tion [4]. To efficiently handle a large set of scene points
and improve the quality of merging several clouds cap-
tured independently by noisy RGB-D sensors, finite
differences are computed by appropriate nearest neigh-
bour search in an Octree structure and the noise model
of Nguyen et al [9] is applied. The final output is a set

of verified hypotheses ĤK+ , which replaces the verified
single-view hypotheses stored in VK .

4 Results
We test our method on the two publicly available

datasets TUW (static)2 and Challenge3 and compare

2https://repo.acin.tuwien.ac.at/tmp/permanent/
dataset_index.php

3http://rll.berkeley.edu/2013_IROS_ODP/
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Figure 1: Workflow for a static scene captured from K = 4 different vantage points observed in time from left to
right. Top: input RGB-D data; Middle: verified single-view hypotheses; Bottom: verified multi-view hypotheses
considering recent observations (scenes to the left). Right : graph representation G with edges shown for common
object hypotheses (black) and SIFT scene to scene matching (green). An acyclic graph is computed online (selected
edges shown bold);

it to a single-view (SV) only recognition system [2], as
well as to the results reported in [12] and [11].

4.1 Test setup
Each model of the two datsets is compressed into

a voxelgrid with a resolution of 5 mm and views be-
longing to a sequence are processed online in the or-
der of the given dataset identifiers. The single-view
multi-pipeline recognizer [2] uses SIFT and SHOT fea-
tures at keypoint locations computed by DoG and uni-
form sampling, respectively. Hypotheses for an object
are created for clusters constructed by at least 3 key-
point correspondences, which are computed by first
nearest neighbor matching of scene and model key-
point descriptors. Each correspondence belongs to at
most 2 clusters and must be geometrically consistent
(i.e. max. distance of 1.5 cm and normal dot product
≤ 0.2). All hypotheses are refined by 8 iterations of
ICP. The subsequent verification stage uses the param-
eters from [2] and outputs the result for the single-view
system used for comparison in the following.

All transferred multi-view hypotheses from previous
observations are refined by another 8 iterations of ICP
and the 3D verification stage uses the same parame-
ter as verification for single-view considering all scene
clouds observed so far. This produces intermediate re-
sults for every view.

The performance is measured by precision, recall and
f-score, where a verified hypothesis is counted as true
positive if it is within 3 cm of a ground-truth object
of the same model identity with respect to its cen-
troid. To neglect ground-truth objects outside the field
of view or invisible for the current camera orientation,
these values were only computed for instances with a
ground-truth occlusion ≤ 95% specified by [1]. Table 1
shows precision and recall averaged over all views of
the given sequences. The improvement of performance
over time shown in Fig. 2 is measured by averaging all
intermediate results with the same number of observa-
tions taken into account by the system.

4.2 Evaluation
TUW dataset: As shown in Table 1, the common

verification stage rejects false positives with similar
precision for [2] and our method. However, the recall

rate is significantly larger for the proposed multiple-
view recognition. This is in particular evident for se-
quences with many observations (Seq. 3, 4, 6, 13, 14,
15), high clutter/occlusion (1, 3, 5, 12) or containing
non-textured objects, which are usually more difficult
to recognize by a single-view system (Seq. 8, 10). Fewer
observations for a sequence lead to a smaller set of ex-
tended hypotheses but also mean that the first obser-
vation (multi-view equal single-view result) has a big-
ger influence on the overall performance averaged over
all intermediate results. The poor performance in the
highly cluttered Seq. 9 (five boxes stacked together, no
other object present) is due to the low clutter term
chosen for the 3D verification parameter set reject-
ing all generated hypotheses for this particular prob-
lem. Choosing individual parameters for each sequence
could overcome this situation. An example result for
the first four observations of sequence 14 is shown in
Fig 1. Considering all ground-truth objects (occlusion
≤ 95%), this evaluation method achieves an overall
precision and recall rate of 0.96 and 0.72, respectively.
This results in an overall f-score of 0.82 compared to
0.62 for [2]. Fig. 2a shows the increase in the recall
rate and, accordingly, f-score for a larger number of
observations taken into account by our method.

Willow dataset: Comparing to state-of-the-art re-
sults reported in [2, 11, 12], Fig. 2b shows the aver-
age f-score of our multi-view method for intermediate
results taking the same number of observations into
account. On the overall Willow dataset, we achieve
a precision and recall rate of 0.94 and 0.90, respec-
tively, resulting in an overall f-score of 0.92. Another
advantage of the extended set of hypotheses is the in-
creased dimension of the solution space for the veri-
fication stage. This allows finding a better optimum
if hypotheses with more accurate pose estimates get
transferred into the current hypotheses set. In gen-
eral, this results in a slightly lower translational and
rotational error as shown in Fig. 2c.

Computation time: Fig. 2d shows the approximately
linear increase in computational cost by the number of
observations. Given a static scene and perfect single-
view recognition, this is also proportional to the car-
dinality of the multi-view hypotheses set. Besides the
approximately constant computational time for single-



Scene ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SV [2]

p
re
c. 1.00 0.97 0.98 0.98 1.00 1.00 0.98 1.00 0.83 1.00 1.00 1.00 0.97 1.00 0.98

Ours 1.00 1.00 0.97 0.95 1.00 1.00 0.89 1.00 1.00 0.91 1.00 1.00 0.98 1.00 1.00

SV [2]

re
ca
ll 0.51 0.61 0.53 0.53 0.47 0.64 0.85 0.41 0.11 0.38 0.74 0.66 0.43 0.48 0.34

Ours 0.58 0.63 0.85 0.74 0.70 0.84 0.88 0.80 0.00 0.63 0.81 0.89 0.57 0.71 0.52

#views 7 7 14 16 10 13 8 8 9 7 9 8 18 16 13

#objects 53 62 78 258 186 180 48 40 45 16 53 66 82 198 122

Table 1: Precision (top) and recall (middle) for the 15 static environments of the TUW dataset for the single-
view system [2] and the proposed multi-view approach (Ours). Bottom rows show the total number of views and
ground-truth objects visible (occlusion ≤ 95%) in each sequence.
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Figure 2: Performance over time.

view hypotheses generation (≈ 8 s), the multi-view
verification takes up most time in our implementation.
Please note that the computation time was measured
on different machines, but with similar components
(multi-core i7 processor and≥ 24GB RAM). Computa-
tion times for [11,12] have been taken from the respec-
tive papers. Even though this performance measure is
only partially able to compare the real complexity of
the methods, Fig. 2d still gives rise to significant speed
ups achieved by our method compared to [12], which
reports similar recognition performance.

5 Conclusion
We presented a multi-view recognition method that

incorporates individual results of single-view observa-
tions into a common coordinate system and gives su-
perior results for each new input frame compared to
a single-view only system. Our method showed a sig-
nificant boost in recall for the TUW dataset, consist-
ing of heavily cluttered RGB-D frames with textured
and non-textured objects, which are highly occluded in
some frames. Using additional information from other
views, state-of-the-art performance was shown for the
Willow dataset at a reduced computational complexity.
Furthermore, our method gained a more accurate pose
estimate by merging hypotheses from multiple views.

As our method is independent of the single-view
recognition method being used for hypotheses genera-
tion and many parameters influence the system perfor-
mance, we are confident that even better recognition
results are feasible with our approach. Computation
time can also be reduced by further parallelization of
the algorithm and implementation on the GPU.
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