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Abstract— This paper presents a new approach to mobile
robot mapping in long-term scenarios. So far, the environment
models used in mobile robotics have been tailored to capture
static scenes and dealt with the environment changes by means
of ‘memory decay’. While these models keep up with slowly
changing environments, their utilization in dynamic, real world
environments is difficult.

The representation proposed in this paper models the envi-
ronment’s spatio-temporal dynamics by its frequency spectrum.
The spectral representation of the time domain allows to iden-
tify, analyse and remember regularly occurring environment
processes in a computationally efficient way. Knowledge of the
periodicity of the different environment processes constitutes
the model predictive capabilities, which are especially useful
for long-term mobile robotics scenarios.

In the experiments presented, the proposed approach is
applied to data collected by a mobile robot patrolling an indoor
environment over a period of one week. Three scenarios are
investigated, including intruder detection and 4D mapping. The
results indicate that the proposed method allows to represent
arbitrary timescales with constant (and low) memory require-
ments, achieving compression rates up to 106. Moreover, the
representation allows for prediction of future environment’s
state with ∼ 90% precision.

Index Terms— long-term autonomy, mobile robotics, spa-
tiotemporal mapping

I. INTRODUCTION

Long-term robotic autonomy has not yet been achieved
due to many challenges, one of them being the fact that
robotic mapping is vulnerable to changes in the environment.
However, many future tasks performed by mobile robots are
going to be carried out in places where humans perform
their usual activities, causing the environment to change
constantly. Many of these activities consist of daily routines
which follow typical patterns and therefore can be exploited
by the robots to build more robust representations of their
surroundings. To address this issue, we propose to treat
the robot’s sensory information as a signal over which a
spectral analysis can be performed to identify, remember and
even predict regularly occurring environmental processes in a
computationally efficient way. This ability can aid to develop
new robotic tasks. For example, a robot can plan its motion
through less active areas of the environment or to avoid the
mostly likely obstacles (e.g. closed doors) at certain times.

Mapping an static environment is a problem that has been
widely studied for a long time [1], however mapping dy-
namic environments is still an open problem. So far, mapping
dynamic environments has been done by removing moving
objects from the representation of the environment [2],
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[3] or by tracking these objects and classifying them as
moving landmarks [4], [5], [6]. In general, separation-based
approaches can handle some problems of dynamic mapping,
but they cannot deal with long-term changes to the structure
of the environment. In [7] a new map type that represents
local maps at different time scales is presented, where the
best map for localisation is chosen by its consistency with
current readings, which provided improved localisation over
large time scales.

Adaptive approaches never assume the map to be complete
and perform continuous mapping, adding new features to
the map every time the robot observes its environment. In
these approaches, the key problem is managing map size [8],
[9], [10]. [11] presents a feature persistence system based on
temporal stability in sparse vision-based maps. Some authors
propose systems that learn a fixed set of possible states for
the dynamic objects in the environment, e.g. corresponding to
open and closed doors [12], [13], but this approach is limited
in the real world, where the number of states is unpredictable
and this approach does not offer state prediction capabilities.

[14] proposes a new representation that models occupancy
grid maps in the wavelet space in order to optimize the
amount of information that has to be processed for path
planning, [15] presents a representation of the environment
which models transitions of dynamic objects in the environ-
ment. Spectral analysis has also been used for 2D [16] and
3D [17] registration. Finally, [18] has shown state prediction
can be useful on long-term robotic tasks by proposing an
implementation of an appearance change prediction (ACP)
method to improve the performance of place recognition on
a large-scale dataset under extremely different conditions.

The representation proposed in this paper models the
environment’s spatio-temporal dynamics by its frequency
spectrum. We propose to model local states of an environ-
ment by means of a probability function which is a superpo-
sition of periodical functions, the model includes recurrent
environment changes, which improves robot’s knowledge of
their surrounding and the events that take place in it. We hope
that this proposal becomes a useful tool for modelling the
environment and leads to developing new representations of
the environment that consider the spatio-temporal dynamics
that take place in it.

II. SPECTRAL REPRESENTATION FOR SPATIOTEMPORAL
ENVIRONMENT MODELS

Most mapping approaches assume that the principal com-
ponents of a particular environment model can be in two
distinct states. For example, cells of an occupancy grid are
occupied or free, edges of a topological map are traversable



or not, doors are opened or closed, rooms are vacant or
occupied, landmarks are visible or occluded, etc. In a typical
situation, the state of each model component is uncertain,
because it is measured indirectly by means of sensors which
are affected by noise. A common way to represent the uncer-
tainty in the state estimate of the jth world model component
is by its associated probability pj . This allows to counter
the effect of noisy measurements by employing statistical
methods, such as Bayesian filtering. While Bayesian filtering
methods allow to keep up with a changing environment, the
mathematical foundations they are based on assume a static
world, i.e. the pj of the world components are assumed to
be constant. As a result, a change in the environment causes
the old state to be ‘forgotten’ over time.

Once we assume that pj is a function of time, we need
to outline a suitable representation for pj(t). Although one
could simply store the whole history of the environment
model, such an approach would quickly face memory limita-
tions. Typical static 3D models of of complex environments
contain millions of distinct components [19]. Storing all the
all the model history is unfeasible. Moreover, in the context
of robotic mapping, it is not clear how to utilize the past
estimates of the environment models, i.e. what is the relation
of the past models to the current state of the world.

In our approach we assume that the variations of the
environment are caused by a number of unknown processes,
which might be periodical. If we were able to identify
the influence and periodicity of these processes, we could
then calculate the probabilities pj(t) from the description
of these processes. To identify these periodical processes,
we propose to use frequency transforms, namely the Fourier
transform [20].

A. An introduction to the Fourier Transform

The Fourier Transform (FT) is a well-established math-
ematical tool widely used in the field of statistical signal
processing. It transforms a function of time f(t), into a
function of frequency F (ω). The function F (ω) is commonly
referred to as the frequency spectrum of f(t). The Fourier
transform is invertible, and therefore, one can recover the
function f(t) from its spectrum F (ω) and vice versa. If one
wants to analyze or alter the periodic properties of a process
characterized by a function f(t), it is reasonable to calculate
its spectrum F (ω), perform the analysis or alteration in the
frequency domain, and then transform the altered spectrum
F ′(ω) back to the temporal domain. Such a process is
referred to as spectral analysis.

Typically, F (ω) is a complex-valued function, whose
absolute values and arguments correspond to the amplitudes
and phase shifts of the frequency components ω. Considering
that f(t) is a real-valued periodical discrete function, the
spectrum F (ω) can be represented by a finite set of complex
numbers.

B. The proposed representation

Let us represent the environment as a set of independent
components, which can be in two distinct states. Without

loss of generality, we will explain our approach with an
occupancy grid. Let us assume that each grid cell state
sj = {full, free} is not constant, but is a function of time,
i.e. sj(t). The uncertainty of the state sj(t) is represented
it by its probability pj(t). Now, let us assume that the
occupancy of each grid cell is affected by a set of unknown
periodical processes, which can be identified by the Fourier
Transform. Since we assume the occupancy of the individual
cells to be independent, we can explain the use of the Fourier
transform on the state s(t) of a single cell.

1) The spectral model: The main idea behind the pro-
posed model is to measure the temporal sequence of states
s(t) and calculate their frequency spectrum by means of a
Fourier Transform as P = FT (s(t)). Then, we select the l
most prominent (i.e. of highest absolute value) coefficients
Pi of the spectrum P and store them along with their
frequencies ωi. The coefficients are then used to recover
the smoothed signal which we interpret as a probability
function p(t) by means of the Inverse Fourier Transform
p(t) = IFT (s(t)). Thresholding the probability p(t) allows
us to calculate an estimate s′(t) of the original state s(t). In
order not to lose any information of the original signal, the
differences between s′(t) and s(t) are stored in an outlier
set O, which can be ∆-encoded, see Figure 1.

Thus, our model of the state consists of two finite sets
P and O. The set P consists of l triples abs(Pi), arg(Pi)
and ωi, which describe the amplitudes, phase shifts and
frequencies of the model spectra. Each such triple might
be interpreted as the importance, time offset and periodicity
of one particular periodical process influencing the state
s(t). We will refer to the number of modeled processes l
(i.e. to the number of triples in P) as the ‘order’ of the
spectral model. The set O represents a set of k time intervals,
during which the state s(t) did not match the state s′(t)
calculated from p(t). Internally, the set O is implemented
as a sequence of values, indicating the starts and ends of
time intervals when the predicted and observed state did not
match, i.e. s′(t) 6= s(t). Each interval is represented by its
limits < t2k, t2k+1).

2) Model adaptation: To be able to build, maintain and
use this representation, we define four operations: reconstruc-
tion of the original state s(t), addition of a new measurement,
model update and prediction of the future state with a given
confidence level. The aforementioned representation allows
us to retrieve the cell state s(t) by means of the following
equation:

s(t) = (IFT (P) > 0.5)⊕ (t /∈ O), (1)

where ⊕ is a XOR operation. The idea behind this equation
is to reconstruct the probability p(t) from the spectrum P ,
set s(t) to 1 if p(t) exceeds 0.5 and finally to negate s(t) if
t belongs to the set of outliers O.

Whenever a real state sm(t) is measured, we calculate s(t)
by means of Equation (1) and if it differs from sm(t), the
current time t is added to the set O:

sm(t) 6= ((IFT (P) > 0.5)⊕ (t /∈ O))→ O = O ∪ t. (2)



Since p(t) does not predict s(t) with perfect accuracy, the
set O is likely to grow larger as measurements are added.

To update the model, we reconstruct s(t) in the desired
time interval < tstart, tend > and calculate its spectrum
P . Again, we select the l coefficients with highest absolute
values |Pi| and reconstruct the outlier set O by means of
Equation 2. In a typical situation, the updated spectrum
P would reflect s(t) more accurately, causing reduction of
the set O. Note, that the spectral model order l can be
changed prior to the update step without causing any loss
of information.

3) Prediction: Note, that the Equation (1) allows for
calculating s(t) for any t and that the threshold value of 0.5
can be set arbitrarily. Therefore, we can use Equation (1) for
future prediction of s(t) with a certain confidence level c. In
the case of prediction, the outlier set O is not included in
the calculation and the predicted state might not match the
real state, so we denote it as s′(t, c). To simplify notation,
we also define s′(t) as s′(t, 0.5). Therefore, s′(t, c) and s′(t)
can be calculated as follows:

s′(t, c) = IFT (P ) > c. (3)

Measured state − s(t)
Probability function − p(t)

Estimated state − s’(t)
Outlier set − O

Discarded coeficients
Model cefficients

 0  2  4  6  8  10

Time [s]

Time domain

−2 −1.5 −1 −0.5  0  0.5  1  1.5  2

Frequency [Hz]

Frequency domain

Text representation of the actual model

abs(P): { 196,   46,   23 }
arg(P): {  0,  1.57, 1.57 }
Frequencies: { 0, 0.2, 0.6 }
Outlier set O: { 3.7, 3.8 }

Fig. 1. An example of the measured state and its spectral model. The left
part shows the time series of the measured state s(t), probability estimate
p(t), predicted state s′(t) and outlier set O. The upper right part shows
the absolute values of the frequency spectrum of s(t) and indicates the
spectral coefficients, which are included in the model. The last part is a text
representation of the model itself.

An example of the third-order spectral model which rep-
resents a quasi-periodic function is provided in Figure 1.

C. Notes on notation

Throughout the rest of the article, we will keep the nota-
tion introduced in Section II-B. Therefore, sj(t) represents
the measured state of the jth world component, Pi,j(ωi) is
a complex number representing amplitude and phase shift
of the state’s frequency component ωi, (i.e. ith coefficient
of P), the value of pj(t) is the state’s probability estimate
given by the inverse Fourier transform of P , s′j(t) is the most
probable state at a given time t and s′j(t, c) is the estimate
of sj(t) = 1 with a confidence level c. For the sake of
simplicity, the index j will be omitted in the case where our
description concerns a single world model component only.

D. Spectrum and periodical processes

In the rest of the article, we will try to examine the
tractability of using the Fourier transform as a core com-
ponent of spatiotemporal models for mobile robotics. In
particular, we will investigate the following questions:
• How many parameters of the spectrum typically have

to be stored to represent and predict the environment
state?

• What is the accuracy and efficiency of the spectral
representation?

• Are the predictions of this approach good enough to
detect anomalous situations?

• How does the approach deal with sensor noise and
localization uncertainty?

To answer these questions, we analysed several types of
environment models gathered by a mobile robot, which was
continuously operating for a more than a week in an indoor
environment shared with humans.

III. DATA COLLECTION

Our experimental platform consists of SCITOS-G5 mobile
robot (see Figure 2) equipped with RGB-D and laser sensors.
The robot has gathered two datasets in two different envi-
ronments: staff office and robotic lab of the Lincoln Centre
for Autonomous Systems.

Fig. 2. The SCITOS robot (left) detecting an anomalous situation (right).

A. The office dataset

The first dataset, considered for basic evaluation, was
gathered from a stationary position with sensors aimed at the
door of one of the building’s offices. The range measurement
has been used to establish the occupancy of a single cubic
cell located in the middle of the room entrance. Since the
office has an open door policy, the door remained open
whenever the office was occupied by a person. Therefore,
the measured state s(t) not only indicated if the particular
area of the environment was occupied or free, but also
corresponded to the presence of people inside the office.
Every time someone went through the door, the monitored
area was briefly occupied and the room was considered
empty, which introduced noise on the measured state s(t).
The measurements were taken continuously for one week
(July 23-29 2013) at a rate of 30Hz, so s(t) consists of



18 million values. After this week, two additional full-day
datasets (July 31 and August 2) were gathered.

B. The laboratory datasets

To gather the second dataset the robot was programmed
to visit three designated areas of the robotics lab every five
minutes. Each time an area was visited, the robot created
a 2D and 3D point cloud and analysed the onboard color
camera image to check for the presence of people. Thus,
the robot created three datasets of different dimensionality
in three different places, see Figure 3. We will refer to these
datasets as Lab-1D, Lab-2D and Lab-3D.

Fig. 3. Robot view of two locations of the ‘Lab’ dataset.

The data gathering process started on August 2013 and is
still in progress. For this study, we use the data collected dur-
ing the first week of September consisting of approximately
12,000 point clouds and 6,000 results of people detection.

The autonomous patrolling has been based on combination
of the ROS nav stack and the visual localization method
proposed in [21]. The robot reports its status regularly, so
the occational failures can be dealt with immediatelly [22],
by using a social network interface that tells us the state of
the robot.

IV. ALGORITHM PERFORMANCE

To answer the questions set in Section II-D, we analyse the
performance of the proposed representation on the datasets
described in Section III.

A. Model accuracy and efficiency

Knowing the coefficients Pi(ωi) of the spectrum P allows
us to calculate an estimate s′(t) of the original state s(t).
A natural concern is the accuracy of reconstruction of s′(t),
which affects the prediction capabilities of the model and the
size of the outlier set O. One can expect that increasing the
number of spectral parameters will increase the reconstruc-
tion accuracy. However, as the number of parameters grows,
the model becomes more adjusted to the specific time series
of s(t) and loses its generality. This loss of generality would
hamper the ability of the model to predict the environment
state in the future.

We define the accuracy of the spectral model q(ta, tb) as
the ratio of the correctly estimated signal s′(t) on a given
time interval t ∈ 〈t0, t1〉 to the length of the interval:

q(ta, tb) =
1

tb − ta

tb∫
ta

|s′(t)− s(t)|dt. (4)

In our case, q = q(0, T ) can be directly calculated from the
values ti stored in the outlier set O by

q =
1

T

|O|/2−1∑
k=0

(t2k+1 − t2k). (5)

Suppose that the spectrum P was estimated for s(t) within
interval 〈tc, td〉 and q is calculated for an interval 〈ta, tb〉.
If tc ≤ ta, then q(ta, tb) relates to the accuracy of model
prediction and if 〈ta, tb〉 ∈ 〈tc, td〉, then q relates to the
accuracy of reconstruction.

To estimate the dependence of the accuracy of reconstruc-
tion qr and prediction qp on the number of model parameters,
we built a spectral model of the one-week-long ‘Office’
dataset. The accuracy of reconstruction qr was calculated
as the difference in the original and reconstructed signal.
Moreover, we calculated the accuracies of prediction qp1 and
qp2 for two days of the following week, see Figure 4. The

Measurements used to establish the model
Predicted probability estimate

Predicted future state
Measured state − dataset 1
Measured state − dataset 2

Tue Thu Sat Mon Wed Fri Sun

Fig. 4. Comparison of predicted and real values - office dataset.

dependence of the reconstruction and prediction accuracy on
the number of parameters of the spectral model is shown in
Figure 5. The Figure shows that the spectral model order

Fig. 5. Model accuracy vs. model complexity - office dataset.

of 15 parameters achieves 95% reconstruction accuracy. As
expected, the reconstruction accuracy qr increases monoton-
ically with the number of spectral model coefficients j, but
the prediction quality does not. The local maxima of qp1



and qp2 at l = 2 and l = 3 suggest that for the purpose of
prediction, one should use a spectral model of order 3.

The test indicates that the spectral model allows to rep-
resent millions of measurements with only a few complex
numbers. Thus, the spectral representation P without the
outlier set O achieves compression ratios in the order of
millions while losing less than 5% of information. The full
model is composed of 15 triples of spectrum P and 160
values in the set O. Thus, the proposed model achieves
lossless compression of the temporal data with a compression
ratio reaching ∼ 105.

Since the optimal order of the model for signal reconstruc-
tion has been estimated as 15, we used this setting for the
Lab-nD datasets as well. The reconstruction quality of the
‘Office’ dataset was 0.95 and the corresponding values for
the ‘Lab’ datasets are shown in Table I.

TABLE I
RECONSTRUCTION QUALITY FOR DIFFERENT DATASETS

Dataset Lab-1D Lab-2D Lab-3D

Location 1 0.95 0.99 0.99
Location 2 0.98 0.97 1.00
Location 3 0.94 0.98 0.99

The data indicate that the model size remains more or
less constant regardless of the time span it covers. Therefore,
higher compression rates are achieved simply by representing
larger datasets. On average, the proposed model can predict
the environment state with 97% accuracy.

B. Anomaly detection

An anomalous situation can be defined as a local state of
the world which deviates from the internal world model of
the robot. Since our model can predict the local state s(t)
with a given conficence value by Equation 3, we can assume
that a measurement sm(t) is anomalous with confidence level
c if

sm(t) 6= (IFT (P ) > c). (6)

While setting c too high would lower the algorithm’s sen-
sitivity to anomalies, low c would result in an increased
number of false positives. An optimal confidence level c can
be calculated from the statistical properties of p(t) and the
requirements for the number of false positives and failed
detections. Figure 6 shows the results of anomaly detection
for the office dataset. In this case, the confidence level c
was set to 95% and the anomalous situations correspond to
a room being accessed at night.

Figure 7 shows the results of anomaly detection for the
Lab-1D dataset. Similarly to the previous case, the confi-
dence level c was set to 90% and the anomalous situations
correspond to the room being accessed at night or a sudden
absence of all people just before and after a meeting, see
Figures 8 and 3.

These examples demonstrate how the model adapts its
inner dynamics to represent the observed environment. The

Measured state
Probability estimate
Reconstructed state

Anomaly detector

Tue Wed Thu Fri Sat Sun Mon

Fig. 6. Anomaly detection for the ‘Office’ dataset.

Probability of person present
Anomaly detection

Sun Mon Tue Wed Thu Fri Sat

Person detected

displayed in Figure 8
Anomalous situations

Fig. 7. Anomaly detection for the three locations of the Lab-1D dataset.

Fig. 8. Anomalous situations in the ‘Lab’ environment. Left: Workplace
empty on Friday early afternoon. Right: Person entering the room at night.

differences between the inner dynamics and real observations
allow for natural detection of anomalous situations with
arbitrary confidence levels. Figure 7 shows how the spectral
models for each laboratory location adapt to the particular
location’s dynamics. This results in a different anomaly
detector for each location. For example, a person presence
on Monday morning is considered normal for location 1, but
triggers the anomaly detector on locations 2 and 3.

C. Building spatiotemporal maps for mobile robotics

The quality of the aforementioned datasets was not sig-
nificantly affected by the sensor position, because either
the sensor was static or the measurement did not require



perfect sensor localization. However, metric-map-building
algorithms require precise localization of the sensor. While
localization can be solved by means of known SLAM
methods, the position estimate is never absolutely error-
proof or perfectly accurate. Therefore, localization glitches
and inherent sensor noise cause degradation of metric maps
over time. This degradation can be countered by means
of Bayesian filtering methods. Since our approach is not
explicitly designed to suppress sensor noise, one might
assume that it would not deal with the aforementioned issues.

However, from the theoretical point of view, emphasizing
lower frequencies of the spectra in the update step (see
section II-B) is equivalent to applying a low-pass filter to the
sensor data. Thus, map errors caused by noisy measurements
should fade out similarly as with the classical mapping
approaches. To emphasize new measurements, the update
step introduced in Section II-B might suppress the lower
frequencies of the spectrum, causing the model to ‘forget’
long-term changes s(t). However, such a forgetting scheme
is beyond the scope of this article.

Fig. 9. Reconstruction and current environment state comparisson at
different times.

To demonstrate that our representation can deal with the
noisy measurements of the environment states sj(t), we used
the 3D and 2D measurements correspondance to build 3D
and 2D occupancy grids, see Section III. To suppress the
effects of imprecise localization, the point clouds gathered
by the range sensors were aligned by means of the ICP algo-
rithm prior to the occupancy grid calculation. The individual
grid maps were aligned over each other. Therefore we were
able to track how the occupancy of the individual grid cells
changes over time. Since the cells are considered indepen-
dent, each cell of the aforementioned grids maintains its own
spectral model built from approximatelly 2000 measurements
gathered regularly during one week. The Figure 9 provides
a detail of the 3D occupancy grid at location 2 of the ‘Lab’
dataset, showing the predicted probabilities and measured
states of individual cells at different times.

The accuracy of reconstruction and prediction of each

cell’s spectral model was calculated, see Table I. The results
indicate, that the accuracy and compression ratio of the spec-
tral model was not significantly affected by the imperfections
of the robot localization.

V. CONCLUSION

A novel approach for spatiotemporal mapping in the
context of mobile robotics has been presented. The approach
is based on an assumption that the environment is influenced
by several processes which might be periodical and that the
evolution of the environment can be described by means
of periodicity, amplitude and time shift of these underlying
processes. To identify the parameters of these processes
and to predict the environment’s local state we use the
direct, respectively inverse Fourier transform. The core of the
proposed temporal representation is composed of the most
prominent frequency components of the Fourier spectrum
- these relate to the most important periodical processes
influencing the environment.

To evaluate the perfomance of the proposed method in
a real mobile robotic scenario, we have applied it to data
gathered by a mobile robot continuously patrolling in an
indoor environment for a period of one week while detecting
people presence and building 2- and 3-D occupancy grids of
designated locations.

The results indicate that the proposed method allows
to represent arbitrary timescales with constant (and low)
memory requirements, achieving compression rates up to
106. Moreover, we demonstrate that the representation allows
prediction of future states of the environment with accuracies
ranging from 88% to 99%, which allows an easy detection
of unexpected (anomalous) environment states.

In the future, we will keep on studying the utility of the
spectral model for mobile robot localization, path planning,
information-driven spatio-temporal exploration and semantic
space segmentation. Furthermore, we would like to see the
tool proposed in this work included in a new representation
of the environment that consider the dynamics that take place
in it.
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