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Abstract— Finding objects in human environments requires
autonomous mobile robots to reason about potential object
locations and to plan to perceive them accordingly. By using
information about the 3D structure of the environment, knowl-
edge about landmark objects and their spatial relationship to
the sought object, search can be improved by directing the
robot towards the most likely object locations.

In this paper we have designed, implemented and evaluated
an approach for searching for objects on the basis of Qualitative
Spatial Relations (QSRs) such as left-of and in-front-of. On the
basis of QSRs between landmarks and the sought object we
generate metric poses of potential object locations using an
extended version of the ternary point calculus and employ this
information for view planning. Preliminary results show that
search methods based on QSRs are faster and more reliable
than methods not considering them.

I. INTRODUCTION

In recent years, we have seen substantial progress towards
personal robot assistants performing everyday tasks in human
environments [1], [2]. The ability to search for objects is an
integral part of many of those tasks, as the locations of task-
relevant objects are often unknown beforehand, or change
over time. Therefore, robots cannot generally assume that an
object will be in the same location where it was previously
perceived. Hence robots will often have to search for objects
in their task environment. The problem of optimal active-
visual search for objects is NP-hard [3], hence robots need
to rely on additional task-relevant information in order to
find objects efficiently.

Due to the natural dynamics of human environments, the
locations of some objects often change, e.g. pens, mugs,
books etc. will be picked up, used, and possibly put down
somewhere different. While this occurs, the locations of other
objects are generally constant, e.g. monitors, TVs, desks,
cabinets etc. do not tend to move in everyday usage. In this
paper we present an approach which allows a mobile robot
to exploit the location stability of the latter type of objects
in order to more efficiently find objects of the former. We
are motivated by the knowledge that as research on long-term
autonomy allows longer and longer robot runtimes [4], robots
will be able to exploit the additional experience available to
it to learn which objects in its environment do, or do not,
tend to change position over time.

In this work, we call objects that do not change their
position qualitatively over time landmarks, and those that
change their position on a regular basis simply objects.

For example, consider an office environment which con-
tains both largely stationary items (furniture such as office
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(a) Q: Where to stand to find
a keyboard? A: Keyboards are
usually on supporting surfaces
such as tables.

(b) Q: Where to look for it? A: Keyboards
are likely to be found in front of a monitor.

Fig. 1. Searching for objects in human environments requires an au-
tonomous mobile robot to reason about where to stand and where to look.

desks, cupboards and drawers, and devices such as desktop
PCs, monitors and printers) and movable table-top objects
(such as pencils, papers and cups). If a robot has some
knowledge about the relationships between such objects in
the environment, it can exploit this when searching for an
object. For example, a robot supposed to search and locate
unused coffee cups in an office space could make use of
the information that coffee cups are often located on offices
desks, to the left or to the right of a keyboard and in front
of a monitor. Given this knowledge about the environment,
the robot can identify potential object locations and reason
about the view points it should use in order to perceive the
object. The refinement of the areas considered for active
visual search through the use of an intermediate object is
known as indirect search, and has been previously shown to
be an effective method of improving search performance [5].

In this paper we investigate how indirect search using
Qualitative Spatial Relations (QSRs, [6]) improve the
performance of a robot searching for objects in human
environments. To this end, we have designed, implemented
and evaluated an approach for searching objects based on
QSRs. Fig. 1 illustrates the questions a robot has to answer
when searching for an object, namely, where to stand and
where to look. We answer these questions on the basis of
QSRs. Starting from the approach of Aydemir et al. [7], we
assume that the robot has the following information at the
beginning of the search: a 2D map, and a 3D map. To this
we add the assumption that the robot also knows the poses
of a set of known landmark objects, and a set of QSRs
between them and other objects. The novel contribution of
this paper showing how these additions can be use during
indirect search, and how these additions improve object
search performance in both simulated and real robot trials.



The remainder of the paper is structured as follows. In
Section II, we put this work into context to related ap-
proaches. Section III presents the underlying representations
of QSRs, explains how we generate potential object locations
based on a ternary point calculus, and shows how we use
the resultant information in object search. In Section IV,
we present experimental results of different search methods
employed in simulated and real object search experiments
before we conclude in Section V.

II. RELATED WORK

Active visual search has become a popular topic in mobile
and service robotics recently. Work done by Aydemir, Sjöö
and others in the CogX project ([7], [8], [9]) introduced the
sampling-based approach using object location probability
distributions. This approach provides and effective and flex-
ible approach to active visual search which is not restricted
by the complexity of optimal object search in the general
case [3]. The CogX work [9] used the spatial relations “in”
and “on” to define object targets. We go beyond this work by
using more restrictive spatial models to provide more tightly
defined viewing probabilities. As shown in IV, increasing
search performance in the case where the environment is a
close match for these models. Other recent work on object
search has tackled larger scale space but used predefined
view cones within rooms [10], or has allowed searching over
rooms or scenes for unknown objects without constraining
their location in 3D [11], [12] such as we are.

In future work we intend to learn positional spatial models
from the robot’s experience of an environment, creating both
environment general spatial models (i.e. keyboards can be
found in front of monitors) and more specific models (i.e. the
keyboard in Room 133 is often to the right of the monitor).
To create such models we can draw on existing work which
quantifies qualitative knowledge making it appropriate for
our approach (e.g.spatial models [13], [14] or conceptual
knowledge [2], [15]), or learns metric object location pre-
dictors from experience [12], [16].

III. QSR-BASED INDIRECT OBJECT SEARCH

A. Qualitative Spatial Relations (QSRs)

The general approach of QSR-based indirect object search
has already been introduced in the previous section: the robot
searches for an object by considering the QSRs between
the sought object and other objects in the environment that
function as landmarks. In this work, we distinguish between
two different object classes, namely, static and dynamic
objects. In Table I we give some examples of the different
types of objects. We refer to objects as static if they are
only subject to rare and minor location changes over time
(i.e. nothing that would qualitatively change their pose); and
we refer to objects as dynamic if they are subject to frequent
location changes (i.e. their pose change qualitatively). In our
approach we use static objects as landmarks for finding the
locations of dynamic objects on the basis of QSRs.

In [9], the authors use topological relations such as “in”
and “on” to specify potential object locations. In this work

TABLE I
LOCATION CHANGES OF OBJECT TYPES

Object type Location changes Examples

static rare and only quantitative PC, monitor, printer
dynamic frequent and qualitative keyboard, mouse, cup

Fig. 2. Different geometric configurations of object on an office desk on
the basis of the same QSRs.

we go beyond this by using directional (left-of, right-of, in-
front-of, behind-of ) and distance relations (close-to, distant-
to) to describe the QSRs between objects. Fig. 2 shows
different geometrical configurations of a desktop scene with
the same QSRs. In this example, the monitor functions as the
landmark and the scene is defined by the following QSRs:

scene(Monitor,Keyboard,Laptop,Cup,Bottle)⇔
in-front-of(Keyboard,Monitor)∧
left-of(Laptop,Keyboard)∧
right-of(Cup,Keyboard)∧
behind-of(Bottle,Cup)∧
close-to(Bottle,Cup).

To utilize QSR scene descriptions within object search
tasks, the qualitative, relational description is transformed
into a sub-symbolic, quantitative representation that can
directly be integrated with the robot’s environment model.

To this end, we use the qualitative positional calculus
based on ternary relations [17] that has been developed in
the context of robot navigation. The three positions in the
calculus are referred by origin, relatum and referent. In this
work, origin corresponds to the position of the robot, relatum
to the landmark, and the referent to the sought object. In the
following we denote these positions by robot, landmark, and
object. Robot and landmark define the reference axis which
partitions the surrounding space. Then, the spatial relation is
defined by the partition in which object lies with respect to
the reference axis. To determine the partition, i.e. the spatial
relation, we calculate the relative angle φrel as follows:

φrel = tan−1 yobj − yland
xrobj − xland

− tan−1 yland − yrobot
xland − xrobot

(1)

φrel, is the angle between the reference axis, defined by
robot and landmark, and the object point (Fig. 3).

In our work, we assume that the robot position (robot),
is located in front of the office desk, facing the intrinsic
front side of the monitor (landmark). That is, contrary to the
ternary point calculus we assume that landmark objects are
always represented with their full pose. Given this idealized
situation, the robot hallucinates potential object locations of,
for example, a cup on the basis of QSRs. That is, the robot
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Fig. 3. The relative angle φrel is defined by the reference axis, which
is specified by robot and landmark, and the object. The example above
illustrates a situation where the object is left and behind of the landmark.

first generates the potential locations of the keyboard, and
afterwards a potential location of a cup.

We generate geometric positions from QSRs by sampling
the relative angle φrel from a set of Gaussian distributions
representing the directional relations. The four directional
relations behind-of, left-of, in-front-of, and right-of are rep-
resented by Gaussian normal distributions with means 0,
1
2π, π, and 3

2π respectively. For generating positions for
the proximal relations between objects we used a similar
approach. The relative radius is calculated as the ratio of
the distance between object and landmark and the distance
between landmark and robot. If the ratio is smaller than
a threshold the relation is classified as close, otherwise
as distant. For sampling a distance between objects we
use again Gaussian distributions for representing close and
distant. These distributions already take into account that we
deal with table-top objects.

Having sampled a number of potential object positions we
represent them by a single multivariate Gaussian distribution
relative to the landmark. With this approach we could
also represent disjoint QSR descriptions. For example, the
relations left-of(Cup,Keyboard) and right-of(Cup,Keyboard)
can be represented by two multivariate Gaussians whereby
the distributions are weighted by the number of observations
a robot made. The overall set of QSRs is then represented
by a mixture of 2D Gaussians.

B. Search Method

To perform search, we assume the robot has the following
information: a 2D map, a 3D occupancy map, a set of
landmark objects, and a mixture of Gaussians generated from
a QSR scene description as explained above.

When the search is started, the robot first receives the
latest version of the 3D map, calculates the average normal
for each voxel, and keeps only those voxels which normals
are pointing upwards (in a certain range). These voxels are
considered as part of supporting planes. We denote these vox-
els by v1. . .vm. Fig. 4 shows the complete 3D Octomap [18]
of the environment (left) and the extracted supporting planes
according to the averaged normals (right). This is similar to
considering all objects to be “on” a supporting plane [9].

In a second step, the robot samples n reachable poses
from the 2D map which are denoted by Ψ. At each of
these poses, we calculate a 2D view cone according to the
robot’s sensor specification. The view cones are evaluated
with respect to projected 3D occupancy map. To evaluate the

Fig. 4. Left: 3D Octomap of the environment. Right: Extracted supporting
planes on the basis of a normal estimation.
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Fig. 5. Voxels of the supporting planes are weighted by the Gaussian
mixture model derived from the QSRs

view cones, we count the number of occupied voxels that lie
within a cone. However, we only consider voxels that have
been classified as part of a supporting plane beforehand. The
function V iewcone(ψ) returns the view cone of the robot
at a given pose ψ. And the function In(vi, V iewcone(ψ)
returns 1, if the voxel vi is in the view cone of pose ψ,
otherwise 0. To select the best view cone the robot uses the
equation as defined below:

argmax
ψ∈Ψ

∑
PQSR(vi|ω,Λ)In(vi, V iewcone(ψ)) (2)

where PQSR(vi|ω,Λ) denotes the probability distribution
for voxel vi given an object type ω and a set of landmarks Λ.
The set of landmarks Λ include both their object types and
their poses. Fig. 5 visualizes an example of such a probability
distribution over the voxels classified as supporting planes on
the basis of the Gaussian Mixture model (GMM) generated
from the QSRs. Having selected a best view cone the robot
proceeds by navigating to the respective pose and by running
its perception routines. The overall algorithm of the view
planning procedure is formalized in Algorithm 1.

Fig. 6 and Fig. 7 visualize the search progress and evalu-
ated view cones with respect to the supporting planes and the
QSRs respectively. The colors of the view cones indicate the
probability to find an object at the respective poses. When



Algorithm 1 QSR-based object search
Require: M2D and M3D are the 2D and 3D environment

maps respectively; n denotes the number of poses to be
sampled

1: procedure SELECTBESTVIEW(n, M2D, M3D, PQSR)
2: {v1. . . vm} ← V oxelsOfSupportingP lanes(M3D)
3: Ψ← NavigatablePoses(n,M2D)
4: Initialize sum(ψ) with 0 for all poses ψ ∈ Ψ
5: for all ψ ∈ Ψ do
6: vc← V iewcone(ψ)
7: for all vi ∈ {v1. . . vm} do
8: sum(ψ) ← sum(ψ) + PQSR(vi|ω,Λ) ×
In(vi, vc)

9: end for
10: end for
11: Find ψ?, that maximizes sum(ψ) for all ψ ∈ Ψ
12: return ψ?

13: end procedure
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Fig. 6. Viewcone evaluation on the basis of a uniform distribution with
respect to supporting planes. Search over three poses.

comparing the highly rated view cones from both figures
it is visible that the QSR-based view cones are much more
directed towards the Gaussian mixture model shown in Fig.5.

The search method described above is used to determine
the next best view of the robot. In a second step we determine
the best view in 3D by evaluating different 3D view cones
(or frustums). Fig. 8 visualizes nine frustums from the pose
of the robot. Similar to the 2D view cone evaluation, the
voxels of the supporting planes are counted and weighted.
We use the same equation as above whereby the In function
is replaced by a function In3D(vi, F rustum(ψ)). We use
the information to actively control the pan-tilt unit of the
robot to increase the probability to find the sought object.

IV. EXPERIMENTAL RESULTS
The QSR-based search method has been implemented and

evaluated in a simulated and a real environment.

A. Simulated experiments

We used the open source robot simulator MORSE [19] for
simulating the environment1, the SCITOS G5 robot platform2

1In the experiments we used the TUM kitchen environment of MORSE
2http://metralabs.com/
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Fig. 7. View cone evaluation on the basis of QSR-based models.
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Fig. 8. Viewcone evaluation in 3D.

and its sensors. In simulation, we used a semantic camera
to perceive objects in the environment. The semantic camera
returns an object ID, the object’s type, and its pose whenever
an object is in sight and between the near and far plane of
the camera’s view frustum.

In the experiments, the robot was controlled through the
task-level architecture SMACH3 and the middleware ROS4.
The robot control program is comprised of four states: a
search monitor, a particular search method, a navigation rou-
tine, and a perception routine. The search monitor assesses
the overall progress of the search, i.e., whether an object was
found or not and/or whether a timeout has occurred. On this
basis it decides to continue or to abort the search task. If
it decides to continue the search, the search method selects
the next best view pose and the navigation routine moves
the robot to the goal accordingly. At the goal location the
perception routine is called and the result is interpreted by
the search monitor and so on.

In our experiment we compared three different search
methods: a purely random method, a method based on the
information about supporting planes and the QSR-based
method described in the previous section:
• In the random method 20 locations are sampled from

the 2D map. Then, a single goal location is randomly
selected and sent to the robot’s navigation routine.

• In the supporting planes method 20 locations are sam-
pled from the 2D map and evaluated with respect to the
projected 3D occupancy map of voxels that had been
classified as supporting planes.

3http://wiki.ros.org/smach
4http://wiki.ros.org/



• In the QSRs-based method 20 locations are sampled
from the 2D map and evaluated with respect to the 3D
voxels weighted according to the QSR-based GMM.

Table II summarizes the results of ten searches using each
search method in which only the 2D view cones were used.
In total we placed three cups in the environment in locations
which are valid according the QSR description given to the
robot. If the object was not found within a time span of
two minutes the search was aborted. First it can be noted
that the uninformed random search method, namely random,
was only able to find the object in 60% of the searches,
that is, 40% of the searches were aborted. Please note, that
the average time and the average number of searched poses
was only calculated on the basis of successful trials. The
second noteworthy aspect of the results is how the average
time and average number of searched poses decreased when
more information is considered in the view planning step.
Although both informed search methods, namely supporting
planes and QSR, found a cup in all trials it can be seen that
the latter method was able to succeed in half of the time
requiring only half of the number of poses.

TABLE II
PERFORMANCE OF THREE DIFFERENT SEARCH METHODS

Search method Found Average Average
objects time (sec) poses

random 6/10 68.5 4.8
supporting planes 10/10 33.6 2.3
QSR 10/10 15.6 1.1

However, as we know from previous work, it is sometimes
the case that the belief state of the robot does not reflect
the actual circumstances of reality. Therefore, we conducted
additional variants of the experiment to evaluate how the
QSR-based search method performs when the QSR model
differs from reality. In variant A the setup and the result is
actually the same as from above. In variant B the robot’s
knowledge is only partially correct as we removed two of
the three cups from the locations which are indicated by the
QSR models. In variant C we moved the remaining cup to a
different, non-QSR location. That is, the robot’s knowledge
is wrong as the QSR model is not pointing the location of
the cup, but to different locations in the environment. The
results are shown in Table III.

TABLE III
PERFORMANCE OF QSR-BASED SEARCH UNDER FALSE BELIEFS

Variant Found Average Average
objects time (sec) poses

A (correct QSRs) 10/10 15.6 1.1
B (partially correct QSRs) 8/10 55.0 3.1
C (wrong QSRs) 6/10 65.0 3.2

The fact that the robot is still able to find cups in the
environment although the QSR model is wrong (variant C)
can be explained by the sampling strategy used within our

Fig. 9. Left: Robot perceives an office desk. Right: Extracted supporting
planes mapped using Octomap.

approach. Although views with respect to the QSR model
are in general preferable, sometimes none of the sampled
navigation goals are directed towards a QSR-related location.
In this case, a location with a view cone in direction to a
supporting plane gets selected and explored instead.

Table IV shows results whereby the 2D and 3D evaluation
of views had been combined. The 2D view cone evaluation
used slightly bigger view cone (60 degrees) as the pan-tilt
unit can cover a greater area. In the 3D evaluation nine
frustums had been assessed at the best 2D pose. The average
number of poses almost resembles the result from the 2D
experiment. However, the average times increase as at each
pose different pan-tilt configurations had been applied.

TABLE IV
PERFORMANCE EVALUATION OF SEARCH USING 3D VIEW CONES

Search method Found Average Average
objects time (sec) poses

supporting planes 9/10 69.5 2.2
QSR 10/10 33.4 1.1

B. Real world experiments

We also performed experiments on a SCITOS G5 platform
(Fig. 9, left). The robot is equipped with an Asus Xtion Pro
Live camera which is mounted on a pan-tilt unit. Similar to
the simulated experiments, the task of the robot was to find
a cup in an area of our robot lab (40m2). For recognizing
objects in the environment we used the an object recognition
framework based on 3D CAD models [20] which is inte-
grated in PCL5. For recognizing cups (mugs) we trained a
classifier based on 50 object categories. Fig. 10 shows some
results of the classifier. During the experiments we observed
two false positives and a couple of false negatives.

In each view planning step we evaluated 20 samples of
2D poses and nine frustums at the best 2D pose. At each
pose the robot actively perceived the scene using the four
best frustums. The results of the experiments are shown in
Table V. In the supporting planes condition the cup was
not found in two trials and the search was aborted in other
two trials because of false positives. Overall the QSR-based
search performed better than the supporting planes method.

5Point Cloud Library: http://pointclouds.org



Fig. 10. Object recognition on different desks. Left: True positive of a
cup (to the right of the keyboard). Right: False Positive. The monitor was
classified as a cup.

TABLE V
PERFORMANCE EVALUATION OF SEARCH USING 3D VIEW CONES

Search method Found Average Average
objects time (sec) poses

supporting planes 6/10 149.2 2.6
QSR 9/10 125.9 2.5

V. CONCLUSIONS
In this paper we described an approach on object search on

the basis of QSRs between landmarks and a sought object.
We explained how symbolic representations of the QSRs can
be transformed into sub-symbolic information a robot can use
to guide its search towards the most likely object locations.
Experimental results in simulation and reality suggest that
QSR-based search methods improve the performance of
search tasks when compared to non-QSR-based methods.

In future work we would like to learn QSR models over
space and time from the robot’s experience. As the robot
explores the environment it should collect data about the
spatial relations between different types of objects at different
times of day and learn a compact QSR model from it. In this
context we will also explore the role of the robot’s position
with respect to directional spatial relations between objects.

Further, we plan to investigate how the size of the search
space, the number of sampled poses, and the weight of QSR
models influence each other and to learn to trade-off between
the robot’s exploration and exploitation behavior.

Overall the results show that QSR-based search methods
can improve the performance in human environments.
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