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Abstract— We propose a method for recognizing rigid ob-
ject instances in RGB-D point clouds by accumulating low-
level information from keypoint correspondences over multiple
observations. Compared to existing multi-view approaches, we
make fewer assumptions on the recognition problem, dealing
with cluttered and partially dynamic environments as well
as covering a wide range of objects. Evaluation on the pub-
licly available TUW and Willow datasets showed that our
method achieves state-of-the-art recognition performance for
challenging sequences of static environments and a significant
improvement for environments partially changing during the
observation.

I. INTRODUCTION

The detection of objects and the estimation of their po-
sition and orientation in challenging environments is a key
capability for robotic agents with manifold applications in in-
dustrial and service robotics [1], [2]. Despite recent progress
(e.g. [3]–[6]), algorithms deployed for object recognition are
still unable to perform robustly in scenarios where objects
undergo strong occlusions from the current vantage point
or are viewed from ambiguous, uninformative perspectives.
For example, recognition methods relying on features that
exploit texture information might be unable to detect partially
textured objects whenever the informative parts are not
visible from the current position of the robot.

However, in the robotics context, where agents are able to
actively explore the environment, it is possible to reposition
the sensing device mounted on the robot in order to seek for
advantageous vantage points (with respect to the recognition
capabilities of the underlying recognition method) as well
as to mitigate problems caused by occlusions. While these
novel viewpoints offer additional information that potentially
enhance object recognition, it is beneficial to consider the
gathered information of the environment up to the current
observation and detect objects in this multi-view setting
instead of considering each vantage point as an independent
piece of information. The benefits of the multi-view setting
are depicted in a toy example in Fig. 1. While single
observations often do not present enough correspondences
to construct a hypothesis for an object, merging individual
correspondences from multiple observations can overcome
this lack of information and construct hypotheses even in
highly cluttered and occluded environments.

Despite the great potential of the multi-view setting dis-
cussed above, it assumes that the environment being explored
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Fig. 1: Keypoints s0 (red dots) extracted from the scene
at time step t = 0, matching keypoints from the model
database, are transferred into the more recent point cloud
at t = 1. Rays tracing keypoints to their projection center
are depicted as solid lines if they are extracted by a single-
view recognizer and as dashed lines if they are extended from
previous views. A hypothesis for an object can be created
if there are at least three different correspondences between
keypoints from the scene and the respective model.

is static. While this assumption might hold during short
periods of time or for parts of the scene, it is unrealistic
to expect that environments remain static over larger periods
of time, specially in environments such as homes or offices
populated by people. Indeed, some recent works (e.g. [7],
[8]) address the dynamic aspects of certain environments
in order to infer spatial relationships of entities that might
change over time (e.g. is the wallet still on the office
table in front of the monitor? Is the patient’s medicine still
between the bedside lamp and his spectacles case?). To tackle
these problems without human supervision on a robot, it is
required to have an accurate and efficient visual recognition
method adaptable to changes of the environment. This can
be achieved by a trade-off between a high recognition rate
obtained by static multi-view recognition methods (e.g. [9],
[10]), which accumulate visual information from multiple
observations assuming an environment that does not change
over time, and single-view methods (e.g. [11]–[13]) only
sensing the environment at a given time, which are sensible
to dynamic changes but usually have a lower recall of present
objects.

In Section III, we propose a method that accumulates
low-level information (i.e. features, keypoints and correspon-



dences) for multiple observations of a region of interest,
which is merged online (i.e. at each sampling time) to en-
hance performance for a wide range of recognition problems
such as in dynamic and cluttered environments. By making
fewer assumptions on the scene, we show in Section IV
that our method achieves state-of-the-art recognition perfor-
mance for static environments and a significant better pre-
cision/recall rate for slightly changing scene configurations
compared to other methods.

II. RELATED WORK

Collet and Srinivasa [14] proposed an efficient multi-
view approach for object recognition and pose estimation by
a multi-step optimization. Consistent hypotheses, generated
over multiple views individually processed by a single-view
algorithm and transferred to a common coordinate system,
are globally refined using a reduced generalized image with
points consistent across all images. While their method
avoids the expensive correspondence grouping stage over a
possible big set of correspondences merged from multiple
views, it can only detect objects that are correctly recognized
by the single-view recognizer in at least one of the images. In
fact, their multi-view algorithm requires that a pose is seen
by at least two-views, and that at least 50% of the points from
the different hypotheses are consistent with the final pose to
refine a hypothesis. Instead of using a static camera rig, our
approach also differs in the observation method of the scene.
Our robot is not only able to cover a wider field of view
than a rigid camera setup, but also senses the environment
at different times. This requires once to deal with changing
single-view correspondences, but also enables us to detect
dynamic properties of the scene.

Other multi-view systems (e.g. [15], [16]) make similar
restrictive assumptions about the environment (i.e. static
scene or observed at the same time with multiple cameras).
Vikstén et al [16] accumulated multiple pose estimates
over different temporal and algorithmic cues by a weighted
averaging approach to improve accuracy. Although this is
a computationally fast method as it scales linearly with
the number of views, it requires the detection of object
hypotheses in at least one single-view pose estimate.

The proposed approach is a multi-view object instance rec-
ognizer based on the work of Aldoma et al [9] (batch version)
and Fäulhammer et al [10] (online version). Both methods
use the outputs of a single-view object recognizer over
multiple views and transfer them into a common coordinate
system containing a 3D reconstruction of the observed scene.
Using a 3D extension of the hypotheses framework proposed
by Aldoma et al [17], the batch method achieves a recall rate
of 93.2% and 99.1% on the TUW and Willow Challenge
datasets, respectively. Due to this good recognition results,
this method has been used for automatically annotating static
multi-view RGB-D object instance recognition datasets. In
order to correctly annotate an object present in the scene,
these two methods assume that each object has to be correctly
detected by the single-view recognizer in at least one frame.
In contrast, the method proposed in this paper does not

necessarily require this assumption as the information gain
from multiple views comes from low-level information (i.e.
keypoint correspondences). Merging that information into
the current view enables to construct a hypothesis even in
cases where there is too little information in the respective
single-views to construct one (see Fig. 1). To support object
hypotheses in the final 3D verification stage, methods [9]
and [10] further require a good registration for all views.
Contrary, the method presented in this paper uses only the
current view for verification and at least provides the approx-
imate quality of a single-view approach in case of a wrong
pose estimate of the camera. Obtaining a good reconstruction
of the scene furthermore requires an environment remaining
completely static over the whole sequence so that the final
batch process verifies the merged hypotheses correctly. We
propose a novel method that uses information obtained from
multiple views online and verifies hypotheses only against
the currently observed point cloud.

III. APPROACH

Given a model database of rigid 3D objects and a set of
RGB-D views of a sequence ψ over a time period Tψ

Sψ =
{
Sψt . . .S

ψ
t−Tψ

}
, (1)

the goal of the proposed method is to detect at any timestamp
t all present objects known to the system together with their
6DoF pose with respect to the global coordinate system of
the robot.

The following section describes the workflow of the recog-
nition system depicted in Fig. 2.

A. Object Model Database

During an offline stage, objects of interest are learned by
the system in a controlled setup (e.g. a table-top). Each object
is sensed from different vantage points that are brought into
alignment in order to generate a 3D point cloud representing
the object of interest. For each view, an array of local
features, ξω (i.e., SIFT [18] and SHOT [19]), is extracted
at corresponding keypoint locations denoted here by mω .
The object model database is then represented by

M =

{
mω, ξω

∣∣∣∣ω ∈ Ω

}
, (2)

where Ω represents a list of unique object identifiers.

B. Filtering Information

In scenarios, where mobile robots or autonomous agents
operate in spacious environments, a system accumulating
and processing low-level information over an extended pe-
riod of time will slow down significantly without filtering
data. To reduce the amount of irrelevant information for
our recognition task for a particular location and at any
given time t, we filter scene observations by creating a
semantic map of the environment (see Fig. 3). In our case,
these are (off-line) annotated spatial regions of interest for
recognizing objects and their position over time. Each seman-
tic sequence ψ independently stores information of feature
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Fig. 2: Workflow of the proposed multi-view method using correspondences Ct+ integrated over a time period Tψ and
multiple observations of a sequence ψ to generate hypotheses of objects and their 3D pose at time t.

correspondences between object models and previous scene
observations within sequence ψ. For each timestep t, the
system selects the closest sequence ψ (and the corresponding
set of observations) based on the current robot pose.

To reduce the number of parameters, we will neglect ψ in
the following and only consider a single sequence with a set
of point clouds S = {St . . .St−T }.
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Fig. 3: Representation of an environment with
ψ ∈ {conference table, kitchenette, master table}. Each
semantic location ψ stores correspondences information
independently. By determining the current location of
the robot, the system can disregard information of the
kitchenette and the conference table regions

.

C. Local Pipeline for Single-View Correspondences Extrac-
tion

To remove points with high noise level (see [20]), the
point cloud of the scene sampled at the current timestamp t
is pre-processed by a distance filter with a threshold of 2.5m
along the optical axis of the camera. The output of the filter
is represented by the point cloud St. Using L1-norm nearest
neighbor (NN) search in the feature domain, the array of

keypoints st extracted from St is matched against model
keypoints mω ∀ω ∈ Ω via fast approximate indexing (i.e.,
randomized kd-trees [21]).

Denoting a match for a scene keypoint sit to its first nearest
neighbor mj

ω by a correspondence ci,jω,t =
{
sit,m

j
ω

}
, the set

of correspondences Cω,t at time t and for an object instance
ω is represented by

Cω,t =

{
ci,jω,t

∣∣∣∣sit ∈ st ∧mj
ω = NN

m
(sit)

}
. (3)

The system stores the total set of correspondences

Ct =
{
Cω,t

∣∣ω ∈ Ω
}
, (4)

which represents the low-level information about the envi-
ronment ψ at time t with respect to all models Ω in the
database.

D. Merging Correspondences From Multiple Vantage Points

Exploiting information from previously sensed vantage
points of the environment, the multi-view recognition ap-
proach recursively extends the set of correspondences for its
current view Ct by previously stored correspondences Cτ
with τ < t. These correspondences between scene and model
keypoints are transferred into the current camera coordinate
system by a given transform.

To estimate the transform between views, the relative
camera pose can be obtained either from the robot pose or
calculated from scene keypoints, e.g. using accurate camera
tracking algorithms. In environments with few visual fea-
tures, the transform can also be estimated based on existing
object hypotheses H, which, however, requires additional
computation time of O

(
|H|2

)
for single-view hypotheses

generation and mutual matching [9].
To refine the initial registration of the two point clouds

given by any of the estimated transforms mentioned above,
the relative camera pose estimate is refined by ICP. For



multiple possible transforms between views, a transform is
chosen that minimizes the edge weight function in [9].

As the computational complexity of the following corre-
spondence grouping stage scales by O

(
|C|2

)
, it is important

to check for redundancy when transferring correspondences
into the current camera view. Estimating the pose of an object
by a set of corresponding points, redundant information
could also state an under-determined problem. Therefore, we
iterate through all correspondences beginning with the most
current ones and check for redundancy before merging them
into a set of correspondences Cω,t+ accumulated over a time
period T .

Denoting the normal vector of a scene keypoint sit as nis,t,
a correspondence ci,jω,τ =

{
siτ ,m

j
ω

}
is redundant and not

extended if the set of accumulated correspondences contains
an element ck,lω,t+ =

{
skt+ ,m

l
ω

}
such that

• its scene keypoint transferred into the current view is
close to a scene keypoint already in the set,∥∥siτ − skt+

∥∥
2
≤ 0.005 m, (5)

• the surface normals at the keypoints are approximately
aligned, (

nis,τ
)ᵀ

nks,t+ ≤ 0.2, (6)

• and corresponding model keypoints are in close prox-
imity, ∥∥mj

ω −ml
ω

∥∥
2
≤ 0.005 m. (7)

The accumulated set of correspondences is then obtained
by Algorithm 1.

Algorithm 1 Merging correspondences from multiple
views

1: init Cω|t+ := {}
2: for τ = 0→ T do
3: get redundant correspondences C̃ω,τ
4: Cω,t+ :=

{
Cω,t+ ,

(
Cω,τ \ C̃ω,τ

)}
. merge

E. Generation of Object Hypotheses
As a result of the previous stages, a set of accumulated

point-to-point correspondences Cω,t+ has been determined.
This set of correspondences typically contains outliers that
ought to be discarded. As a set of correspondences may
comprise several consensus sets related to different instances
of a given model in the scene, popular methods for outlier re-
jection such as RANSAC are not suited to the multi-instance
object recognition problem. Hence, specific correspondence
grouping methods have been devised [22], [23].

We use an extended version of the method proposed
in [22], which initializes a seed correspondence and iter-
atively builds up clusters of correspondences by enforcing
geometric consistency between pairs of correspondences ci,jω,t
and ck,lω,τ . Geometric consistency exploits the fact that under
rigid body transformations, distances between points are
preserved, such that∣∣ ∥∥mj

ω −ml
ω

∥∥
2
−
∥∥sit − skt

∥∥
2

∣∣ < ε, (8)

where ε represents the maximum allowed difference between
the feature distances measured on the keypoints of model and
the scene.

In addition, it is possible to enforce an additional con-
straint based on angle consistency. Let njm,ω be the surface
normal at point mj

ω , we introduce an additional consistency
check, ∣∣∣(njm,ω)ᵀ nlm,ω − (nis,t)ᵀ nks,τ ∣∣∣ < εn, (9)

where εn represents the maximum angle deviation between
normals in the scene and the model.

Each geometrically consistent correspondence cluster is
used to estimate a transformation, aligning a specific model
with the scene under consideration. Because not all cor-
respondences within a geometrically consistent cluster are
representatives of valid rigid transformations, each cluster is
post-processed by a RANSAC stage in order to eliminate
outliers prior to the pose estimation of the object.

F. Hypotheses Verification

Each constructed hypothesis is individually registered to
the point cloud of the scene by ICP and verified by the
method proposed in [17] extended to use color information
as described in [9]. In order to account for dynamic changes,
please note that in contrast to [9], hypotheses in this work
are verified against the point cloud obtained from the current
vantage point only. While past correspondences are only
kept for T time steps, correspondences that form a cluster
for a verified hypothesis are kept longer than that, until
the respective verified hypothesis disappears as a whole for
another T time steps. The reason is that we do not want to
loose good correspondences that for instance have moved to
the backside of an object as the camera has moved around
that object.

IV. RESULTS

We evaluated the system on the TUW 1 and the Willow 2

RGB-D dataset. The TUW dataset contains 15 sequences
with highly occluded and cluttered tabletop objects annotated
in static environments, where multiple object instances are
present in some of the views of the dataset. The TUW model
database consists of |Ω| = 17 models with a maximum
extent of 30 cm, which are partly symmetric and some lack
distinctive surface texture. To measure the performance of
the proposed method in sequences with temporal changes
of the objects, in position and presence in the scene, we
extended the (static) TUW dataset by observations of two
table tops and one kitchenette, which have been captured
over an extended period of time by a Kinect camera mounted
on the STRANDS robot Werner3. All view points in the
TUW dataset were chosen manually by the user such that
there is some overlap between successive views within a
sequence. Using the semi-automated ground-truth annotation

1goo.gl/qXkBOU
2http://rll.berkeley.edu/2013_IROS_ODP/
3http://strands.acin.tuwien.ac.at/



tool [9], these dynamic environments were annotated and
uploaded to the TUW dataset website. In the following, these
(dynamic) sequences are referred by ψ ∈ {16, 17, 18}.

A. Test setup

We tested our method against the single-view only recog-
nition system proposed by Aldoma et al [4] and the multi-
view method proposed in our previous work [10].

The input point clouds of the test sequences are processed
in alphabetically order of the given view names for all sys-
tems, which produce intermediate results after each timestep.
The correspondences for each input cloud are obtained by the
same single-view recognition pipeline [4] using keypoints
extracted by DoG and matched to model keypoints by first
nearest neighbor search with respect to their SIFT and SHOT
description. The multi-view method [10] creates hypotheses
by clustering geometrical consistent correspondences from
the same view, accumulating them into a common reference
frame and verifying them against a 3D reconstruction of the
scene. In contrast, the proposed feature integration method
clusters correspondences merged from multiple views (de-
scribed in Section III) and verifies them against the current
camera viewpoint only. Both multi-view methods accumulate
information from up to T = 10 most recent views of the
scene. Clusters for all methods are created by at least 7 (Wil-
low: 5) correspondences with the constraints ε = 15 mm and
εn = 0.2. Each pose estimate of the generated hypotheses
is refined by 10 iterations of ICP registering the individual
objects to the point cloud of the scene. The final hypotheses
verification stage uses color variance parameters for the
normalized LAB color space of σL = 0.6 and σAB = 0.5
(Willow: σL = 0.1, σAB = 0.1), an inlier threshold of
15 mm and a resolution of 5 mm. These parameters were
empirically evaluated on the first four sequences of each
dataset.

The performance is measured by precision and recall,
where a true positive is counted if a detected object is within
3 cm of a ground-truth object of the same class with respect
to its centroid. To neglect ground-truth objects outside the
field of view or invisible for the current camera orientation,
these values were only computed for instances with a ground-
truth occlusion (see [9]) ≤ 95%. We illustrate the results
by averaging all intermediate precision and recall values for
the tested sequences (Table I), by showing the improvement
of performance over the number of observations taken into
account by the system (Fig. 4), by measuring the mean error
in translation and rotation as well as calculating the total
precision and recall values (Table II).

B. Evaluation on a Static Environment

This subsection presents the evaluation on the static
environments in the TUW and Willow dataset. Overall,
Table II shows that the single-view method achieves slightly
higher precision compared to the tested multi-view methods,
which can be explained by the fact that all correspondences
generating an object hypothesis are coming from the current
view of the scene. Neglecting sensor noise of the camera,

S0 S1 S2

Fig. 5: Example results for sequence ψ = 6 of the TUW
dataset. Top: Scene St observed by the robot, Middle:
Recognized objects by the proposed multi-view method,
Bottom: Recognized objects by the single-view system.
While the result for the first view S0 is the same (no
prior information), the next frame recognizes three additional
objects. After three observations, the proposed method is
already able to correctly recognize all objects in the scene
but two, the coffee container and the lower green tea box.

these keypoints are usually quite robust as they are observed
at the same time (e.g. avoiding changing lighting conditions)
and do not have to be transformed into another coordinate
system by a potentially noisy camera pose estimate. As the
reason for objects not being detected by the single-view
recognizer often is a too low number of keypoint matches,
any cluster of correspondences generating these hypotheses
after being transformed by our approach is more likely to be
small as well (and therefore generating weaker hypotheses
and slightly worse precision rates) compared to hypotheses
generated by clusters from single-view processing only.

Fig. 4a and 4b show the f-score with respect to the number
of observed views in the static TUW and Willow dataset,
respectively. Even very few observations of the environment
lead to a superior f-score rate, which is particularly due to
the increased recall gained by merging hypotheses or feature
correspondences. Since the completely static environments
can be correctly reconstructed by accumulating scene point
clouds over time, the proposed feature integration method
gains only slightly better recognition rate compared to our
previous multi-view approach [10].

As an example, Fig. 5 shows the recognition result for
the first three views of a sequence in the TUW dataset
processed by the single- and proposed multi-view approach.
From this example, it can be concluded that the low-level
information stored by the multi-view system particularly
enhances recognition rates for objects that are cluttered by
other objects or lack distinctive texture.



static TUW dataset dynamic
ψ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
SV [4]

pr
ec

is
. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00

[10] 1.00 1.00 0.97 0.95 1.00 1.00 0.89 1.00 1.00 0.91 1.00 1.00 0.98 1.00 1.00 0.95 0.92 0.75
FeatInt 0.89 0.98 0.94 0.99 0.97 0.99 0. 98 0.93 0.86 1.00 0.96 0.97 0.89 0.99 0.97 0.97 0.98 1.00
SV [4]

re
ca

ll 0.43 0.63 0.52 0.58 0.43 0.72 0.94 0.62 0.00 0.17 0.81 0.74 0.37 0.60 0.35 0.43 0.37 0.60
[10] 0.58 0.63 0.85 0.74 0.70 0.84 0.88 0.80 0.00 0.63 0.81 0.89 0.57 0.71 0.52 0.56 0.39 0.45
FeatInt 0.62 0.75 0.77 0.78 0.80 0.96 1.00 0.98 0.13 0.50 0.92 0.89 0.70 0.79 0.56 0.75 0.71 0.59
#views 7 7 14 16 10 13 8 8 9 7 9 8 18 16 13 21 21 19
#objects 53 62 78 258 186 180 48 40 45 16 53 66 82 198 122 201 227 92

TABLE I: Precision (top) and recall (middle) for the 15 static environments of the TUW dataset and the three dynamic
environments. The values are evaluated for the single-view system (SV), the multi-view hypotheses projection method [10]
and the proposed approach (FeatInt). The total number of ground-truth objects visible (occlusion ≤ 95%) in each sequence
is shown in the bottom row.
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Fig. 4: Average f-score for the systems single-view (green dashed dotted), the multi-view method [10] (red dashed) and our
proposed approach (blue solid) evaluated on the 15 static environments of the TUW dataset (left), the 24 static sequences
of the Willow dataset (second left) as well as the three dynamic TUW environments (second right). The average is taken
over all scene observations at time t. Our proposed multi-view method accumulates correspondences from up to T = 10
observations, which results in a computation time behaviour as shown on the right.

C. Evaluation on Static Environments with Dynamic Objects
To evaluate the performance for environments not static

over the whole observation period, this subsection evaluates
on observations, where objects have been moved to other
locations or (dis-)appear from the field of view. Fig. 4c
and the bottom part of Table I show the results on these
dynamic sequences. While the difference between the pro-
posed method and the single-view system is similar to the
evaluation results for the static environments, the decrease
in performance of the hypotheses projection method [10]
becomes very evident for these dynamic scenarios. Due to
the broken assumption of a static environment, this method
verifies transferred hypotheses generated in the past against
an accumulated point cloud with all scene points ever ob-
served. This leads to a high number of false positives and
makes it infeasible in environments that cannot be considered
static.

D. Computation Time
This subsection evaluates the computation time of the

methods on an Intel Quad Corei7 (2.8GHz) system with
8GB RAM, which is shown in Table III for the tested multi-
view systems. To estimate the scale of the computational
complexity by the number of correspondences stored by the
multi-view system, we fitted a 4th degree polynomial to 221
measurements of the execution time (Fig. 4d). Considering
the coefficients of the polynomial (p1 � p2 � p3), we

µr (±σr) µt (±σt) total total
[deg] [mm] prec. recall

Single-V. [4]

W
ill

ow

4.8 (±3.6) 7.3 (±4.7) 0.94 0.71
Hyp. proj. [10] 3.9 (±3.2) 6.1 (±3.9) 0.94 0.90
Feat. Int. 5.0 (±3.8) 7.5 (±4.7) 0.92 0.89
Single-V. [4]

TU
W

st
. 4.0 (±2.9) 6.8 (±4.1) 0.99 0.62

Hyp. proj. [10] 3.6 (±3.4) 6.1 (±7.4) 0.96 0.72
Feat. Int. 4.4 (±3.6) 6.7 (±3.9) 0.97 0.78
Single-V. [4]

dy
na

m
ic 4.8 (±3.4) 6.6 (±4.2) 1.00 0.43

Hyp. proj. [10] 6.6 (±4.9) 7.7 (±5.3) 0.90 0.47
Feat. Int. 6.0 (±4.6) 8.1 (±5.3) 0.98 0.70

TABLE II: Average error for rotation µr (with standard
deviation σr) and translation µt (with standard deviation
σt) for all true positive objects within the Willow (top), the
static TUW (middle) and the recorded dynamic TUW dataset
(bottom). A recognized object is counted as true positive if
the translational error is ≤ 3 cm and the rotational error
≤ 30◦ with respect to the corresponding ground truth object.

can assume an approximate linear increase in computation
time with respect to the number of correspondences

∣∣Cω,t+ ∣∣,
scaled by the first-order term p1. This dependency, although
not fulfilling the worst-case assumption of O

(∣∣Cω,t+ ∣∣), still
shows the importance of keeping the amount of correspon-
dences low by removing redundant information as described
in Sections III-B and III-D.



Number of observations 1 2 3 4 5 6

Hyp. proj. [10] 3.1 5.8 8.7 12 15.9 19.2
Feat. Int. 8.9 12.8 16.5 23.2 27.4 34.8

TABLE III: Average time in seconds to compute recognition
results given a certain number of observed views.

V. CONCLUSIONS

We have shown a recognition system that accumulates
keypoint correspondences over multiple views and trans-
fers this low-level information into the current recognition
problem to achieve improved recognition results in both,
static and partially dynamic environments. The evaluation on
challenging scenes, highly cluttered and containing multiple
occluded objects, showed that our proposed method achieves
state-of-the-art results on static environments. For dynamic
environments with objects moving to other locations, we
could show significant improvements in terms of precision
and recall. Making fewer assumptions on the recognition
task, we believe that this enables our method to be deployed
on a wide range of robotic systems.

A limitation of the system is the approximate propor-
tional increase of computational complexity with the size
of stored keypoint correspondences, making it infeasible for
many real-time applications. Although the method has been
partially implemented for parallel processing, the work so far
concentrated on improving recognition results. A significant
speed up could probably be achieved by further paralleliza-
tion, particularly using GPU programming. Furthermore, to
avoid re-computation of correspondences already clustered
during previous observations of the scene, the multi-view
system could be extended by additionally caching cluster
information, which is potential future work.
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