
Interleaving Planning, Scheduling, and Execution in Mobile Robots

Lenka Mudrova and Nick Hawes
School of Computer Science, University of Birmingham, United Kingdom

Abstract

This paper gives one possible answer to the question
of “whether we should use planning or scheduling to
control a robot in order to execute a task specified by
a user?”. To be able to answer this question, we spec-
ify a new research problem, which actually interleaves
both planning and scheduling techniques. In addition,
the problem also contains three new research questions.
The first question relates to estimating of an initial state
of a task, second to recognising similar actions across
tasks and third to minimising negative effects of uncer-
tainty. Finally, we present a homogeneous representa-
tion of the problem, which can be expressed as a condi-
tional directed labelled graph, and we propose a hierar-
chy structure to solve the problem.

1 Introduction
Assume that a mobile robot operates in a hospital building.
The robot receives the set Ω containing a variety of tasks to
perform:
• ω1: “Check emergency exits today.” This task has a rel-

atively large time window when it should be performed.

• ω2: “Find a free wheelchair before 14:00.” A wheelchair
can be located anywhere in the building.

• ω3: “Map the second floor of the building today.” This
task represents a robot’s curiosity which often has a lower
priority than user’s tasks.

• ω4: “Update the database after performing ω3.”
The activities for ω2 and ω3 can have pre-defined actions.

If we assume that the robot can understand and execute
given tasks, then such autonomous robot needs to solve the
following problems:

1. What actions must it perform?
2. When should it execute those actions?
These questions are more general and they appear in a wide
array of research areas. Thus, considerable research has been
undertaken to address each of them.

Classical planning techniques as summarised in (Nau,
Ghallab, and Traverso 2004) can be used to answer ques-
tion (1). Moreover, they were extended to temporal plan-
ning and to resource planning to also address question (2).

In contrast, scheduling as summarised in (Pinedo 2012) is
used to answer only question (2). In conclusion, planning
and scheduling techniques overlap in their approaches to
solve aforementioned questions.

In real world scenarios as our model example, there is no
clear-cut boundary when to use them. This unclear boundary
is also address in the existing research, for example (Smith,
Frank, and Jónsson 2000), (Barták 1999). Therefore, this
paper firstly points out some advantages and disadvantages
of the temporal planning and scheduling from the point of
view of an autonomous mobile robot. Secondly, it extends
the problem by introducing three novel research questions.
Finally, the paper introduces a new homogeneous approach
that incorporates the advantages of planning and scheduling.

2 Problem definition
First, we clarify the terms used in this paper. Then, we point
out why neither standalone scheduling, nor standalone plan-
ning are sufficient techniques for solving our problem. In ad-
dition, we formulate new open questions related to the prob-
lem, when a solution to them has the potential to increase
the overall performance of a robot.

2.1 Terms definition
The terms task, activity and action are used differently in
literature.

Task We refer to a single task by ω with numeric subscript
i, for example ω1. Its properties are then referred by the same
subscript.In this paper, a task ωi has the following proper-
ties:

• time properties:

– release date ri (the earliest time instant when a task can
start),

– deadline di,

• weight function wi(t), which penalises the completion
time of a task and it is used in a scheduling optimisation
criteria,

• an activity πi to perform.

Activity Each activity πi has:

• a description, for example “check the fire extinguisher”,



• a goal state sg , for example sg = objectKnown-
State(fireExtinguisher, loc5)

• a sequence of actions (ai1 , ai2 , . . . , aim).

Action Actions (ai1 , . . . , aim) ⊂ A are indivisible and a
robot is able to perform them. The set of all actions, which
robot can perform, is referred by A and is defined by a spe-
cific robot’s domain D. Actions can be used in any combi-
nation to create a new activity for a new task.

2.2 Scheduling approach
Scheduling finds execution time instants for tasks in order to
guarantee that a chosen optimisation criterion is maximised
(or minimised). For example, the criterion using total com-
pletion time should be minimal in order to achieve all task
as soon as possible. Tasks are then executed in those time
instants. However, ω2 from model example cannot be exe-
cuted, as the robot does not know what actions to perform.
Therefore, planning is needed.

In addition, ω2 and ω3 can have significantly different du-
rations which are not known beforehand as they depend on
a robot’s environment. For example, when assuming that the
robot has no ability to open office doors, the robot checks
state of each door during execution and can only map offices,
it can visit. Therefore, the duration of ω3 depends on how
many offices have open doors. This issue can be solved by
conditional scheduling (also referred as contingent) (Drum-
mond, Bresina, and Swanson 1994).

2.3 Planning approach
Planning answers what actions should be performed to
achieve a goal state from an initial state. This is necessary
to perform ω2. Furthermore, temporal planning techniques
can answer the question of when these actions should be ex-
ecuted. Thus, they will solve our model example.

Temporal planning works as follows. First, the goal states
of the given tasks are combined by logic conjunction in a
global goal state. Then, a planner answers both question (1,
2) at the same time by producing a sequence of time depen-
dent actions. The advantage is that the tasks are performed in
an interleaved manner - the robot can perform some action
for ω2, followed by ω3 and then ω2 again. This interleav-
ing of different tasks increases the robot’s efficiency. How-
ever, the conjunction of the goal states leads to larger search
spaces for sets containing more tasks. For tens of tasks, this
approach is slow. As we assume tens of tasks in our domain,
this is not sufficient approach to us. Therefore, we will use
planning only for a single tasks. Scheduling will be used for
answering question (2) in global case.
ω2 and ω3 require techniques of conditional planning

for the same issue as explained previously in conditional
scheduling. In conclusion, we need to use conditional tem-
poral planning for a single task in order to know what actions
should be executed and how much time they will take.

2.4 Going beyond the state of the art
Lets assume that scheduling and planning techniques are
both used in some structure which is able to answer what

to and when to execute a set of actions. However, there are
more unsolved questions behind our model example.

Question A What is the initial state of a task and when
is it valid?

The first question refers to the fact that planning needs as
an input an initial state. But, what is the initial state for a task
ωi? Is it the state of a robot’s world at release date? Is it the
state when we expect that a task will have been executed?
If so, when will the task have been executed? What is the
initial state for a task with a large time window for execution
as ω1 has? Is the initial state the same state in the morning
and in the afternoon? What about ω4, which depends on the
completion time of ω3? All these questions are summarised
in question A.

Question B How can a robot realise which actions of
tasks are similar and perform them together if time con-
straints are not violated?

The second question relates to the fact, that planning is
called for a single task in order to keep a search state space
small. As a result, a robot performs tasks in a serialised way.
The next task can only be executed, once the current task
has been completed. However, we – people – very often ful-
fil tasks in an interwoven way which can increase our effi-
ciency. For example, we take a letter to the post office while
heading to a restaurant for lunch (assuming that the post of-
fice is more or less on the way).

Question C When shall a robot make decisions in order
to minimise negative effects of partial observability?

The third questions refers to partial observability in the
system which occur in many places. For example, how long
does an action take, what is the state of state variables, what
to do if a task cannot be fulfilled as the deadline for it
has already passed. Partial observability might invalidate an
earlier decision thus causing rescheduling and replanning,
which negatively affects the robot’s performance.

2.5 Summary of the problem
We will refer to the combined scheduling and planning prob-
lem by the Greek letter Ξ. To summarise, it contains:

• conditional temporal planning to answer the question of
what actions should be executed and how much time will
they consume,

• conditional scheduling to answer the question of when ac-
tions should be executed,

• execution with monitoring system in order to choose be-
tween conditional branches and to change taken decision
if an action takes much time then it was expected.

• new approaches to answer Questions A-C.

Input:
• set Ω = {ω1, ω2, . . . , ωn} of tasks to be performed,

• temporal constraints C on the tasks which are:



– unary - Cωi relates to the fact that task ωi needs to start
after release date and end before deadline,

– binary - ωiCωj refers to the fact that the relation of two
tasks can be constrained, as in our model example ω3 <
ω4,

• for each task ωi a planning space Σi = (Si, Ai, Ei, γi)

• domain D describing a robot’s world.

.

Output: Conditional time-dependent sequence of actions,
for example ({ati1}, {a

t
i2
}, {ati3 , a

t
i4
}, {ati5 , ∅}). In this ex-

ample, the two following sequences are possible:

• either (ati1 , a
t
i2
, ati3 , a

t
i5

),

• or (ati1 , a
t
i2
, ati4).

3 Proposed representation
The defined problem can be expressed as a tuple

Ξ = (Ω, C,Σ,D).

This tuple can be represented as conditional directed la-
belled graph

GΞ = (N,E,L),

which is inspired by representation of scheduling as a Sim-
ple Temporal Network (STN) (Dechter, Meiri, and Pearl
1991). The nodes N = {T,P, S} can be one of three differ-
ent types:

• T is a set of time nodes. Each node represents an exact
time instant. We will use the symbol � in a visualisation
of a graph.

• P = (Σ, s0, sg) is a planning node, which refers that a
plan will take place in the graph, but the final plan is still
unknown. We will visualise it by4.

• As the plan is known, the planning node is replaced by
the plan represented by state nodes S and action edges. A
state node contains description of a state based on domain
D. We will refer to it by©.

According to these nodes, conditional, directed edges
E = {τ, δ, α} are also three different types:

• Time edges τ can only link two different time nodes. The
time difference ∆t between them can be computed.

• Dependency edges δ link two nodes n1, n2 in a sense that
node n1 needs to happen before n2. Thus, dependency
edges set up an order on nodes, but we do not know how
much time is between nodes. The dependency edges can
link:

– a time node with a plan node, or opposite order,
– a time node with a state node, or opposite order,
– two plan nodes.

• Action edges α transform one state node to another one.

The different symbols for all edges used for a visualisation
of a graph can be seen in Fig. 1.

The edges are labelled by L = {(∆t, w(t)), (∅), (a, p)} :

• Time edges are labelled by the time difference ∆t and
the weight function w(t). The weight function for edges
connecting release and due dates is set by the particular
task. For other time edges, the weight function is constant
to one.

• Dependency edges are not labelled.

• Action edges are labelled by the name of a performed ac-
tion a from the set A and also by its estimated processing
time p.

In summary, the graph is

GΞ = ({T,Σ, S}, {τ, δ, α}, {(∆t, w), (∅), (a, p)}).

4 Proposed solution - a hierarchy
The described conditional directed labelled graph GΞ can
be used to solve given problem Ξ. We propose a hierarchy
structure to construct such a graph and use it to solve the
problem. First, a simplified graph Gin is created from time
unary constraints C of tasks in a pre-stage. These constraints
are represented by time nodes and time edges, see Fig. 1 for
our model example. The binary constraint is represented as
a dependency edge. We also know that a plan node will take
a place between the release and due dates, but we do not
when, thus we use the dependency edges. Then, following
hierarchy containing seven stages extends this graph. The
influence of each stage to the graph GΞ is shown in Fig. 11.

Stage 1: Prediction
The input to this top layer is a simplified graphGin. The pre-
diction layer answers question (A). It predicts several best
time intervals, which are limited by time nodes t−s and t+s ,
and corresponding initial states node s′0i, s

′′
0i, . . . which are

valid within the intervals. For example, ω1 has two possible
initial states, see Fig. 1. For intervals, we will extend ideas
presented in (Laborie 2003).

Stage 2: Conditional planning
For each task and each prediction, conditional plans are pro-
duced as graphs containing states and action edges, see ω4

in Fig. 1. The final state of a plan is a task’s goal. We assume
to use existing temporal planner in this stage.

Stage 3: Least commitment scheduling
Some tasks might have large time windows. Thus, one pre-
diction can be for the near future, another one for the far fu-
ture. It is more likely that the first prediction would be more
certain comparing to another one. This stage answers ques-
tion (C) by using techniques of least commitment scheduling
(Berry 1993) to set time horizon. For tasks which start within
the interval from now to this horizon, below stages will pro-
vide more certain decision. However, the below stages will
be applied later for those tasks which start behind time hori-
zon, which is the case of ω4 in Fig. 1.

1Please, print this paper in colour to see the figure correctly



Stage 4: Time dependent plan mixing

This stage answers question (B) by combining two branches
in conjunction relation to a single branch, as for ω1 and ω2

in Fig. 1. This is done by putting states of original plans in
different order and by adding interconnecting states. We will
built on plan repair (Krogt and Weerdt 2005) and refinement
planning techniques (Kambhampati, Knoblock, and Yang
1995) despite the fact that it was proved that modifying an
existing plan is no more efficient than a complete replanning
in general case (Nebel and Koehler 1995). Plan repair and
plan refinement might be still efficient our case as we com-
bine it with a scheduler.

Stage 5: Time dependent plan merging

Plan merging analyses two situations. First, it finds which
actions are same. Thus, one of them can be eliminated, see
Stage5b label in Fig. 1. Second, it analyses which actions
can be combined to a new action with shorter processing
time, see label Stage5a. The important extension of the plan
merging relates to the fact that two merged tasks still need
to satisfy their time constraints. We will extend the work
(Tsamardinos, Pollack, and Horty 2000).

Stage 6: Conditional scheduling

The previous stages produce more conditional branches. The
processing time of branches might strongly differ. Thus,
conditional scheduling answers what shall be executed next
(in a new time horizon) depending on which of the branches
will be performed. In our model example, only possibility is
to execute ω3 afterwards, as ω4 follows it.

Stage 7: Execution and monitoring

This stage is the lowest level which controls that a robot ex-
ecutes an action from the conditional schedule. It also mon-
itors not only actions processing times, but also world state
variables and choose between branches based on observa-
tions.

5 Discussion
This paper presents the novel problem Ξ connecting plan-
ning and scheduling. Moreover, it goes beyond the state of
the art by adding three new research questions. We intro-
duce homogeneous representation as a conditional directed
labelled graph GΞ. We are aware that there are related prob-
lems such as resources that we did not covered in our prob-
lem. A resource with limited capacity can be a property of
a single robot or it can relates also to multiple robots op-
erating in the world. This is one of the possible extensions
of our proposal. We believe, it can be solved by construct-
ing separate graphs GΞ for each resource and finding such a
solution, which is valid in all of graphs.

In conclusion, we aim for a compact representation that
allows a robot to quickly and reliably decide what and when
to execute in order to perform a given task.

0

r12 r3 r4

d1

d2

s''10

s'10

t-
s'

t+
s'

t-
s''

t+
s''

[r1,1]
[r3,1]

[r4,1]

now

14:00

00:00

??:??

d3

d4

[Δt3,w3] [Δt4,w4]

P3

binary
constraint

Time edge

Dependency edge

Action edges

Pre-stage

Stage1

sg s42

sg

[a1,p1] [a2,p2]

[a3,p3]

Stage2

s'40

t-
s'

t+
s'

"and" branches

s41

[a0,p0]

time
horizon

Original 
plans

P2P'1

P''1

Stage4

Stage5a

Stage5b

Interconnecting state

Conditional scheduling

"or" branches

Figure 1: Due to lack of space in this paper, all stages are
shown in one graph GΞ. However, stages are normally ap-
plied in serialised way, thus they influence all tasks and we
will need more graphs to visualise it.

6 Acknowledgements

The research leading to these results has received fund-
ing from the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement No
600623, STRANDS.



References
[Barták 1999] Barták, R. 1999. On the boundary of planning

and scheduling: A study. Technical report, Faculty of Math-
ematics and Physics, Charles University, Czech Republic.

[Berry 1993] Berry, P. M. 1993. Uncertainty in scheduling:
Probability, problem reduction, abstractions and the user.
In IEE Colloquium on Advanced Software Technologies for
Scheduling, Digest No.

[Dechter, Meiri, and Pearl 1991] Dechter, R.; Meiri, I.; and
Pearl, J. 1991. Temporal constraint networks. Artificial
Intelligence 49(1-3):61–95.

[Drummond, Bresina, and Swanson 1994] Drummond, M.;
Bresina, J.; and Swanson, K. 1994. Just-in-case schedul-
ing. In In Proceedings of the Twelfth National Conference
on Artificial Intelligence, 1098–1104.

[Kambhampati, Knoblock, and Yang 1995] Kambhampati,
S.; Knoblock, C. A.; and Yang, Q. 1995. Planning as re-
finement search: A unified framework for evaluating design
tradeoffs in partial-order planning. Artificial Intelligence
76:167–238.

[Krogt and Weerdt 2005] Krogt, R. V. D., and Weerdt, M. D.
2005. Plan repair as an extension of planning. In In Pro-
ceedings of the 15th International Conference on Automated
Planning and Scheduling (ICAPS-05, 161–170.

[Laborie 2003] Laborie, P. 2003. Algorithms for propagat-
ing resource constraints in ai planning and scheduling: Ex-
isting approaches and new results. Artificial Intelligence
143(2):151–188.

[Nau, Ghallab, and Traverso 2004] Nau, D.; Ghallab, M.;
and Traverso, P. 2004. Automated Planning: Theory & Prac-
tice. San Francisco, CA, USA: Morgan Kaufmann Publish-
ers Inc.

[Nebel and Koehler 1995] Nebel, B., and Koehler, J. 1995.
Plan reuse versus plan generation: A theoretical and empiri-
cal analysis. Artificial Intelligence 76(1-2):427–454.

[Pinedo 2012] Pinedo, M. L. 2012. Scheduling: Theory, Al-
gorithms, and Systems. Springer Science+Business Media,
4th edition.

[Smith, Frank, and Jónsson 2000] Smith, D. E.; Frank, J.;
and Jónsson, A. K. 2000. Bridging the gap between plan-
ning and scheduling. Knowledge Engineering Review 15.

[Tsamardinos, Pollack, and Horty 2000] Tsamardinos, I.;
Pollack, M. E.; and Horty, J. F. 2000. Merging plans
with quantitative temporal constraints, temporally extended
actions, and conditional branches. 264–272. AAAI.


	Introduction
	Problem definition
	Terms definition
	Scheduling approach
	Planning approach
	Going beyond the state of the art
	Summary of the problem

	Proposed representation
	Proposed solution - a hierarchy
	Discussion
	Acknowledgements

