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Abstract—Long-term autonomous learning of human environ-
ments entails modelling and generalizing over distinct variations
in: object instances in different scenes, and different scenes with
respect to space and time. It is crucial for the robot to recognize
the structure and context in spatial arrangements and exploit
these to learn models which capture the essence of these distinct
variations. Table-tops posses a typical structure repeatedly seen
in human environments and are identified by characteristics of
being personal spaces of diverse functionalities and dynamically
changing due to human interactions. In this paper, we present a
3D dataset of 20 office table-tops manually observed and scanned
3 times a day as regularly as possible over 19 days (461 scenes)
and subsequently, manually annotated with 18 different object
classes, including multiple instances. We analyse the dataset
to discover spatial structures and patterns in their variations.
The dataset can, for example, be used to study the spatial
relations between objects and long-term environment models for
applications such as activity recognition, context and functionality
estimation and anomaly detection.

I. INTRODUCTION

A complete understanding of a scene includes information
on not only what objects are in the scene but also on their
relative arrangement in the scene. For a robot to recognize
a context it should take this into account. Our research
work involves developing a mobile service robot for long-
term autonomy in indoor human environments, from offices
to hospitals. The ability for a robot to run for weeks or
months in its task environment opens up a new range of
possibilities in terms of learning capabilities. In particular, the
robot would expected to learn to perform an assigned task that
is repetitive with weaning supervision and human interaction.
The contextual knowledge the robot can gain from the repeated
attempts can make it learn so that it’s subsequent attempts on
the same task are improved in accuracy and efficiency.

In this paper we study spatial understanding derived from
the configuration of objects in a scene. Whilst objects often
change in position, their overall arrangement typically have
some regularity over time as influenced by the context and
functionality of that part of space. For example, there is a
general structure in office employee table-tops to that of cafe-
teria table-tops or kitchen table-tops. The differences derive

from the variety of objects and their group-configurations on
the table-tops with respect to time — hours, days, weeks,
months etc. For example: Office tables typically have monitors,
keyboards, mouse along with papers and pens and coffee mugs
arranged such that the monitors can be viewed, the keyboard
typed at and the mouse easily accessed from the keyboard.
The spatial configurations vary in particular instances and the
arrangement change gradually over many days and minutely
at different times of the day; However, cafeteria tables have
cutlery, jugs, food, napkins etc. configurations of which do not
vary over many days, weeks or years but vary in content and
presence according to different times of every day. It is this
structure and it’s variants that we aim to exploit in order to
improve the understanding of space.

Such structures have been exploited before in the litera-
ture for a number of different applications, such as object
recognition, activity recognition, image retrieval and objects
search. The intuition is that: bluntly modelling the absolute
positions of objects, is likely to fail because such a model
is improbable to generalise across a range of different scenes
from numerous observations w.r.t. time and instance. Instead
qualitative relational models of space, i.e. ways of encoding
the qualitative position of a target object relative to the position
of one or more landmark objects are investigated. For example,
“the chair is at the table” and ’the pillow on the bed”. The
exact coordinates of these objects are semantically irrelevant.
We believe that representations that are to support long-term
autonomy and ability to generalize knowledge require such
rough discretizations of metric measurement space forming a
“feature set” inherently encapsulating the generality of struc-
ture.

The main contribution of this paper is the quantitative
and qualitative analysis of indoor environments to characterise
some of these structures. This is an important contribution if
one wants to design a representation to build a model of space
and to reason about space. The prevailing approach has been to
assume structures exist and define a set of descriptors/features
that capture different aspects of these. We instead propose to
carefully study the structures and do so over long periods of



time and across several similar scenes to be able to characterise
the dynamics and variability. The output of this paper can thus
serve as a corner stone in the foundation for designing efficient
representations and inference algorithms. To limit the scope,
we study table-top scenes in this paper. As a basis for our study,
we have constructed a large, manually annotated benchmark
3D dataset of office type table-top scenes called KTH-3D-
Table-Tops Dataset for Long Term Autonomous Learning
(KTH-3D-TOTAL)' observing the same set of select tables,
over a possible 3 times a day and over several days in a
month. Objects-of-interest have been manually annotated in
3D to provide ground truth data.

The rest of the paper is composed in the following way:
We survey the related work in Section II. In Section III we
exhibit KTH-3D-TOTAL in depth and provide an analysis of
it in Section IV. We summarize and conclude in Section V.

II. RELATED WORK

Learning a model for a type of scene is a difficult task
if the raw data acquired by the sensors is used in terms of
metric measurements. Many recent works have investigated
how learning and modelling human environments increase
in efficacy if qualitative spatial features are used instead of
and/or alongside, metric ones. Spatial relations have been
used previously to provide contextual information to vision-
related work; [1] used a hierarchy of spatial relations alongside
descriptive features to support multiple object detections in a
single image. Spatial relations and contextual information are
commonly used in activity recognition from video streams [2],
[3]. Recent work has used object co-occurrence to provide
contexts in visual tasks such as activity recognition [4]. Apart
from using the mere statistics of co-occurrence, a lot of
information can be exploited from how the objects co-occur
in the scene. Recent work in 3D semantic labelling has used
such geometric information along with descriptive intrinsic
appearance features [5]. They achieve a high classification
accuracy for a large set of object-classes belonging to home
and office environments. Scene similarity measurement and
classification based on contextual information is conducted
by [6]. In [7], spatial relations between smaller objects, fur-
niture and locations is used for pruning — in object search
problems in human environments. In [8], [9] the authors
utilise both geometric features on objects and spatial relations
between objects for scene understanding.

As described in the introduction our aim is to find and
exploit the spatial structures inherent in indoor environments.
Three important aspects are: complete scenes, same scenes
observed over long times and many similar but not identical
scenes. Several datasets have been constructed for various
research applications. However, these existing datasets lack
these three important aspects together.

The B3DO dataset [10] contains many single-snapshot
instances of indoor human environments having a variety in
viewpoints, object-classes, scene-classes and instances. This

Thttp://www.cas.kth.se/data/KTH-3D-TOTAL/

dataset is in the form of RGB and depth image pairs with
manual 2D annotations of object classes. It captures single
snapshots of unique scenes for which scene classification and
object classification is difficult for vision based perception
systems (VPS). The NYU Depth VI-2 [11] datasets contain
different instance examples of object-classes and scene-classes
captured with RGB+D images. Automated pixel clustering
is conducted by using features in the RGB and D images
separately and annotation of the clusters has been done man-
ually, thereby assigning a semantic label to every pixel. The
dataset contains a wide range of singular snapshots of indoor
scenes from commercial and residential buildings. This dataset
is primarily aimed at evaluating VPS aiming at automatic
semantic segmentation and scene classification.

The 3D IKEA database [12] has been collected using a
robot — moving in different scene-class instances. The aim is
to test scene-classification algorithms based on large, furniture
level objects. 3D point clouds are formed by stitching a series
of RGB+D images. There are very few small objects in the
scenes and the annotations are provided at the scene-class
level. The WRGBD dataset [13] is aimed to support object
classification methods and contains many scene instances of
isolated objects in point cloud format. Annotation is done by
assigning every pixel a semantic label in each scene. Each
point cloud is created from a series of RGB+D images.

The system constructed by [14] can be used to automatically
generate 3D datasets of scenes using rough human annotations
on 2D images as input. The system infers 3D information
from the scene using the semantics of the annotated properties
of important planes in the image. The generated dataset thus
includes a large set of singular scenes, indoor and outdoor
from very particular viewpoints, with annotations to the image
components provided manually.

The Kinect@Home project [15] has collected a large set
of crowd sourced data. People having access to a kinect like
sensor have captured and uploaded data from their own envi-
ronments. The data is in the form of RGB-D video sequences.
The data covers a large variety of different scene types and
range from single objects to whole rooms. No annotation is
available. The dataset provided by [16] contains a collection
of 3D images of a few table-top objects in clear view and
cluttered view. This dataset has been constructed to aid VPS
for object classification and segmentation functioning on 3D
data. Other datasets that have been developed have mainly been
for training VPS for robust indoor object classification on 3D
data [17], [18].

Thusly, our dataset contributes with the following three
important properties:

« captures full 3D scene instances of a particular scene type

(in our case office table-tops)

o contains instances of subsets of objects-of-interest co-
occurring in the scenes — manually annotated for ground
truth

« provides long-term observations of the same set of scenes
at different times of the day, over several days in 3 weeks.

Our dataset opens up the possibility to study the structures



Fig. 1.

Each column shows a different person’s office table at two different times. The tables in the first two columns are captured in the

morning and evening of the same day, whereas the table in the last column is captured 12 days apart. We can see distinct differences between
different person’s table but there are also many commonalities that a system ought to exploit.

that govern how space is organised. We want to extract and
later exploit these when building the models. While our dataset
only captures table-tops we believe that many of our findings
can be transferred to other types of scenes. As mentioned
above, we expect most tables to have a monitor, a keyboard
and a mouse and that these are arranged in a certain way. Many
people will have the mouse to the right of the keyboard. This is
an example of a spatial structure we want to learn. Some people
have a laptop on their table and they bring this laptop home
in the evening. This is an example of a dynamic property of a
table that we want to learn. We believe that, when combined,
this type of information will allow us to reason about activities
as well.

Another aim is to be able to transfer knowledge from one
part of an environment to another and ultimately from one
environment to the next. For example, if the robot encounters
a table that it has not seen before, it should be able to make
use of the models of other tables to get a good prior for
what to expect. In the same way that the reader can form a
mental picture of a typical office table arrangement. This way,
the robot would also be able to reason more efficiently about
tables that it has not yet seen but which, for example, might
be referenced by a human.

In conclusion, our dataset allows us to provide training data
for spatial understanding models and spatial relations. It also
helps to develop representations that caters for: knowledge
transfer, the ability to learn from few samples and adapting
existing models.

III. DATASET

We focus on table-top scenes in our dataset because in an
office environment the tables represent the work space of peo-
ple. Each table-top is unique to that person but still similar to
the others semantically and continuously changing. Table-tops
are also well defined spatially and there are many instances of
them within a single environment which means that capturing
variation across instances is made more convenient.

With the aim of exploring possibilities to understand, learn
and model these organisational structures amongst objects in

human indoor environments, we present the dataset KTH-3D-
TOTAL, which has been composed by scanning and capturing
observations of a fixed set of entire table-tops, as regularly
as possible, in an office environment. For what follows, we
define a scene as a single observation of a table-top instance
at a particular instance in time. The dataset captures the
individual and group variations in object pose due to humans
and their regular/irregular interaction with their environment.
The required regularity in instances and temporal coherence
was the main motivation for the construction of this dataset,
as currently available datasets either are of individual objects
or single instances of tables or entire rooms. This required
regularity in sampling observations and extent over time is
important when studying and modelling interrelations amidst
the member objects in a long-term autonomous learning.

A. Dataset Design and Concept

We want to provide intelligence to a long-term operating,
autonomous robot for indoor human environments. The KTH-
3D-TOTAL dataset has been composed by capturing and
manually annotating 3D point clouds of office type table-tops,
for a fixed set of people, at fixed times of the day and for
a span of weeks. Observing? the table-tops of the same set
of people at different times of the day gives insight about
the daily interactions a human has with his table and over
many days gives an understanding of the gradual variances of
the configuration of these table-tops. If the data is observed
for an entire week, including weekends, features in the table-
top configurations, that can be used for estimation of the type
of the day of the week, can also possibly be extracted (e.g.
Weekdays, Fridays, Weekends). Table-top models can also be
learnt for all the people put together — which gives a gross
functional representation of an office table-top in general in
office environments — or for individual people which helps to
build unique functional representations of office table-tops for
individuals, for different activities and so on (Figure 1). In

2Data collection protocol: At the designated collection times, people amidst
their activities were asked to abruptly step aside from their tables and not
allowed to alter the table-top or contribute to the occlusion of the table-top.



summary: When the dataset is designed such that when it is
partitioned in different ways with respect to time, people or
object instances, it richly yields knowledge of table-tops in
office environments supporting the building of representation
systems for the same.

B. Dataset Realization

In KTH-3D-TOTAL, 3D point clouds representing 20 peo-
ple’s tables were captured regularly 3 times a day for 19 days.
The data was collected by carefully scanning each table-top
using an Asus Xtion Pro Live RGB-D camera. The raw RGB-
D data stream is aggregated into a single high resolution point
cloud (.pcd format) using the SCENECT software [19].

The scenes were recorded as periodically as possible and
at time instances belonging to three fixed times in the day:
Morning (09:00 hrs), Afternoon (13:00 hrs) and Evening (18:00
hrs). Scenes contain tables of 20 different people collected over
19 days including weekends. A Scene_ID is attached to each
scene to indicate who the table belongs to and the date and
time of the recording. These Scene_IDs help in partitioning the
dataset with respect to time of the day {Morning, Afternoon,
Evening}, person {Carl, Nils, ... }, or day {2013-11-01, 2013-
11-06, 2013-11-13, ... }.

A 3D annotation tool was developed for manually seg-
menting out objects-of-interest from the point clouds. On
average, 12 different objects were labelled, including repeating
instances of the same object class, per scene depending upon
feasibility and occurrence. The objects belong to the follow-
ing super set - {Mouse, Keyboard, Monitor, Laptop, Cell-
phone, Keys, Headphones, Telephone, Pencil, Eraser, Note-
book, Papers, Book, Pen, Highlighter, Marker, Folder, Pen-
Stand, Lamp, Mug, Flask, Glass, Jug, Bottle}. The information
about every scene and object is available in XML and JSON
formats. In these files, each scene has a nested list of object
data containing {Position, Orientation, Size, Date and Time of
recording, Person ID, Point Indices of the points in the point
cloud that have been labelled as belonging to the Object}. This
manual annotation provides the required ground truth data for
long-term autonomous learning.

C. Dataset Summary

This section gives a bullet-summary of the dataset to serve
as a quick reference. KTH-3D-TOTAL has:

« scenes collected from 20 unique tables, 3 times a day for
19 days and in total, 461 scenes.

« cach scene manually annotated at an average of 12 objects
per scene. These objects belong to a superset of 18
Objects-of-Interest classes and could even be multiple
instances of the same object class.

« annotations stored in XML and JSON formats containing
scene instance and it’s object instances’ specifications.

« occurrences of object instances as depicted in Figure 2(a)
and annotations as exemplified in Figure 2(b), 2(c)
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Fig. 2. (a) Objects annotated in 3D Long-Term Dataset, sorted in
descending order of count of occurrences. X-axis=Object Name, Y-
axis=Occurrence Count. (b) Screenshot of one typical office table
scene, along with its annotations in (c).

IV. ANALYSIS

In this section we perform an analysis of the data to
highlight some interesting aspects of it. In particular we will
show that there are structures in the data that can be exploited
by a system for more efficient representations and better
reasoning with less data. This analysis then gives us insight
into what we will later be able to learn from this dataset and
how to design such learning.

Figure 1 shows three table-top scenes. Each column shows
the same table at two different times. The leftmost two columns
contain scenes from the same day, whereas the two scenes in
the third column were sampled 12 days apart in time. Notice
in Column 1: the slight changes in position of the keyboard,
mouse, papers and pen; Column 2: the relatively big changes
in position of laptop, mouse, papers, pen, keyboard, lamp.
When objects in columns 1,2,3 are compared there is a certain
generality in structure (keyboards are in front of monitors), but
also a specificity for each person (occurrence of headphones,
position of mouse w.r.t. keyboard, etc.).



Fig. 3.
2: 06 Nov, 09 Nov, 16 Nov 2013}.

Studying the scenes could also allow a system to infer
the activity of people. We can see that there are changes to
the first table suggesting that someone was there during the
day. Consider the table scenes in Figure 3, which captures
the variations over the same person’s table over many days.
Notice that between 06 Nov and 16 Nov the setup of the table
does not change very much — this reflects the ground truth
that this person was working in another lab (room) and visited
her table only to maybe, check emails. Now consider the
variations between 23 Oct and 30 Oct — this clearly indicates
that the person was at her table and involved in working on the
computer, reading and referring to papers and books, etc. There
is a normal, day’s worth of variation in between the images
of 06 Nov and 09 Nov, however there is a huge variation in
the appearance of the table-top between 23 Oct and 24 Oct
suggesting a most likely human activity of cleaning/tidying up
and the less likely event of an unauthorized meddling. Another
aspect we would like to capture is the no change in scenes
between Friday evenings to Monday mornings on account of
the weekend inactivity. These are all desirable properties that
ought to be captured by the long term autonomous systems.

Observing the tables can also infer a little about the working
style of the people. In Figure 1, the first table suggests that
this person is tidy. The second table is missing the laptop in
the second observation. This might suggest that the person has
left the table, maybe for the day. The third table seems to be
occupied by someone that is less sensitive to clutter. With only
two observations of each tables these are just speculations but
by looking closely at more regular data over 19 days, stronger
claims could be made.

One of our hypotheses is that a qualitative model will be
needed to achieve efficient and powerful representations of
space, at least if the amount of data is limited as it will be
in realistic cases. Such qualitative models could allow some
of the inherent generality in structure in the environment be
encoded in the representation itself. We have already seen in
Figure 1 that monitors are typically at the rear end of the table,
while a keyboard is usually in front of it and the leftmost table
shows an example of a mouse ordinarily being to the right of

This is the table of a single person, observed during the afternoon over many days: {L to R — Row 1: 23 Oct, 24 Oct, 30 Oct; Row

a keyboard.

Figure 4 shows a scatter plot over the position of keyboards
and mice when found in the same scene. The table outline gives
an example of a prototypical table to make it easier to interpret
the data. In the top part of the figure, the green circles mark the
position of the centroid of each keyboard that exist in a scene
where there is at least one mouse. The red square shows the
mean position of all these centroids. The black crosses show
the position of all mice in scenes with at least one keyboard.
In the bottom part of the figure the position of the mouse
relative to the keyboard is shown for each observed pair in
the data. As expected most mice are qualitatively to the right
of the keyboard. There are some outliers. However, encoding
the position of the mouse as being to the right of a keyboard
would capture most of the information. The largest cluster of
points in the lower part of Figure 4 contains about 95% of
all data points. Notice how this structure in the data is lost,
at least visually, when looking at the position of the keyboard
and mouse in the table frame (top figure) and how it pops out
when looking at the relative positions (bottom figure). We want
our representation to be able to capitalize on this structure.
Clearly, in this case, the position of the keyboard contains
almost all information that is needed to represent the position
of the mouse as well. The figure also clearly shows how the
distribution varies across person instances (the different colours
in the bottom part). Note how each person has a much less
spread in the distribution than when considering them all at
once. This is a good illustration of the difference between
general models of space and models of specific instances of
space; and the importance of the richness of the training data
to provide for these two models.

To further investigate the correlation between different
object classes, and thus look for other inherent structures in the
data, we look at the relative position of all objects of class C;
w.r.t. to objects of class C; present in the same scene and turn
to information theory for the analysis. We calculate the entropy
over the histogram of the distributions of relative positions
(i.e. histogram over bottom figure in Figure 4, for instance).
Entropy measures the predictability of the information. A low
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Fig. 4. This figures shows how a relative position representation
(bottom) is able to expose a structure that is not visible in abso-
Iute coordinated (top). Top: The green circles shows the positions
keyboards(red square shows mean of keyboards). The black crosses
show the position of all mice in these scenes. Bottom: Mean position
of keyboards (red square) and relative position of mouse relative to
it. Each color shows a different person. The brown rectangle gives a
rough idea about where the borders of a typical table would be.

entropy means that there are informative features available to
make prediction, i.e. there is an underlying structure. A large
entropy on the other hand means that it is very hard to make
predictions and the resulting distribution would be close to
uniform. We calculate the entropy as

n; n;

E = Z(N)zn(N) )]
where n; is the number of samples that fall in cell ¢ in a grid
discretization of the table and N is the total number of samples.
Each sample corresponds to one object pair in one scene. The
true entropy will only be estimated well when N is large. We
therefore limit this investigation to pairs of objects that occur
more than a certain number of times in the data. Figure 5 shows
these entropies for 10 of the objects in the dataset. From this
figure we can, for example, see the low entropy in the relation
between keyboard and mouse (elements 1,3 and 3,1 in the
matrix). The relative positions of monitors and keyboards also
have a fairly low entropy. We also see that the position of
papers is largely uncorrelated with many other objects (uniform
distribution gives high entropy). The values from such an
entropy matrix could give suggestions toward hypothesizing
a possible hierarchy in data organisation for the robots. Those
objects that have a lot of positional variance could be described
as target objects with respect to landmark objects that do
not vary as much. This organising tree structure could also
potentially be autonomously learnt — leading to more than one
landmark object in a scene. A keyboard-mouse-monitor-laptop
could be organised in a parallel sub-tree alongside a mug-glass-
jug-flask sub-tree. We make these suggestions purely based on
conjecture, which we aim to verify in our following research
work.
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Fig. 6. The figures show the relative position of a) keyboard
w.r.t. monitor, b) mug w.r.t. keyboard and c) papers w.r.t. keyboard.
Qualitatively keyboards are mostly in front of monitors, mugs are
around the keyboard and the position of papers is mostly independent
on the position of the keyboard. The different colors/markers show
data from different people in the data.

In Figure 6 we look closer at some of these relations.
Figure 6(a) shows the position of the keyboard w.r.t. to the
monitor. Our intuition that keyboards are placed mostly in
front of monitors is supported by data. Figure 6(b) shows the
position of the mug w.r.t the keyboard. We see that the mug
is rarely very close to the center of the keyboard but rather
positioned around the keyboard. Taking function into account
the data might suggest that the mug is in fact often placed
at arms length from the person working on the table to keep
it at safe distance from the keyboard but still within reach.
We see a bias towards the right side, probably a result of
most people being right-handed. In Figure 6(c) we see that
the distribution for the relative position of papers w.r.t. to the
keyboard is almost uniform, suggesting that they are largely
uncorrelated. Upon keener observations we can see that there
are some clusters of similar markers which indicate that papers
are not as dynamic as the mouse or mug, and hold their place
usually for a couple of days on average. The fact that there
are often many papers in a scene adds to the uniformity.

To summarize the analysis, we have shown that the data
has many structural properties that a method for representing



o@‘bé\oﬂ &
5
keyboard
4.5
monitor
4
mouse
35
mug
3
laptop
25
papers
2
book
15
bottle
1
jug
0.5
notebook
N L] :
Entropy
’ H key \mon \ mou \ mug\ lap \ pap \ boo \ bot \ jug \ not
key 0.80 | 3.58 | 2.93 | 4.08 | 3.69 | 457 | 3.97 | 3.41 | 2.76 | 3.66
mon || 3.43 | 1.61 | 3.37 | 4.03 | 340 | 457 | 404 | 3.43 | 296 | 3.48
mou || 3.05 | 3.63 | 0.74 | 3.94 | 3.59 | 4.53 | 3.79 | 2.28 | 2.84 | 3.62
mug || 4.17 | 4.15 | 3.78 | 0.70 | 3.73 | 441 | 3.80 | 3.94 | 2.76 | 3.40
lap 3.88 | 3.52 | 3.73 | 3.63 | 0.06 | 432 | 3.58 | 3.04 | 1.99 | 2.94
pap | 436 | 442 | 412 | 428 | 3.85 | 2.68 | 4.09 | 3.72 | 2.92 | 3.53
boo | 3.81 | 3.88 | 3.75 | 3.92 | 3.48 | 434 | 0.63 | 3.10 | 2.08 | 3.33
bot 347 | 3.56 | 3.37 | 3.10 | 2.86 | 4.06 | 3.02 | 0.94 | 2.46 | 2.57
jug 297 | 3.19 | 2.82 | 292 | 1.90 | 3.19 | 2.23 | 2.77 | 0.00 | 1.91
not 3.57 | 3.82 | 3.52 | 3.55 | 298 | 3.94 | 3.35 | 251 | 1.73 | 0.08

Fig. 5. The figure illustrates the entropy value in the distribution of relative positions of one object (column) w.r.t. to another object (row).
Dark red indicates high entropy (more uniform distribution) and dark blue low entropy (more peaky distribution). We show this for the most
frequently occurring object pairs in the dataset (i.e. most statistics). The table shows the actual entropy values corresponding to the above

illustration.

and reasoning about space should exploit. If the aim is to
represent typical configuration of objects, this preliminary
analysis suggests that a significant part of such knowledge
can be encoded well with qualitative spatial relations, such
as the mouse is to the right of the keyboard and the keyboard
is in front of the monitor, while keeping in mind that this
represents the typical case and not the only possible situation.
It is important to differentiate between typical knowledge, i.e.,
knowledge about what the world typically is like and specific
instance knowledge, i.e., knowledge about a particular scene
at a specific time. We can also see that a system that observes
these table-tops for an extended period of time will be able to
learn quite a lot about the habits of the owners of the tables
and even the current activity in many cases.

V. CONCLUSIONS

We have shown that there is structure in many aspects of
the manner that objects are arranged in scenes. We can expect
that robots operating over long periods of time, repeatedly

observing the same scenes and types of scenes, will be able
to learn models of this structure — preserving the temporal
and instance variations in the scenes. The large, manually
annotated, benchmark 3D dataset we present, is one-of-a-kind
— providing the means to train long-term autonomous learning
systems for spatial understanding.

Our immediate research plans for this data are to learn
and model the spatial relations amidst objects contained in the
scenes. Such models and spatial relations can subsequently be
tested, verified and also used by the autonomous robots in our
collaborative research project (STRANDS) while they operate
over months at various sites. These will allow for activity
recognition, anomaly detection, and context recognition.

We also aim to make our next datasets with scenes observed
periodically at different scales (different times of a day, all days
over weeks). We also want to consider tables of different kinds
(cafeteria, kitchen, reading room) and rooms of different kinds
(kitchen, cafeteria, offices) to be able to model more scenes



in human environments keeping with the intention of our long
term autonomous robotic learning research.
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