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Abstract

In many real world applications, autonomous mobile
robots are required to observe or retrieve objects in
their environment, despite not having accurate estimates
of the objects’ locations. Finding objects in real-world
settings is a non-trivial task, given the complexity and
the dynamics of human environments. However, by un-
derstanding and exploiting the structure of such envi-
ronments, e.g. where objects are commonly placed as
part of everyday activities, robots can perform search
tasks more efficiently and effectively than without such
knowledge. In this paper we investigate how probabilis-
tic models of qualitative spatial relations can improve
the performance in object search tasks. Specifically, we
learn Gaussian Mixture Models of spatial relations be-
tween object classes from descriptive statistics of real
office environments. Experimental results with a range
of sensor models suggest that our model improves over-
all performance in object search tasks.

1 Introduction

Many proposed, near-future applications of autonomous
mobile robots involve them having to find objects in every-
day environments (either to fetch them, or to report some-
thing about them), usually without the robot knowing pre-
cisely where they are (Kunze et al. 2012; Holz, Iocchi, and
van der Zant 2013; Aydemir et al. 2013; Williams et al. 2013;
Quigley, Berger, and Ng 2007). This problem of finding
an object in an environment, usually termed active visual
search or object search, is the topic of this paper. In par-
ticular we investigate an approach which allows a robot to
exploit knowledge about the structure of the environment in
order to find an object more quickly than is possible without
the knowledge.

The reason that object search is considered a necessary
robot ability is that objects do not all stay in fixed positions.
The reason objects do not stay in fixed positions is that many
objects play central roles in human activities, and these ac-
tivities usually involve moving the objects in some way. In
an office environment this may be as limited as moving a
mouse whilst using a PC or moving a mug whilst drinking
coffee whilst working, up to moving mugs, laptop and books
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from one room to another for a meeting. Objects are not
moved randomly; they are moved based on their function
and their role in an activity. Thus, whilst object positions
may vary over time, many objects vary in predictable pat-
terns. Our hypothesis is that these patterns can be captured
in Qualitative Spatial Relations (QSRs), relations which cap-
ture the important structure of positional variation whilst ab-
stracting over (unimportant) quantitative variation.

Our work is motivated by two complementary scenarios.
The first is a scenario in which a human asks a robot to
retrieve an object using a prepositional phrase, e.g. “fetch
me the book that I left on my desk near my laptop”. This
requires that the robot is able to map from the qualitative
linguistic description to an acceptable quantitative target lo-
cation on the correct desk. Our second motivating scenario
is the (non-linguistic) task of locating an object given long-
term experience of the locations of objects from the same
category, e.g. searching for a mug using the past observa-
tions of mug locations as a guide. Unlike the first scenario,
this latter case does not explicitly require a relational model
of object location, but our hypothesis is that — due to the
aforementioned regularities in human activities — qualitative
relational models are more compact and provide more accu-
rate predictions than models based purely on accumulated
metric position information, provided a suitable landmark is
used for the relation. A suitable landmark is generally an
object whose location does rarely change qualitatively in an
environment such as the desk in the example above.

As described in Section 2, the problem of including prior
knowledge in object search tasks has been studied previ-
ously. This paper makes the following contributions beyond
this prior work:

e a set of Gaussian Mixture Models which encode a range
of QSRs based on descriptive statistics taken from a real
office environment that can predict the position of objects
given a landmark;

e an entropy-based approach to the selection of an appro-
priate landmark for use in indirect search;

e and an analysis of the performance of our search approach
as the field of view of the robot’s sensor varies.



2 Related Work

Active visual search has become a popular topic in mo-
bile and service robotics recently. Work done by Aydemir,
Pronobis, Sjo6 and others in the CogX project (Aydemir
et al. 2011; 2013; Sjoo, Aydemir, and Jensfelt 2012) intro-
duced a novel, sampling-based approach to object search
using object location probability distributions attached to a
3D volumetric representation. This approach, which forms
the foundation of the work in this paper, provides an ef-
fective and flexible approach to active visual search. Whilst
the general case of object search is computationally com-
plex (Tsotsos 1992), the task can be made more tractable
through the use of an intermediate landmark object which
constrains the location of the target object (Wixson and Bal-
lard 1994). This is known as indirect search. The CogX
work (Sjoo, Aydemir, and Jensfelt 2012) used the spatial
relations “in” and “on” to define object targets relative to
landmarks. We go beyond this work by using more restric-
tive spatial models to provide more tightly defined location
predictions. Other recent work on object search has tack-
led larger scale space but used predefined view cones within
rooms (Kunze et al. 2012), or has allowed searching over
rooms or scenes for unknown objects without constrain-
ing their location in 3D (Joho, Senk, and Burgard 2011;
Kollar and Roy 2009). We differ from these approaches
as we are able to generate arbitrary views in 3D, but con-
strained to legal robot poses and likely object positions.

In order to take qualitative descriptions of object posi-
tions and use them to predict 3D object poses, a robot must
be able to mediate between such qualitative and quantita-
tive representations. Previous work has either used hand-
coded spatial models (Brenner et al. 2007) or has learnt mod-
els from experience in 3D (Burbridge and Dearden 2012;
Sjoo and Jensfelt 2011). We take the latter approach, and,
in line with prior work, make use of simulation to generate
training data for our system.

Other approaches to predicting object positions have used
conceptual knowledge to make coarsely predictions, i.e.
at the room level (Hanheide et al. 2011; Samadi, Kol-
lar, and Veloso 2012), or have utilised learnt object loca-
tion predictors in the image plane (Kollar and Roy 2009;
Aydemir and Jensfelt 2012). These other approaches pro-
vide complementary information to our approach and could
be integrated into a single system. As can the work on learn-
ing more general organisation principles of everyday en-
vironments in order to support efficient robot task perfor-
mance (Schuster et al. 2012).

3 Bootstrapping Probabilistic Models of
Qualitative Spatial Relations

To perform indirect search using QSRs, a system requires
models of QSRs which describe the locations of target ob-
jects relative to landmarks. Such models can either be man-
ually specified based on scene geometry using one of the
many available QSR calculi for describing relative posi-
tion (Cohn and Hazarika 2001) or they can be learnt from
observations of collections of objects (Burbridge and Dear-
den 2012; Sjo6 and Jensfelt 2011). We have chosen the latter

approach as relative object positions vary with the category
of both target and landmark as well as with relation, and ex-
isting calculi are not well suited to capture the specificities
of such variations.

Our approach to learning QSR models for indirect object
search first requires a collection of training data containing
objects segmented and category labelled in 3D. In this pa-
per we focus on searching for objects on desks, so we re-
quire this data to be observations of desktop object config-
urations. This data must then be labelled with QSRs to in-
dicate which observations should contribute to which learnt
relational model. These labels could be based on human lan-
guage, i.e. provided by a human annotator or a geometric
QSR calculus, in which case the learnt models will allow
for object location predictions to be generated using one
of these labels as input (as in the book example in Section
1). Alternatively the relations could be provided by some
unsupervised process which discovers the predictive struc-
ture in the observations (Behera, Cohn, and Hogg 2012;
Sridhar 2010). In either case this step discards (hopefully ir-
relevant) relations from the exhaustive pairwise calculation
of relations between all objects in any given scene. After this
step, the training data provides a collection of observations
for each triple of QSR type, landmark type and target type,
e.g. all the observations of the book being near the laptop.
These collections can then be turned into a generative model
using an appropriate algorithm. Section 4 describes how we
have obtained training data for the current system, and Sec-
tion 5 describes the Gaussian Mixture Model approach we
have used to learn models for our current system.

4 Acquiring data

To acquire the training data for learning QSR models we
use an approach comprised of three steps. At first, we pro-
duce a statistics on objects and their qualitative relations by
analysing and labelling images of real-world office desks.
Secondly, on the basis of this statistics, we automatically
generate a multitude of novel scenes of office desks using
a physics-based simulator. In a final step, the geometric re-
lations between objects in a scene are labelled automati-
cally using a QSR-based calculus. This approach has sev-
eral advantages: first, a human has only to label objects and
their relations qualitatively, second, the physics-based simu-
lation automatically generates the geometric information of
labelled objects in 3D, and third, the simulator can theoreti-
cally generate an infinite amount of training data.

Annotating images of real desktop scenes

We bootstrapped an object statistics about qualitative spa-
tial relations by annotating 47 images of real-world office
desks. Figure 1 shows some examples of these images. Af-
ter a first sight of the real-world images, we decided to anno-
tate the following 18 object categories: Book, Bottle, Calcu-
lator, Cup (or Mug), Desktop PC, Glass, Headphone, Hole
punch, Keyboard, Keys, Lamp, Laptop, Mobile phone, Mon-
itor, Mouse, Pen (or Pencil), Stapler, and Telephone.

In each of the 47 images we labelled how many instances
of the above objects categories were present. Further, we



Figure 1: Image data of desktop scenes.

specified which of the following directional and/or distant
relations hold between an object and a landmark:

e left-of, right-of, in-front-of, behind-of, and
e close-to, distant-from.

As the number of pairwise relations between object in-
stances is huge, we decided to only label relations with re-
spect to two landmark objects, namely Monitor and Key-
board. For these landmark objects we also noted the ap-
proximate location on the desk as north, east, south, west,
centerys, and centerye.

Overall, 437 object instances have been identified in 47
scenes, and 1798 spatial relations have been labelled. The
following tables summarize the results: Table 1 shows the
probability distribution of the presence of an object in a
scene. Table 2 shows the results of the approximate land-
mark locations on desks and Table 3 shows exemplarily
some distributions of qualitative spatial relations between
objects and the Monitor landmark.

Generating data of simulated desktop scenes

On the basis of the statistics on the presence of objects in a
scene (Table 1), the approximate locations of landmark ob-
jects (Table 2), and the qualitative spatial relations between
objects and landmarks (Table 3) we generate novel scenes of
office desks using a simulator. Figure 2 depicts examples of
automatically generated scenes.

The scene generation works as follows: (1) we sample
a set of object instances to be present in a scene whereby
we assume that at least one of the two landmark objects is
present (Monitor or Keyboard), (2) we sample a location for
the principle landmark object on the desk, (3) we sample a
set of qualitative relations for each object with respect to the

Table 1: Probabilities of the presence of objects in a scene.

Object type  P,..s(0bj) Objecttype  Pp,..5(0bj)
Book 0.59 Keys 0.10
Bottle 0.44 Lamp 0.14
Calculator 0.12  Laptop 0.17
Cup/Mug 0.63 Mobile phone 0.17
Desktop PC 0.38  Monitor 0.95
Glass 0.08 Mouse 0.82
Headphone 0.10  Pen/Pencil 0.63
Hole punch 0.04  Stapler 0.23
Keyboard 0.87 Telephone 0.68

Table 2: Probability distribution of the approximate loca-
tions of landmarks on a desk.

Location west  centerye east
Landmark

north 0.22 OsIN 0.09
Monitor center 0.09 0.07 0.02

south 0.00 0.00 0.00

north 0.02 0.10 0.00
Keyboard center, 0.22 0.35 0.12

south 0.05 0.12 0.02

landmark, (4) The qualitative relations are transformed into
euclidean angles and distances by using a generative model
of the ternary point calculus (Moratz, Nebel, and Freksa
2003). For a more detailed account on how the qualitative
representations are transformed into metric representations
and vice versa please refer to (Kunze and Hawes 2013), (5)
finally, we test whether objects are on the table and/or in col-
lision with each other and possibly apply backtracking in the
scene generation process.

In total, we generated 500 scenes of simulated office desks
based on the bootstrapped statistics on the real-world envi-
ronment.

A successfully generated scene is fully described by the
set of present object instances, their types, their 3D poses
and their bounding boxes. Figure 3 visualizes the positions
of instances of different object types projected onto the table
surface with the dimensions of 2.0 m x 1.2 m. Please note
the correlation between the qualitative and the quantitative

Table 3: Probabilities that a spatial relation holds between
an object and the Monitor landmark.

Object left right front behind close distant

Book 0.58 034 071 0.08  0.30 0.65
Cup/Mug 025 0.61 0.74 0.02 044 0.53
Deskt. PC  0.11 022 0.11 022 094 0.05
Keyboard 0.06 0.12 091 0.00 0.82 0.10
Mouse 0.04 0.76 0.95 0.02 044 0.51




Figure 2: Automatically generated scenes of office desks.

positions of Monitor and Keyboard in Table 2 and Figure 3
respectively.

Labelling simulated scenes with QSRs

In order to learn models of QSRs from the generated scenes
we label the relations between objects using the ternary point
calculus (Moratz, Nebel, and Freksa 2003). We assume that
a robot is standing about 2 meters in front of a generated
desk and calculate a reference axis between the robot and the
landmark. According to the relative angle and the relative
radius we label the relation between an object and the land-
mark as left-of, right-of, in-front-of, behind-of, close-to, and
distant-from. However, now each object instance is also con-
sidered as a landmark. Thereby we are able to generate more
QSR labels between objects than those that have been manu-
ally produced in the object statistics from the real-world im-
ages. In the next section, we describe how a set of qualitative
relations that holds between an object and a landmark such
as in-front-of{Object, Landmark) N\ close-to(Object, Land-
mark) is represented by a multivariate Gaussian distribution
and how different distributions (or sets of QSRs) are com-
bined using Gaussian Mixture Models.

5 Learning Gaussian Mixture Models of
Qualitative Spatial Relations

In this section, we first explain how we learn Gaussian Mix-
ture Models (GMMs) to predict the position of an object
given a landmark, and secondly, we introduce an entropy-
based measure that describes the predictive capability of
landmarks.

Predicting an object position given a landmark

In Section 4 we explained how we generated a labelled data
set for learning QSR models on the basis of real-world office
desks. As shown in Figure 3, the positions of a cup are al-
most uniformly distributed over the office desk. Hence, it is
difficult to predict the position of a cup based on this metric
information only. By considering QSRs with respect to other

(b) Mouse

(a) Monitor

(d) Desktop PC

(e) Bottle (f) Cup

Figure 3: Positions of objects on a desk of the size
2.0 mx1.2 m (width x depth).

table-top objects (landmarks), we learn probabilistic models
that predict the relative position of an object more precisely.

The very basic idea of our approach is to learn a probabil-
ity distribution in form of a GMM that predicts the position
of an object w given a landmark \:

Poa(x]0) = wiN (x|, i), (1)

i=1

where x denotes the relative object position, in terms of x
and y coordinates, of object w with respect to the landmark A
and 6 is a set of parameters {w;, p;, X; } for m Gaussian dis-
tributions each resembling a set of QSRs. Thereby, the QSRs
are represented by a set of multivariate Gaussians. Any com-
bination of directional and distance relations yields to a dif-
ferent multivariate Gaussian. Since some of the directional
relations such as left-of and in-front-of can be combined,
a GMM can maximally be represented by 16 multivariate
Gaussians (8 directional x 2 distance).

If we were only given the relative metric information be-
tween an object and a landmark, we would have to employ
an unsupervised learning approach such as, for example,
the Expectation Maximization (EM) algorithm. By using the
EM algorithm we could learn a predictive model for object
positions. But since we have labelled data, we can directly
learn or statistically derive the parameters {w;, ;,%;} of
the individual Gaussians. The weight w; of each Gaussian
is determined by dividing the number of samples for a par-
ticular QSR by the total number of samples. The sum of the
weights w; (for¢ = 1,...,m) is always equal to one. Simi-
larly, we determine the parameters for p; and 32; on basis of
metric object positions for a particular set of QSRs, e.g.:



(e) Book (10.06)

Figure 4: Learnt Gaussian Mixture Models of different land-
marks for predicting the relative position of a cup. The en-
tropy of the respective distributions is given in parenthesis.

(g) Pen/Pencil (10.34)

(h) Telephone (10.39)

in-front-of(Mouse, Monitor) N\
right-ofiMouse, Monitor) \
close-to(Mouse, Monitor).

An advantage of the supervised learning approach is also
that GMMs can be pruned on the basis of QSRs. For exam-
ple, consider the two natural language instructions:

1. get me a cup from my desk, and
2. get me the cup right of the keyboard.

Whereas in the fist case the complete GMM is used, only
a partial or pruned GMM is used in the latter case.

Figure 4 shows learnt GMMs for different landmarks for
predicting the relative position of a cup.

Choosing a landmark

In the previous section we have explained how we learn
GMMs for predicting the position of an object with respect
to a landmark. What characterizes a good landmark, is an
interesting question we are addressing in this section.

In order to choose a landmark in the object search task we
introduce an entropy-based measure that allows us to dif-
ferentiate between landmarks. We calculate the entropy of a
mixture model for an object w and a landmark \ as follows:

n
HyA(X) ==Y Poa(w)log, Poalz:) ()
i=1

where P,, 5(X) denotes the probability distribution of the
respective GMM. To calculate P, »(X), we discretise the
metric space in a region around the landmark into a grid X,
with n grid cells itz;. The region is twice as large as the
table (4.0 m x2.4 m), as the landmark could theoretically
be located at the very edge of the table. We have chosen
a grid cell size of 0.05 meters for each dimension as this
resembles the voxel size of the 3D occupancy map later used
in the robot experiments. The probabilities for each cell are
calculated by dividing the value of the GMM by the sum of
all values in the discretised region. With this distribution we
can calculate the probability to find an object at a particular
grid cell, or voxel.

Given the entropy measure above, we can find out that a
specific landmark is a really good predictor for the position
of an object. However, it might be the case that this land-
mark almost never co-occurs with the object. Therefore, we
introduce a weight to account for this problem. Instead of
minimising the entropy, we try to maximize the following
expression:

3)

1
argmax Wy, A -+~
xen N HoA(X)
where w,, » is determined by the conditional probability
that a landmark is present given the object: P(\|w). Eventu-
ally, we compute a score for an object-landmark pair (w, A)
as follows:

1
Hw,)\(X) .

Table 4 compares different landmarks for predicting the
relative position of a cup and shows the calculated measures
for entropy H,, »(X), the conditional probability P(A|w)
and score,, 5. As the computed score,, y was best for the
Monitor, we used it as landmark in our experiments.

“4)

score, \ = P(A\|w)

Table 4: Scoring landmarks for a Cup using a weighted
entropy-based measure.

Landmark  H, z(X) P(A|w) score, s
Monitor 9.29 0.99 0.106
Keyboard 8.89 0.85 0.096
Mouse 9.57 0.84 0.087
Telephone 10.39 0.63 0.060
Pen/Pencil 10.34 0.61 0.059
Book 10.06 0.56 0.055
Bottle 10.13 0.43 0.043
Desktop PC 9.26 0.32 0.035




Figure 5: Left: IRlab environment with objects on three
desks. Right: 3D occupancy grid map of the supporting
planes.

6 Experiments

We conducted simulated experiments to evaluate the learnt
QSR models in object search tasks. We used the open source
robot simulator MORSE (Echeverria et al. 2011) for simu-
lating the IRlab"' environment, the SCITOS G5 robot plat-
form? and its sensors. In simulation, we used a “semantic
camera” to perceive objects in the environment. The seman-
tic camera returns an object ID, the object’s type, and its
pose whenever an object is in sight and between the near and
far plane of the cameras view frustum. In the experiments,
the robot was controlled through the task-level architecture
SMACH? and the middleware ROS*. The robot control pro-
gram is comprised of four states: a search monitor, a partic-
ular search method, a navigation routine, and a perception
routine. The search monitor assesses the overall progress of
the search, i.e., whether an object was found or not and/or
whether a timeout has occurred (here: 240 seconds). On this
basis it decides to continue or to abort the search task. If it
decides to continue the search, the search method selects the
next best view pose and the navigation routine moves the
robot to the goal accordingly. At the goal location the per-
ception routine is called, the best 3D views are taken using
the pan-tilt unit and the result is interpreted by the search
monitor and so on.

Experimental setup

Figure 5 shows the /Rlab environment used in simulation.
Overall we conducted ten searches. To set up different object
search scenarios, we sampled for each scenario three office
desk configurations from the generated data (Section 4) and
assigned them to three random desks (out of eight). That is,
we varied the number and types of objects, their spatial rela-
tionships among each other and their position in the lab envi-
ronment throughout the scenarios. The task for the robot was
to find a cup. Table 5 shows how many cups were present in
each scenario and how they were distributed over the differ-
ent workplaces. That is, in the scenarios in which the cups
were distributed over less than three desks, the QSR models
indicated locations at which no cups were present.
In the experiments we compared two search methods:

'Intelligent Robotics lab, University of Birmingham, UK
http://metralabs.com
*http://wiki.ros.org/smach
*nttp://wiki.ros.org

Figure 6: Left: 2D pose evaluation with a narrow angle of
view. Right: 3D view cone evaluation with a wide angle of
view.

Table 5: Distribution of cups in the evaluated scenarios.

Scenario No
1 3 5 6 7 8

2 4 9
Numberofcups 3 4 2 4 2 4 2 3 1 3
Desks withcups 2 2 2 2 2 3 2 2 1

Supporting planes Within the supporting planes method
30 locations are sampled from the 2D map and evaluated
with respect to the projected 3D occupancy map of voxels
that had been classified as supporting planes.

QSR Within the QSR-based method also 30 locations are
sampled from the 2D map and evaluated with respect
to the supporting-plane-voxels of the 3D occupancy map
weighted according to the QSR-based mixture of Gaus-
sians.

We tested each of these search methods with different
configurations of the semantic camera, called wide and nar-
row. In the wide configuration we set the camera’s angle of
view to 58°; resembling the specification of the Asus Xtion
PRO LIVE camera mounted on the real robot. In the narrow
configuration we restricted the angle of view to 29°, as we
assume that objects can be better recognized if they are in
the center of the field of view. Please note, that the camera
configuration was applied for both the actual sensing as well
as the evaluation of view cones. Figure 6 depicts the evalua-
tion of 2D and 3D view cones in a scenario.

Experimental results

Table 6 summarizes the results of ten searches using dif-
ferent search methods and camera configurations. For each
setup and scenario the table reports the number of visited
poses, the consumed time, and whether the search was suc-
cessful or not. It also provides an average of these figures for
each search method over the ten trials.

For the wide camera configuration both search methods,
QSR and supporting planes, have a comparable performance



with an average number of 3.3 and 3.5 visited poses respec-
tively. In previous experiments (Kunze and Hawes 2013) we
have seen that the QSR-based method outperforms the sup-
porting plane method when the QSR model matches with
reality. But since the QSR method is sometime misled by
false information about an object, it performs not signifi-
cantly better than the method based on supporting planes.
In the worst case, the QSR-based method gets stuck in lo-
cal maxima whereas the supporting plane method explores
eventually the whole search space. Therefore, it is an inter-
esting problem to modify the QSR-based search method in a
way that it also searches the whole search space in the worst
case. A possibility that would allow for a larger search space
is to gradually increase the variance of the learnt models.
Alternatively, one could completely remove a GMM model
in the view cone evaluation step after searching locations
related to a specific landmark. However, a solution to this
problem is beyond the scope of this paper.

For the narrow camera configuration the QSR method
performed better than the supporting plane method. This can
be explained by the fact of a smaller view cone. The support-
ing plane method did not find so many objects in the first
place because it would need more time to explore the space.
On the contrary, the QSR method could improve its perfor-
mance. Since the view cone evaluation is more focused on
the regions directly influenced by the QSR models the robot
finds the cups in less time.

7 Conclusions

In this paper we presented a probabilistic approach to indi-
rect object search using Gaussian Mixture Models to project
Qualitative Spatial Representations into 3D space. This ap-
proach produces spatially-situated probability distributions
which encode the likelihood of a target object being present
relative to a given landmark. Our analysis of a synthetic
data set has demonstrated that the relative position produces
more accurate predictions compared to absolute position, as-
suming an appropriate landmark can be found. As an initial
step towards landmark selection we also presented a scor-
ing mechanism which favours the use of landmarks which
are present with higher likelihood in all scenes and which
produce lower-entropy predictions in these scenes. The use
of QSR-based indirect search is supported by an empirical
investigation which shows that our approach improves per-
formance as the robot’s field of view decreases, i.e. when
more accurate predictions of object location are required.
Whilst our experimental results validate our overall ap-
proach, there are a number of important steps we must take
to extend this work. First we will replace the synthetic data
with 3D object data captured from real desktops at regular
intervals. This will both refine our object location predic-
tions with respect to the collected data, allow us to check
our assumptions about static landmark objects, and also al-
low us to reason about qualitative object locations over time
as well as over space. This will become increasingly impor-
tant as our robots run for longer periods. Our second ex-
tension will be to add planning to this framework. Choos-

ing the order of view cones to visit in a single room, or to
choose which rooms to visit in a larger building is an impor-
tant problem tackled by existing work (Aydemir et al. 2013;
Hanheide et al. 2011), but currently ignored in ours. An in-
teresting extension here is including the choice of landmark
objects in the planning process, factoring in both landmark
location consistency over time and the predictive power of
the associated QSRs. We will add the ability to interpret nat-
ural language commands into our system, allowing humans
to give object location descriptions, and allowing the robot
to report its progress (“I looked in front of the monitor but
it wasn’t there”) plus scene descriptions. To ground human
language into spatial scenes we will need to replace the au-
tomated annotation step in our bootstrapping process with
annotation by human subjects. Finally we must tackle the
tension between the use of human-understandable QSRs (as
used in this paper) and the kinds of QSRs that may emerge
from the data with unsupervised learning methods such as
clustering. It is possible that the former type of QSRs add
in unnecessary distinctions compared to those present in the
data (i.e. those which are closely correlated with object func-
tion), but this may be a price worth paying in order to sup-
port natural language interactions.
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