
1

Copyright Notice

This is the authors version of a work that was accepted for
publication in Pattern Recognition Letters.

Cristoforis, Nitsche, Krajnik, Pire, Mejail: Hybrid vision-
based navigation for mobile robots in mixed indoor/outdoor en-
vironments, Pattern Recognition Letters, 2014.

Changes resulting from the publishing process, such as
peer review, editing, corrections, structural formatting, and
other quality control mechanisms may not be reflected in
this document. Changes may have been made to this work
since it was submitted for publication. The full version
of the article is available on Elsevier’s sites with DOI:
10.1016/j.patrec.2014.10.010.

2

Pattern Recognition Letters
journal homepage: www.elsevier.com

Hybrid vision-based navigation for mobile robots in mixed indoor/outdoor environments

Pablo De Cristóforisa,∗∗, Matias Nitschea, Tomáš Krajnı́kb,c, Taihú Pirea, Marta Mejaila

aLaboratory of Robotics and Embedded Systems, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina
bLincoln Centre for Autonomous Systems, School of Computer Science, University of Lincoln, United Kingdom
cDepartment of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech republic

ARTICLE INFO ABSTRACT

Article history:

2000 MSC:
41A05
41A10
65D05
65D17

Keywords:
Vison-based navigation
Mixed indoor/outdoor environmets
Mobile robotics

In this paper we present a vision-based navigation system for mobile robots
equipped with a single, off-the-shelf camera in mixed indoor/outdoor environ-
ments. A hybrid approach is proposed, based on the teach-and-replay tech-
nique, which combines a path-following and a feature-based navigation al-
gorithm. We describe the navigation algorithms and show that both of them
correct the robot’s lateral displacement from the intended path. After that, we
claim that even though neither of the methods explicitly estimates the robot po-
sition, the heading corrections themselves keep the robot position error bound.
We show that combination of the methods outperforms the pure feature-based
approach in terms of localization precision and that this combination reduces
map size and simplifies the learning phase. Experiments in mixed indoor/out-
door environments were carried out with a wheeled and a tracked mobile robots
in order to demonstrate the validity and the benefits of the hybrid approach.

c© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Autonomous navigation can be roughly described as the pro-
cess of moving safely along a path between a starting and a final
point. In mobile robotics, different sensors have been used for
this purpose, which has led to a varied spectrum of solutions.
Active sensors such as sonars (Borenstein and Koren, 1988),
laser range finders (Surmann et al., 2001) and radars (Kaliyape-
rumal et al., 2001) have been used in autonomous navigation
methods. These sensors are inherently suited for the task of
obstacle detection and can be used easily because they directly
measure the distances from obstacles to the robot.

Other sensors that are becoming a standard part in mobile
robotic systems, particularly in field robotics, are visual sen-
sors. Quality cameras have become increasingly affordable,
they are small and can provide high resolution data in real time.
They are passive and therefore do not interfere with other sen-
sors. Unlike range sensors, they can not only be used to de-

∗∗Corresponding author:
e-mail: pdecris@dc.uba.ar (Pablo De Cristóforis)

tect obstacles, but also to identify forbidden areas and navi-
gate mobile robots using human-defined rules (i.e. keep off the
grass). Such forbidden areas are not obstacles, since they are
in the same plane as the path, but should be considered as non-
traversable. Moreover, and probably more important, nowadays
computational power required by image processing techniques
is readily available in consumer hardware. For these reasons, in
recent years vision-based navigation for mobile robots has been
a widely studied topic.

Many visual navigation methods generally rely on the ex-
traction of salient visual features, using algorithms such as
well-known SIFT (Scale Invariant Feature Transform) or SURF
(Speeded Up Robust Features), among others. These are then
used as external references from which information about the
structure of the surrounding environment and/or the ego-motion
of the robot is estimated.

A classical approach to visual navigation is known as teach-
and-replay. This technique is closely related to visual servo-
ing (Chaumette and Hutchinson, 2006; F. Chaumette and S.
Hutchinson, 2007), where the task is to reach a desired pose us-
ing vision for control feedback. Several teach-and-replay works
employ visual features as landmarks to guide the autonomous

3

navigation. A particularly succesful work has been presented
by Furgale and Barfoot (2010). This method uses a stereo-
camera to build a manifold map of overlapping submaps as the
robot is piloted along a route. Each submap represent a metric
reconstruction of a portion of the environment. The use of local
submaps allows the rover to faithfully repeat long routes with-
out the need for an accurate global environment reconstruction.

In contrast to metric reconstruction of the environment, the
authors of Krajnı́k et al. (2010), and Chen and Birchfield (2009)
present a simplistic monocular navigation algorithm that per-
forms autonomous navigation without building metric maps,
so-called appearance-based or qualitative navigation. In their
approach, the robot steering is calculated directly from hori-
zontal displacement of the currently perceived and previously
mapped image features. The article of Krajnı́k et al. (2010)
contains a mathematical proof of the stability of their feature-
based navigation.

In recent years, teach-and-replay methods have been stud-
ied for both terrestrial and aerial robots. On the one hand,
many works use metric reconstruction techniques, such as
stereo-based triangulation proposed by Ostafew et al. (2013)
and Pfrunder et al. (2014). On the other hand, several works still
employ solely appearance-based navigation (Ok et al., 2012;
Augustine et al., 2012; Krajnik et al., 2012; Nitsche et al.,
2014).

The main drawback of the aforementioned methods lies in
the fact that the robot workspace is limited only to the regions
mapped during the training step. The user has to guide the robot
all around the entire path before performing autonomous navi-
gation, which may represent a very tedious process, especially
in large outdoor environments. We argue that the mathemati-
cal proof presented in Krajnı́k et al. (2010) is not limited only
to feature-based map-and-replay navigation methods.This fact
should allow to design hybrid navigation systems that use both
map-and-replay and map-less reactive navigation methods.

An example of such a method is a real-time monocular
path following algorithm that allows a mobile robot navigate
through semi-structured or unstructured paths De Cristóforis
et al. (2013). This method uses a probabilistic approach similar
to the proposed by Dahlkamp et al. (2006), learning a visual
model of the nearby road using an area in front of the vehicle
as a reference. The traversable path appearance is modeled as
a mixture of Gaussians and the classification between naviga-
ble or not navigable area is done of segments rather than pixel
level. From the previously determined navigable area, a path
center trajectory is estimated and using a motion control law
the robot is guided to the center of the detected path and main-
tain it away from path edges during navigation.

Though different solutions have been proposed to address the
indoor or outdoor vision-based navigation, there are not many
works that solve the problem when it comes to mixed indoor
and outdoor environments. The main contribution of this work
is to propose a hybrid navigation method than can work suc-
cessfully both in indoor and outdoor environments while over-
coming the aforementioned drawbacks of existing methods,
which are generally oriented towards a specific scenario. The
proposed method combines a teach-and-replay feature-based

method (Krajnı́k et al., 2010) and a the segmentation-based ap-
proach for following paths (De Cristóforis et al., 2013). Both
methods have the same principle behind: to correct the heading
of the robot to guide the autonomous navigation.

When transitioning to environment contains semi-structured
paths, the visual path-following method is used. When there is
no path to follow, a map is built using feature-based approach.
By recording odometric information for establishing the length
of each segment in the map, a large mixed indoor/outdoor en-
vironment can be traversed autonomously. We claim that even
though neither of the two methods explicitly estimates the robot
position in the environment, the heading corrections themselves
keep the robot position error bound. In other words, by com-
bining two navigation methods based on the same principle, i.e.
heading correction, a hybrid navigation approach which takes
the best of each can be obtained, without loosing accuracy in
autonomous navigation. In this paper this is proved in both the-
oretical and practical point of views.

The remainder of this paper is organized as follows: the hy-
brid navigation approach is presented in Section 2, description
of the feature-based method is introduced in Section 3, descrip-
tion of the segmentation-based method for following path is in-
troduced in Section 4, the convergence analysis is performed in
Section 5, evaluation criteria and experimental results are dis-
cussed in 6 and the paper is concluded in Section 7.

2. Hybrid visual navigation

The main idea behind the proposed hybrid navigation method
is to combine two separate approaches, feature-based and
segmentation-based, by alternating between one and the other
depending on the part of the environment the robot is at.

Both of the aforementioned methods correct the robot’s head-
ing so it is steered towards the intended path. However, neither
of the methods can compute the localization of the robot within
the environment. Odometry is only used to determine the rela-
tive position of the robot within a segment, and therefore, when
the robot has to change between the two navigation methods.
One might argue that the cumulative nature of the odometric er-
ror would eventually cause the navigation method to fail. How-
ever, Krajnı́k et al. (2010) indicate that the heading correction
itself can compensate for odometric errors and keep the robot
position error bound. In this article, we will extend this idea of
heading compensation to a broader set of monocular navigation
systems based on robot’s heading correction. In particular, we
will show that stability of bearing-only navigation is not lim-
ited to landmark-based localization only, but can be applied to
reactive path-following methods as well.

The advantages of the proposed approach compared to the
one presented in Krajnı́k et al. (2010) can be summarized as
follows:

1. It is not necessary to teach the robot the entire trajectory in
areas where a detectable path is present. This significantly
simplifies and shortens the learning phase.

2. Since the path-following method is adaptive, it is more ro-
bust to environment appearance variations compared to the

4

feature-based method. This increases the overall reliabil-
ity of the navigation.

3. The path following method reduces robot positioning error
faster than the feature-based approach. Thus, combination
of both methods allows for a more precise navigation.

4. The path following method does not need to store infor-
mation about the entire edge that is to be traversed. Rather
than that, it just need information about the path texture,
which dramatically reduces spatial requirements for stor-
age of the topological map especially when traversing long
outdoor paths.

2.1. Method overview
The topological map that the method uses is a graph where

nodes represent places in the environment and edges represent
the navigation methods that can be used to move between these
places. While the nodes are associated with azimuths indicating
directions of the outgoing edges, the edges contain information
that allows the robot to traverse between the individual places.
In other words, an edge of the hybrid topological map repre-
sents an action that the robot should take during its length in
different parts of the route: i.e. either the path-following or the
feature-based navigation.

The environment map is created during a training phase
where the user builds a topological map by driving a semi-
autonomously moving robot through the environment. During
the training, the robot either moves forwards while creating an
image-feature based map or it follows a pathway of the environ-
ment. Whenever the user terminates the current behaviour, the
robot records the length of the edge and creates a topological
node. Then, the user can manually set the robot orientation and
start path following or feature mapping again. It is important to
note that if the length of the path-following edge is known (e.g.
from an overhead map), there is no need to traverse the edge
during the learning phase.

Fig. 1. Schematic of an example map of the hybrid method for a given
indoor/outdoor scenario. Lines marked in blue consist of the portions of
the map which are traversed using the path-following method, while lines
marked in red, portions which are traversed using the feature-based ap-
proach.

In the autonomous navigation or “replay” phase, the robot
traverses a sequence of edges by either one of the two move-

ment primitives. Note that neither or the methods performs lo-
calization of the robot. Both methods simply keep the robot
close to the trained paths while using odometric reading to de-
cide whether the particular edge has been traversed or not. In
Section 5 we will show that despite of simplicity of the ap-
proach, the robot position error does not diverge over time.

In the next sections we will describe each navigation move-
ment primitive: feature-based for open areas (indoor or out-
door) where there is not bounded path to go through, or cross in-
tersection of two or more paths, and image segmentation based
method conceived to follow structured or semi-structured paths.

3. Feature-based visual navigation

The feature-based navigation method used as a motion prim-
itive of the proposed approach is based on Krajnı́k et al. (2010).
This method uses the map-and-replay technique which is de-
scribed in this section. This method allows a robot to follow a
given path by performing an initial learning phase where fea-
tures extracted from the camera images are stored. In a sec-
ond replay phase, the robot autonomously navigates through
the learned path while correcting its heading by comparing cur-
rently seen and previously stored features.

3.1. Image Features

Since image features are considered as visual landmarks, the
feature detector and descriptor algorithms are a critical compo-
nent of the navigation method. Image features must provide
enough information to steer the robot in a correct direction.
Furthermore, they should be robust to real world conditions,
i.e. changing illumination, scale, viewpoint and partial occlu-
sions and of course its performance must allow real-time op-
eration. In the original version of the method, Krajnı́k et al.
used SURF (Speeded Up Robust Feature) algorithm proposed
by Bay et al. (2008) to identify visual landmarks in the im-
age. The SURF method is reported to perform better than most
SIFT (Lowe, 2004) implementations in terms of speed and ro-
bustness to viewpoint and illumination change.

For this work, further evaluation of a variety of extractor
and descriptor algorithms, in the context of visual navigation,
was performed. The goal of these off-line experiments was to
determine which algorithm combination is the best choice for
visual navigation in terms of performance, robustness and re-
peatability (Krajnı́k et al., 2013). As a result of this evaluation,
we conclude that the combination of STAR based on CenSurE
(Center Surround Extremas) algorithm (Agrawal et al., 2008)
to detect image features and BRIEF (Binary Robust Indepen-
dent Elementary Features) algorithm (Calonder et al., 2010) to
build the descriptor of the feature outperforms the other image
feature extraction algorithms. The STAR extractor gives bet-
ter results to detect landmarks than SURF, because keypoints
extracted with STAR are more salient and thus, also more sta-
ble than keypoints extracted with SURF. The BRIEF descrip-
tor uses a simpler coding scheme to describe a feature, this re-
duces storage requirements and increases matching speed. The
SURF use 64 (or 128 in the extended version) double-precision
floating-point values to describe a keypoint, this results in 512

5

bytes (or 1024) of data for each descriptor. In contrast, BRIEF
uses a string of bits that can be packed in 32 bytes. Taking
into account the high number of features present in the map,
this can amount to hundreds of megabytes which are saved in
large-scale maps. Furthermore, in terms of speed, instead of us-
ing the Euclidean distance to compare descriptors as it is done
with SURF, BRIEF descriptors can be compared using Ham-
ming distance, which can be implemented extremely fast using
SSE instructions.

3.2. Learning Phase

In the initial learning phase, the robot is manually guided
through the environment while the map is built. The operator
can either let the robot go forward or stop it and turn it in a de-
sired direction. A map can therefore be built, which will have
the shape of a series of segments of certain length as computed
by the robots odometry. During forward movement, the robot
tracks features extracted from the robot’s camera images. For
each feature, its position in the image is saved along its descrip-
tor. Also, initial and final distances (as measured by the robot’s
odometry) along the segment where the feature was first and
last seen are also saved. Tracking is performed by extracting
features for the present frame and comparing these to others
that were continously seen in previous frames. While features
remain in the set of tracked landmarks, their information can be
updated. When features are not seen anymore, they are added
to the map and removed from this set. Matching is performed
by comparing descriptors.

The procedure which creates a map of one segment is as fol-
lows in the listing 1. Each landmark has an associated descrip-
tor ldesc, pixel position lpos0 , lpos1 and robot relative distance
ld0 , ld1 , for when the landmark was first and last seen, respec-
tively.

The map obtained by this approach is thus composed of a
series of straight segments, each described by its length s, az-
imuth φ0 and a set of detected landmarks L. A landmark l ∈ L
is described by a tuple (e, k,u, v, f , g), where e is its BRIEF
descriptor and k indicates the number of images, in which the
feature was detected. Vectors u and v denote positions of the
feature in the captured image at the moment of its first and last
detection and f and g are distances of the robot from the seg-
ment start at these moments.

3.3. Autonomous Navigation Phase

In order to navigate the environment using this method, the
robot is initially placed near the starting position of a known
segment. Then, the robot moves forward at constant speed
while correcting its heading. This is performed by retrieving
the set of relevant landmarks from the map at each moment and
to estimate their position in the current camera image. These
landmarks are paired with the currently detected ones and the
differences between the estimated and real positions are calcu-
lated. As these differences in image coordinates are related to a
displacement of the robot in the world, it is possible to actively
minimize these by moving the robot accordingly, and thus the
previously learnt path is replayed.

Algorithm 1: Learning Phase
Input: ϕ: initial robot orientation
Output: L: landmarks learned for the current segment,

s: segment length, ϕ0: segment orientation
ϕ0 ← ϕ read robot orientation from gyro or compass
L← ∅; /* clear the learned landmark set */

T ← ∅; /* clear the tracked landmark set */

repeat
F ←features extracted from the current camera image
foreach l ∈ T do

f ← find match(l,F)
if no match then

T ← T − { l } ; /* stop tracking */

L← L ∪ { l } ; /* add to segment */

else
F ← F − { f }
l← (ldesc, lpos0 , fpos, ld0 , d) /* update image

coordinates & robot position */

foreach f ∈ F do
T ← T ∪ { (fdesc, fpos0 , fpos0 , d, d) } ; /* start

tracking new landmark */

until operator terminates learning mode
L← L ∪ T ; /* save tracked landmarks */

s← d ; /* remember the segment’s length */

Algorithm 2: Navigation Phase
Input: L: landmarks of the current segment s: current

segment length
Output: ω: angular robot speed v: forward robot speed
v← v0 ; /* start moving forwards */

while d < s do
H ← ∅ ; /* pixel-position differences */

T ← ∅ ; /* tracked landmarks */

foreach l ∈ L do
if ld0 < d < ld1 then

T ← T ∪ { l } ; /* get expected

landmarks according to d */

F ←features extracted from the current camera image
while T not empty do

f ← find match(l,F)
if matched then

/* compare feature position to

estimated current landmark

position by interpolation */

h← fpos −

(
(lpos1 − lpos0)

d − ld0
ld1− ld0

+ lpos0

)
H ← H ∪ { h }

T ← T − { l }
ω← γ mode(H)

v, ω← 0 ; /* segment completed, stop moving */

6

More formally, the replay phase is as follows. Each time a
new image is captured, the robot updates the estimated traveled
distance d from the start of the segment and builds the set T by
retrieving landmarks in L that were visible at distance d during
learning. Then, features are extracted from the current camera
image and put in the set F. A pairing between the sets F and
T is established as in the learning phase. After establishing
these correspondences, for each pair of matching features their
image position is compared. The expected image position of
landmarks in T is obtained by linearly interpolating according
to d, since only initial and last image positions of landmarks
are stored during mapping to reduce map size. By taking the
horizontal difference in image positions a heading correction
for the robot can be established. To obtain a single correction
value, the most likely horizontal position needs to be obtained
since the matching process may produce outliers. Thus, this
single deviation value is obtained by sampling all horizontal
differences in a histogram and taking its mode.

While the robot moves forward at constant speed, this head-
ing correction is performed for each frame until d equals the
segment length stored in the map. The listing 2 presents the
algorithm used to traverse or ‘replay’ one segment.

4. Segmentation-based path-following

The path-following method used as motion primitive
of the proposed approach is based on a previous work
by De Cristóforis et al. (2013). Here, a mobile robot is au-
tonomously steered in order to remain inside a semi-structured
path by means of image processing alone.

The method works by first dividing the image into regions
or segments of similar appearance and then classifying these as
belonging to traversable or non-traversable areas. It does not
require a learning phase since it uses the area immediately in
front of the robot in order to obtain a sample of traversable ter-
rain. A gaussian-mixture model is used to describe this sample
(using the Hue, Saturation and Value components) and compare
to the rest of the regions in the image. After classification, the
most likely group of interconnected image segments is used to
obtain a contour of traversable path. With this contour a sim-
ple control law which infers the path middle line and steers the
robot to follow it is used.

Since the method only requires the area of the image below
the horizon level (i.e. the ground) to steer the robot, an initial
horizon detection method can be used to infer this area and re-
strict processing to the meaninful portion of the image. Figure
2 shows the image processing pipeline.

4.1. Image Segmentation

In outdoor semi-structured or unstructured environments, the
traversable area is often cluttered by small objects with a color
of the forbidden area, for example grass, tree leaves, water or
even snow in the middle of the road. In this case, most classifi-
cation methods working at a pixel level, like the one proposed
by Dahlkamp et al. (2006), would perform worse than methods
which first segment the image to several areas with similar tex-
ture or color. Thus, the initial step in the path-detection process

(a) Input image (b) Cropped &
blured

(c) Segment Map

(d) Hue per pixel (e) Mean hue per
super-pixel

(f) Value per pixel

(g) Mean value per
super-pixel

(h) Saturation per
pixel

(i) Mean saturation
per super-pixel

(j) Super-pixel clas-
sification as binary
mask

(k) Filtered binary
mask

(l) Path contour

Fig. 2. Pipeline description: (a) input image as acquired from the cam-
era, (b) cropped image below automatically detected horizon, (c) segment
map. For each segment, mean and covariance are computed:(e), (i) and (g)
show segment hue, saturation and value means respectively (d), (h) and(f)
show pixel hue, saturation and value for reference. (j) binary mask ob-
tained from classification using ground models from ROI. (k) morpholog-
ical opening filter is applied in order to ‘close’ small gaps in the binary
mask. (l) path contour extracted from processed binary mask and middle
points computed, on top-left linear and angular speeds values obtained by
control law.

is to segment the image into a set of super-pixels. After the im-
age is cropped to contain the region below the horizon (either
automatically or manually), the result is initially filtered to re-
duce noise (using a median-blur, which preserves edge contrast)
and then segmented. The segmentation algorithm used is the
graph-based approach proposed by Felzenszwalb and Hutten-
locher (2004). The algorithm first constructs a fully connected
graph where each node corresponds to a pixel in the image.
Pixel intensities between neighbors are analyzed and edges are
broken whenever a threshold is exceeded. The resulting uncon-
nected sub-graphs define the segments (or super-pixels).

4.2. Classification

To achieve a robust classification of the segments, a proba-
bilistic approach is used, based on Dahlkamp et al. (2006). This
step determines if a population sample (a segment), modeled
by a Gaussian probability distribution N(µ,Σ), with mean vec-
tor µ and covariance matrix Σ, represents an instance of a more
general model of the ‘navigable path’ class or not. This naviga-
ble path class is represented in turn by a Mixture-of-Gaussians

7

(MoG) model. The steps involved in the classification task are
as follows:

1. Segment model computation: each segment is modeled by
its mean µ and covariance Σ of HSV color values.

2. Navigable class computation: a rectangular ROI (Region
Of Interest) in the lower part of the image is used as a refer-
ence of navigable path (see Fig. 2). All models contained
in this ROI are merged by similarity (using Mahalanobis
distace). The resulting models which cover the ROI area
by more than a defined percentage are used as references
for navigable regions in the image.

3. Classification of all segments: All segments in the image
are compared to the reference models for navigable path
using the Mahalanobis distance. A binary mask for all
pixels is created indicating the membership to this class.

4. Contour extraction: the binary mask is post-processed by
a morphological opening operation to reduce artifacts and
from all regions classified as navigable path, the area in-
tersecting the ROI region is chosen. The contour of this
region is computed.

4.3. Motion control
The goal of the motion control is to correct the heading of

the robot to keep it in the middle of the road. From the previ-
ously determined contour, a path center trajectory is estimated
in order to guide the robot to the center of the detected path
and maintain it away from path edges. First, by going row-
by-row in the image, the middle point for the current row is
obtained from the leftmost and rightmost pixel’s horizontal po-
sitions of the path contour. The list of middle points is then used
to compute angular and linear speeds with a simple yet effective
control-law as follows. From the list of n horizontal values ui of
the i-th middle point of the detected path region, angular speed
ω and forward speed v are computed as follows:

ω = α

n∑
i

(
xi −

w
2

)
, v = βn − |ω| (1)

where w is the width of the image and α and β are constants
specific to the robot’s speed controllers.

The effects of this control law are such that the robot will
turn in the direction where there is the highest deviation, in av-
erage, from middle points with respect to a vertical line passing
through the image center. This line can be assumed to be the
position of the camera, which is mounted centered on the robot.
Therefore, whenever a turn in the path or an obstacle is present,
the robot will turn to remain inside the path and avoid the obsta-
cle. The linear speed of the robot is reduced accordingly to the
angular speed determined by the previous computation. This
has the effect of slowing down the robot whenever it has to take
a sharp turn.

5. Robot position error analysis

In this section we show that despite the fact that the robot
localization is based on odometry, the robot position error does
not diverge over time due to the heading corrections caused by

the two movement primitives. Our analysis assumes that a mo-
bile robot moves through a sequence of n waypoints by using
reactive navigation algorithms (or motion primitives) that steer
the robot towards the waypoint’s connecting lines. We describe
robot position at each waypoint in the waypoint’s coordinate
frame and show that the robot’s relative position to a particular
waypoint can be calculated by a recursive formula xk+1 = Mk xk,
where the matrix Mk eigenvalues are 1 and mk. First, we show
that mk is lower than 1 because of the heading corrections in-
troduced by the motion primitive used to navigate between kth

and (k + 1)th waypoint. Finally, we show that if all the path
waypoints do not lie on a straight line, M =

∏
k = 0n−1Mk

dominant eigenvalue is lower than one, meaning that the robot
position error is reduced as it travels the entire path.

5.1. Robot movement model

Let us assume that the robot moves on a plane and its position
and heading is x, y, ϕ respectively. Assume that the edge to be
traversed starts at coordinate origin and leads in the direction of
the x-axis.

The path following method presented in Section 4.1 calcu-
lates the robot’s steering speed ω directly from image coor-
dinates of the segmented path center. These coordinates are
affected by both robot heading φ and lateral displacement y.
Larger robot displacement and larger heading deviation cause
larger values of the steering speed, i.e.

ω ∼ −c0y − c1ϕ. (2)

Given that the robot’s speed v is much lower compared to the
maximal rotation speed ω, the robot can change its heading
much faster than its horizontal displacement y. Thus, a robot
steered by the method presented in Section 4 will quickly stabi-
lize its heading and reach a state when its rotation speed ω will
be close to zero. This allows to rewrite Equation 2 to

0 ≈ −c0y − c1ϕ. (3)

Thus, heading ϕ of a robot following the path can be expressed
as

ϕ ≈ −k0y, (4)

where k0 is a positive constant.
The case of the feature-based method is similar. If the robot

is displaced in a lateral direction from the path, i.e. in the direc-
tion of the y-axis, the perceived features will not be visible at
the expected positions, but will be shifted to the right for y > 0
and to the left y < 0.

Since the feature-based method steers the robot in a direction
that minimizes the difference (in horizontal coordinates) of the
expected and detected features, the robot heading will be stabi-
lized at a value that is proportional to its lateral displacement.
In other words, the robot heading ϕ satisfies a similar constrain
as in the previous case:

ϕ ≈ −k1y, (5)

where k1 is a positive constant.

8

Thus, both of the motion primitives of the hybrid method
adjust the robot heading ϕ proportionally to its lateral displace-
ment from the path, i.e. ϕ ≈ −ky, where k > 0. Both meth-
ods move the robot along the edge until the robots odometric
counter reports that the distance travelled exceeded the length
of the edge stored in the map. Assuming that the robot heading
ϕ is small, we can state that

dy
dx

= ϕ = −ky. (6)

Let the initial position of the robot be (ax, ay), where the val-
ues of (ax, ay) are significantly smaller than the segment length.
Solving this differential equation with boundary conditions
ay = f (ax) allows us to compute the robot position:

y = aye−kx. (7)

Considering a segment of length s, we can calculate the robot
position (bx, by) after it traverses the entire segment as:

bx=ax + s
by=aye−ks.

(8)

Equation (8) would hold for an error-less odometry and noise-
less camera. Considering the camera and odometry noise,
Equation (8) will be rewritten to(

bx

by

)
=

(
1 0
0 e−sk

) (
ax

ay

)
+

(
sυ
ξ

)
, (9)

where υ and ξ are normally distributed random variables,
µ(υ) = 1, σ(υ) = ε, µ(ξ) = 0 and σ(ξ) = τ. A compact form of
(9) is

b = Ma + s. (10)

For a segment with an arbitrary azimuth, one can rotate the co-
ordinate system by the rotation matrix R, apply (10) and rotate
the result back by RT. Thus, Equation (10) would become

b = RT (MRa + s) = RTMRa + RTs. (11)

Using (11), the robot position b at the end of the segment can be
computed from its starting position a. Equations (11) allow to
calculate robot position as it traverses along the intended path.

5.2. Position error
Let the robot initial position a be a random variable drawn

from a two-dimensional normal distribution with the mean â.
Since Equation (11) has only linear and absolute terms, the final
robot position b will have a normal distribution as well. Let
a = â+ã, where ã is a random normal variable with zero mean.
Assuming the same notation for b and s, Equation (11) can be
rewritten as

b̃ = RTMR(â + ã) + RT(ŝ + s̃) − b̂. (12)

Substituting RTMRâ + RTŝ for b̂, Equation (12) becomes

b̃ = RTMRã + RTs̃, (13)

where ã, b̃, s̃ are Gaussian random variables with zero mean.
The ã and b̃ represent the robot position error at the start and
end of the traversed segment.

5.3. Traversing multiple segments
Let the robot path is a closed chain of n linear segments de-

noted by numbers from 0 to n − 1. Let a segment i be oriented
in the direction αi and its length be si. Let the robot positions
at the start and end of the ith segment are ai and bi respectively.
Since the segments are joined, bi = ai+1 and Equation (13) for
the ith traveled segment is

ãi+1 = Niãi + RT
i s̃i, (14)

where Ni = RT
i MiRi. Thus, the robot position after traversing

the entire path consisting of the n segments will be

ãn = N̆ã0 + t̆, (15)

where

N̆ =

0∏
j=n−1

Nj and t̆ =

n−1∑
i=0

 n−1∏
j=i+1

Nj

 RT
i s̃i. (16)

If the robot traverses the entire path k-times, its position can be
calculated in a recursive way by

ã(k+1)n = N̆ãkn + t̆. (17)

Since the mean of every s̃i is equal to zero and s̃i have normal
distribution, t̆, that is a linear combination of s̃i, has a normal
distribution with zero mean as well. Therefore, Equation (17)
describes a linear discrete stochastic system, where the vector t̆
represents a disturbance vector. If the system characterized by
(17) is stable, then the position deviation of the robot from the
intended path ãi does not diverge for k → +∞. The system is
stable if all eigenvalues of N̆ lie within a unit circle.

As every Ni equals to RT
i MiRi, its eigenvalues lie on the

diagonal of Mi and its eigenvectors constitute columns of Ri.
Therefore, each matrix Ni is positive-definite and symmetric.
Since the dominant eigenvalue of every Ni equals to one, eigen-
values of N̆ are smaller or equal to one. Since the dominant
eigenvalue of N̆ is equal to one if and only if the dominant
eigenvalues of products Ni+1Ni are equal 1 for all i. However,
dominant eigenvalue of a product Ni+1Ni equals 1 only if the
dominant eigenvectors of both Ni and Ni+1 are linearly depen-
dent, which corresponds to collinearity of ith and (i + 1)th seg-
ment. Thus, a dominant eigenvalue n̆ of the matrix N̆ equals 1
if and only if all path segments are collinear, i.e. the entire path
is just a straight line. For any other case, the spectral radius
of N̆ is lower than one, meaning that the system described by
(17) is stable. This means that if the robot travels the trajectory
repeatably, its position error ãkn does not diverge.

6. Experimental results

The proposed hybrid vision-based navigation system was im-
plemented in C/C++ within the ROS (Robot Operating System)
framework as a set of separate ROS modules1. The perfor-
mance of the navigation system has been evaluated in an in-
door/outdoor environment. The experiments were performed

1We will plan to release an open version of the software if the paper is
accepted.

9

outside and inside of the Pabellón 1 building, Ciudad Universi-
taria, Buenos Aires, Argentina. Two sets of experiments were
performed with two different robots. Two robotic platforms
were used for experiments: a small differential caterpillar-
tracked robot called ExaBot (Pedre et al., 2014) and a four-
wheeled P3-AT from MobileRobots. Both platforms were
equipped with a single off-the-shelf camera and a Core i5 laptop
as the sensing and processing elements, respectively.

Additionally, the motion model correctness was also demon-
strated in practice, by teaching and repeating a single straight
segment in an outdoor scenario, using both methods. Finally,
the computational efficiency of the method was measured.

6.1. Motion model correctness

The first scenario was aimed at verification of the assump-
tions given in Section 5.1. In particular, we wanted to calculate
if the robot motion model established by equations 7 conforms
to real robot motion along one straight segment. To verify the
motion model, we have taught the robot to traverse a 5.6 m
long straight path. Then, we executed the autonomous naviga-
tion system in order to repeat the path 5 times, with an initial
lateral displacement of about 0.5 m from the original starting
point. The robot motion was tracked using an external localiza-
tion system Krajnı́k et al. (2014). We used both segmentation-
and feature-based methods for this test.The recovered trajecto-
ries, compared with an expected exponential shape given by 7,
are presented on Figure 3, where the stability of the system is
appreciated. The trajectories described by both methods corre-
spond to the exponential model presented in equation 7.

As can be seen, both navigation methods converge. How-
ever, it can be easily noted that in this outdoor scenario, the
segmentation-based path following method converges much
faster and with less error. Since the scene is comprised mostly
of distant elements, the feature-based method aligns its view
and converges much slower. On the other hand, on indoor sce-
narios, the convergence of the feature-based method is much
faster. Thus, it makes much more sense to use a faster con-
verging method such as path-following when the robot has to
navigate outdoors through a structured or semi-structured path.

6.2. Algorithm computational efficiency

During the aforementioned experiment, we have also mea-
sured the real-time performance of both navigation algorithms.
Typically, one cycle of the feature-based navigation algorithm
takes approximately 30 ms, out of which one half is spent with
the image features extraction and the other with the frame-
to-map matching. Segmentation of one image into superpix-
els typically takes 150 ms of a total of 215 ms that takes the
whole algorithm. Thus, the feature- and segmentation-based
algorithms issue about 30 and 4 steering commands per second
respectively, which allows to quickly stabilize the robot at the
heading desired.

6.3. Large-scale experiments

The purpose of the large-scale experiments was to test the
robot in realistic outdoor conditions. However, it was not
technically possible to cover the entire operation area by the

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6

y
[m

]

x [m]

training
replay #1
replay #2
replay #3
replay #4
replay #5

exponential fit

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6
y

[m
]

x [m]

training
replay #1
replay #2
replay #3
replay #4
replay #5

exponential fit

(b)

Fig. 3. Robot trajectory along a straight segment path. 3(a) shows the re-
sults using the feature-based method and 3(b) using the path following
method. Five replays were performed for each case. The data points of
the recorded trajectories are fitted using the equation y = aye−kx to verify
the motion model used in the navigation method.

localization system. Therefore, the algorithm precision has
been assessed in the same way as Chen and Birchfield (2009)
and Krajnı́k et al. (2010), i.e. the relative robot position has
been measured each time the robot traversed an entire path.

In both cases, a closed path was first taught during a tele-
operated run, traversing an open area around the entrance of
the building and a square path inside the building hall. On the
outdoor portion, when a path was available, the path-detection
method was used. Otherwise, the feature-based navigation
method was selected. During this training phase, a hybrid map
was built, which was later used during autonomous navigation.
For the P3-AT, the outdoor portion was considerably longer, of
a total of 150 m (see Figure 4), while for the ExaBot, the path
length was of 68 m. Two sets of experiments were performed
with the P3-AT on different days using different mappings of
the environment.

In order to test the robustness of the approach, a series of au-
tonomous replays of the previously taught path were performed.
While this type of navigation has been theoretically proved to
reduce odometric errors by means of processing visual infor-
mation, during the experiments the aim was to test this aspect
in practice. To this end, the position of the robot at the end
of each replay was measured and compared to the ending po-
sition. Furthermore, in order to better appreciate the previous

10

error reduction effect, during the experiments performed with
the ExaBot, the robot was laterally displaced by 0.6 m before
the first repetition while still remaining inside the bounds of the
path. This was possible due to the reduced size of the ExaBot.
On the other hand, due to its larger size, the P3-AT was only
displaced about 0.3 m. However, given such a long path, the
expected errors of odometry alone (generally around of 10%)
would be higher than this amount and what is of importance is
that after several repetitions the robot always reaches the ex-
pected position without significant error.

For the first set of experiments with the ExaBot, the positions
differences were measured by marking the final robot positions
on the floor and measuring by hand. In contrast, for the second
set of experiments performed with the P3-AT, an external visual
localization system, WhyCon (Krajnı́k et al., 2014), was used
as ground-truth data of the robot position. The localization sys-
tem allows obtaining the pose of the robot within its 2D plane
of motion, with respect to a user set coordinate system, by de-
tecting a circular pattern attached to the robot by means of an
external fixed camera. This localization system has been shown
to have around 1% relative error (in relation to the measurement
area).

The results for both sets can be seen in Table 1, correspond-
ing to five repeats for the case of the P3-AT and three for the
ExaBot (due to limited autonomy). As can be seen, the sec-
ond set of repeats with the P3-AT (second column) gave better
results than the first one (first column). This may be because
in the first case the learning phase was made in one day and
the autonomous navigation phase in another, while the weather
changed from cloudy/light rain to partly cloudy/sunny, affecting
the learned map of the environment. In the second set of repeats
with the P3-AT the whole experiment (both learning and replay
phase) was done in the same day. In total, using the presented
hybrid method, the P3-AT robot was able to autonomously nav-
igate 1.5 km. Example images corresponding to the robot views
during navigation can be seen in Figure 5.

P3-AT ExaBot

replay abs. err. [m] rel. err. [%] abs. err. [m] rel. err. [%]

1 0.40 0.09 0.27 0.06 0.12 0.12
2 0.58 0.19 0.39 0.12 0.07 0.10
3 0.90 0.20 0.60 0.13 0.03 0.05
4 0.86 0.21 0.57 0.13 - -
5 0.80 0.25 0.53 0.16 - -

avg. 0.71 0.19 0.47 0.12 0.07 0.09

Table 1. Position errors of the indoor/outdoor experiment with the hybrid
method, for each robot. Errors were measured after each repetition with
respect to the ending positions reached after training.

6.4. Performace comparison

To compare the algorithm precision with other teach-and-
repeat systems, we have decided to use accuracy εacc and the
repeatability εrep measures as introduced in Chen and Birch-
field (2009). The εacc and εrep are computed as the RMS of
Euclidean distance or a standard deviation of the robot’s final

(a) (b) (c)

(d)

(e) (f) (g)

Fig. 4. Images of the experiments and of the path traversed by the robot
around and inside the Pabellón 1 building, Ciudad Universitaria, Buenos
Aires, Argentina. 4(a), 4(b)and 4(c) shows the autonomous navigation
phase with the ExaBot, 4(e), 4(f) and 4(e) with the Pioneer 3P-AT, and 4(d)
shows the environment where the experiments took place and the traversed
path, taken from Google Maps.

positions from the path start by equations

εacc =

√
1
n
∑n

i=1 ‖xi − xf‖
2 εrep =

√
1
n
∑n

i=1 ‖xi − µ‖
2,

(18)
where xi is the robot position after completing the i-th loop, xf
the final position after training and µ =

∑n
i=1 ci/n.

Table 2 compares repeatability and accuracy of the our re-
sults to the ones presented in Krajnı́k et al. (2010) and Chen
and Birchfield (2009). For this analysis the second experiment
with the P3-AT was taken.

Our method Other methods
P3-AT Krajnik Chen

Accuracy [m] 0.19 0.26 0.66
Repeatability [m] 0.08 0.14 1.47
Path length [m] 150 1040 40

Table 2. Comparison of the method’s accuracy and repeatability to other
works.

This summary indicates that the navigation accuracy of our

11

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Screenshots extracted from the ExaBot robot: 5(a), 5(b) and 5(i)
during the segmentation-based navigation and 5(c), 5(d), 5(e), 5(f), 5(g)
and 5(h) during the landmark-based navigation.

method is comparable with the closely related methods pre-
sented in articles Krajnı́k et al. (2010); Chen and Birchfield
(2009), showing better results for both accuracy and repeata-
bility analysis.

7. Conclusion

In this paper we propose a hybrid visual navigation system
for mobile robots in indoor/outdoor environments. The method
enables to use both segmentation-based and feature-based nav-
igation as elementary movement primitives for the entire sys-
tem. A topological map of the environment is defined that can
be thought as a graph, where the edges are navigable paths and
the nodes are open areas. As we already saw segmentation-
based navigation fits very well to path following (edges) and
landmark-based navigation is suitable for open areas (nodes).

The presented method is robust and easy to implement and
does not require sensor calibration or structured environment,
and its computational complexity is independent of the envi-
ronment size. We also present a convergence analysis showing
that despite the robot localization within a segment is based on
odometry, the robot position error does not diverge over time
due to the heading corrections caused by the properties of the
two movement primitives. We proved both theoretically and
empirically that if the robot traverses a closed path repeatedly,
its position error does not diverge. The aforementioned prop-
erties of the method allow even low-cost robots equipped only
with a single, off-the-shelf camera to effectively act in large in
mixed indoor/outdoor environments.

Acknowledgements

The research was supported by EU-ICT project 600623
STRANDS and CZ-ARG project 7AMB14ARo15.

References
Agrawal, M., Konolige, K., Blas, M., 2008. Censure: Center surround ex-

tremas for realtime feature detection and matching. Computer Vision–
ECCV 2008 , 102–115.

Augustine, M., Ortmeier, F., Mair, E., Burschka, D., Stelzer, A., Suppa,
M., 2012. Landmark-Tree map: A biologically inspired topological map
for long-distance robot navigation, in: Int. Conference on Robotics and
Biomimetics (ROBIO), pp. 128–135.

Bay, H., Ess, A., Tuytelaars, T., Van Gool, L., 2008. Speeded-up robust features
(SURF). Computer vision and image understanding 110, 346–359.

Borenstein, J., Koren, Y., 1988. Obstacle avoidance with ultrasonic sensors.
Robotics and Automation, IEEE Journal of 4, 213–218.

Calonder, M., Lepetit, V., Strecha, C., Fua, P., 2010. Brief: Binary robust
independent elementary features. Computer Vision–ECCV 2010 , 778–792.

Chaumette, F., Hutchinson, S., 2006. Visual servo control. i. basic approaches.
Robotics & Automation Magazine, IEEE 13, 82–90.

Chen, Z., Birchfield, S., 2009. Qualitative vision-based path following.
Robotics, IEEE Transactions on 25, 749–754.

Dahlkamp, H., Kaehler, A., Stavens, D., Thrun, S., Bradski, G., 2006. Self-
supervised monocular road detection in desert terrain, in: Proc. of Robotics:
Science and Systems (RSS).

De Cristóforis, P., Nitsche, M.A., Krajnı́k, T., Mejail, M., 2013. Real-time
monocular image-based path detection. Journal of Real-Time Image Pro-
cessing .

F. Chaumette and S. Hutchinson, 2007. Visual servo control. ii. advanced ap-
proaches [tutorial]. Robotics & Automation Magazine, IEEE 14, 109–118.

Felzenszwalb, P., Huttenlocher, D., 2004. Efficient graph-based image segmen-
tation. International Journal of Computer Vision 59, 167–181.

Furgale, P., Barfoot, T.D., 2010. Visual teach and repeat for long-range rover
autonomy. Journal of Field Robotics 27, 534–560.

Kaliyaperumal, K., Lakshmanan, S., Kluge, K., 2001. An algorithm for de-
tecting roads and obstacles in radar images. Vehicular Technology, IEEE
Transactions on 50, 170–182.

Krajnı́k, T., De Cristóforis, P., Faigl, J., Szücsová, H., Nitsche, M., Preucil, L.,
Mejail, M., 2013. Image features for long-term mobile robot autonomy, in:
ICRA 2013, Workshop on Long-Term Autonomy.

Krajnı́k, T., Faigl, J., Vonásek, V., Košnar, K., Kulich, M., Přeučil, L., 2010.
Simple yet stable bearing-only navigation. Journal of Field Robotics 27,
511–533.

Krajnı́k, T., Nitsche, M., Faigl, J., Vaněk, P., Saska, M., Přeučil, L., Duckett,
T., Mejail, M., 2014. A practical multirobot localization system. Journal of
Intelligent Robotic Systems , 1–24.

Krajnik, T., Nitsche, M., Pedre, S., Preucil, L., Mejail, M.E., 2012. A sim-
ple visual navigation system for an uav, in: Systems, Signals and De-
vices (SSD), 2012 9th International Multi-Conference on, IEEE. pp. 1–6.
doi:10.1109/SSD.2012.6198031.

Lowe, D., 2004. Distinctive image features from scale-invariant keypoints.
International journal of computer vision 60, 91–110.

Nitsche, M., Pire, T., Krajnk, T., Kulich, M., Mejail, M., 2014. Monte
carlo localization for teach-and-repeat feature-based navigation, in: Mistry,
M., Leonardis, A., Witkowski, M., Melhuish, C. (Eds.), Advances in Au-
tonomous Robotics Systems, Springer International Publishing. pp. 13–24.
doi:10.1007/978-3-319-10401-0_2.

Ok, K., Ta, D., Dellaert, F., 2012. Vistas and wall-floor intersection features-
enabling autonomous flight in man-made environments. Workshop on Vi-
sual Control of Mobile Robots (ViCoMoR): IEEE/RSJ International Con-
ference on Intelligent Robots and Systems .

Ostafew, C.J., Schoellig, A.P., Barfoot, T.D., 2013. Visual teach and repeat, re-
peat, repeat: Iterative Learning Control to improve mobile robot path track-
ing in challenging outdoor environments. 2013 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems , 176–181doi:10.1109/IROS.
2013.6696350.

Pedre, S., Nitsche, M., Pessacg, F., Caccavelli, J., De Cristóforis, P., 2014.
Design of a multi-purpose low-cost mobile robot for research and education,
in: Towards Autonomous Robotic Systems, Springer.

Pfrunder, A., Schoellig, A.P., Barfoot, T.D., 2014. A proof-of-concept demon-
stration of visual teach and repeat on a quadrocopter using an altitude sen-
sor and a monocular camera, in: Computer and Robot Vision (CRV), 2014
Canadian Conference on, IEEE. pp. 238–245.

Surmann, H., Lingemann, K., Nüchter, A., Hertzberg, J., 2001. A 3d laser
range finder for autonomous mobile robots, in: Proceedings of the 32nd ISR
(International Symposium on Robotics), pp. 153–158.

