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Abstract— This paper presents a new approach for topo-
logical localisation of service robots in dynamic indoor envi-
ronments. In contrast to typical localisation approaches that
rely mainly on static parts of the environment, our approach
makes explicit use of information about changes by learning
and modelling the spatio-temporal dynamics of the environment
where the robot is acting. The proposed spatio-temporal world
model is able to predict environmental changes in time, allowing
the robot to improve its localisation capabilities during long-
term operations in populated environments. To investigate
the proposed approach, we have enabled a mobile robot to
autonomously patrol a populated environment over a period
of one week while building the proposed model representation.
We demonstrate that the experience learned during one week
is applicable for topological localization even after a hiatus of
three months by showing that the localization error rate is
significantly lower compared to static environment representa-
tions.

Index Terms— topological localisation, mobile robotics,
spatio-temporal representations

I. INTRODUCTION

Self-localisation is a fundamental capability for service
robots working in indoor environments. In particular, topo-
logical localisation is specifically relevant in the context of
large-scale global localization [1], loop-closure detection [2],
and for solving the kidnaping [3] problem in mobile robotics.

Typical approaches have made use of static representations
of the word to solve the robot localisation problem. However,
service robots have to operate in populated environments
that are subject to ongoing changes. Moreover, long term
operation of mobile robots in changing environments has
become a major focus of current robotics research.

In this paper we present a new approach for topological
localisation that makes use of information about the dynam-
ics of the environment to improve the localisation process.
We assume that many of the changes that occur in populated
environments are caused by humans performing their usual
daily activities. Several of these activities follow typical
patterns and therefore can be exploited by service robots
to build more robust representations of their surroundings.
Thus, our approach models local states of an environment
by means of a probability function of time, which is a
superposition of periodical functions that represent recurrent
environmental changes [4]. This spectral representation of
the time domain allows the robot to identify, analyse and
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Fig. 1. Observations of the same location on different days and times.

remember regularly occurring environment processes in a
computationally efficient way.

In our approach the robot that has to localise itself inside
its working environment, first makes use of our spectral
representation to predict the state of its surroundings at that
specific point in time, thus including the changes in the
environment that are specific to that time. For example, the
predicted representation of an office environment at lunch
time will contain less people than usual, because workers are
usually in the restaurant at that time. In the same way, less
people will appear inside the office during night. An example
of this situation is shown in Fig. 1. Using this approach, the
observations taken by the robot at some particular time will
better match the predicted representation of its surroundings
at that time, thus improving the match with the model and
reducing the error in the localisation.

In this paper we address the problem of topological local-
isation, in which a service robot has to classify its current
position into a set of pre-defined locations inside a specific
environment. This process is performed by matching the
current robot observation to a previous one that was taken at
a different time in (approximately) the same location. In our
experiments we select a set of pre-defined locations inside
an office environment and then let the robot localise itself
into one of these locations. The changes in the surroundings
of each pre-defined location are learned over one week and
modelled using our spectral representation. At the time of
localisation, the robot tries to match its current observation
to the predicted representations of the surroundings of each
location for that specific time. The experiments presented in
this paper show significant improvements of the localisation
process when using our spectral representations in compari-
son to static representations of the environment.

II. RELATED WORK

There have been different approaches to include these
changes in the model of the environment for example by



removing moving objects from the representation of the en-
vironment [5], [6] or by tracking these objects and classifying
them as moving landmarks [7], [8], [9]. In [10] a new map
type that represents local maps at different time scales is
presented, where the best map for localisation is chosen by
its consistency with current readings. Adaptive approaches
never assume the map to be complete and perform contin-
uous mapping, adding new features to the map every time
the robot observes its environment [11], [12], [13] presents
a feature persistence system based on temporal stability in
sparse vision-based maps.

For the specific case of topological localisation algorithms
that are based on visual appearance have been shown to be a
good choice for image matching and place recognition, [14]
shows how SIFT and SURF can be used for robust place
identification, [15] showed how using these descriptors along
with an epipolar distance it is possible to robustly localise a
robot in the long term within an outdoor scenario. [16] com-
bines these image feature techniques to reduce the amount of
information to be compared with a CRF algorithm to evaluate
the matching rates between different images.

Other authors propose adaptive techniques. The paper [17]
presents a method on which the robot adapts its environment
model every time it visits a place finding those features that
are more stable and “forgetting” those that are less useful.
[18] proposes a method in which a dynamic occupancy grid
is used that distinguishes between highly dynamical objects,
objects that can be moved around and objects that are static.

Other authors use more than one image for place identi-
fication. [19] use sequential images to identify places in an
across-seasons outdoor scenario and [20] use an “experience”
based approach which is a set of images acquired at different
times of the day to identify the same place. Finally [21]
presents a method that predicts an appearance change based
on an across-seasons learned dataset.

III. SPECTRAL REPRESENTATION OF TEMPORAL
ENVIRONMENT DOMAINS

Many environment models used in the robotic mapping
domain describe the environment by a set of independent
components that can assume two distinct states. Examples
are occupancy grids with cells that are either occupied of
free, topological maps with traversable or non-traversable
edges, or landmark maps with occluded or visible features.
Typically, the state of each model component is not known
exactly due to measurement errors introduced by sensor
noise. The uncertainty in the state estimate of the jth world
model component is usually expressed by its associated
probability pj . This representation allows to take into account
the effect of uncertainty in sensory measurements by employ-
ing statistical methods, such as Bayesian filtering. However,
most of the world models assume that the pj of the world
components are constant, i.e. they represent the world by a
static structure. As a result, the traditional world modelling
methods are best suited for representation of slowly changing
environments over short periods time.

We propose to consider pj as a function of time, i.e. to
represent the uncertainty of jth state component as a function
pj(t). However, storing a complete timeline of each pj(t) is
infeasible since complex environments are represented by
a very large number of distinct components and such an
approach would face memory limitations. Moreover, one of
the main reasons to represent the world states as functions
of time is to allow for prediction of the environment’s future
state.

We assume that in mid- and long-term perspectives, most
variations of the environment are caused by a finite number
of unknown periodic processes. From a mathematical point
of view, we propose to represent the pj(t) as a superposition
of sinusoidal functions of unknown frequencies, time offsets
and influence. The properties of the periodical processes can
be identified by means of frequency transforms, namely the
Fourier transform [22].

Although one can argue that the proposed representation
is not applicable because many of the world’s dynamics
are not periodic in nature, we assume that at least some
portion of the world’s dynamics exhibit certain periodicities
and identification of these processes would help to model
the environment in a more accurate way. The preliminary
experiments presented in [4] suggest that the proposed
spectral model reflects the world more faithfully than the
traditional static environment models. In particular, [4] shows
that representing of the world’s states as a superposition of
3-15 periodic processes allows to reconstruct (week–long)
dynamics of office environments with accuracies of between
90% and 99%. Moreover, the experiments presented in [4]
showed that by learning the spectral model parameters on
a week-long dataset allows to predict the environment ap-
pearance on the following week with ∼90% accuracy. These
experiments provide a strong evidence that the mid-term
(weeks to months) appearance variations of typical indoor
environments are periodic in nature. The main advantage of
the representation proposed is its good scalability in terms of
time – the memory requirements of the model depend on the
number of modelled processes rather than on the represented
time period.

A. An Introduction to the Fourier Transform

The Fourier Transform (FT) is a popular mathematical tool
with applications mainly in signal and image processing.
It transforms a real function of time f(t), into a complex
function of frequency F (ω), which is called a frequency
spectrum. The Fourier transform is invertible, and allows to
recover the function f(t) from its spectrum F (ω) and vice
versa. The spectrum F (ω) represents a superposition of sinu-
soidal functions with amplitudes and phase shifts being equal
to abs(F (ω)) and arg(F (ω)) resp. An important property of
the Fourier transform is that the spectrum F (ω) of a periodic
function f(t) is discrete in terms of ω. Considering that in
our case, f(t) is also a real discrete function, the spectrum
F (ω) consists of a finite set of complex numbers. For more
details on the Fourier transform, refer to [22].



B. The spectral model
The proposed temporal extension applies to world models

that represent the environment as a set of independent
components, which can be in two distinct states that we
denote as 0 and 1. Let us assume that the uncertainty of
each state sj = {0, 1} can be represented by its probability
of being 1, i.e. pj = P (sj = 1). Now assume that sj is
not static, but a function of time sj(t) that is affected by a
set of hidden periodical processes that can be identified by
the Fourier Transform. Since the state of individual world
components is assumed to be independent, the use of the
Fourier transform can be explained on the state s(t) of a
single world component.

1) Spectral model representation: Let the temporal se-
quence of binary states be denoted as s(t). First, we calculate
the frequency spectrum of the sequence by means of a
Fourier Transform as S(ω) = FT (s(t)). Since we assume
that s(t) is periodic, the frequency spectrum S(ω) is discrete
and finite. Therefore, we can select the l most prominent (i.e.
of highest absolute value) coefficients Si of the spectrum
S(ω) and store them along with their frequencies ωi in the
spectral model P . The stored coefficients can be used to
recover the smoothed sequence s̃(t) of s(t) by means of
the Inverse Fourier Transform of the model stored in P .
Substituting all negative values of s̃(t) by zeros and limiting
the maximal value of sm(t) to 1 gives us a function p(t) that
can be considered as a probability estimate of s(t). Thus,
thresholding the probability p(t) allows us to calculate an
estimate s′(t) of the original state s(t). To allow lossless
representation of the original signal, the differences between
s′(t) and s(t) are stored in an outlier setO that is ∆-encoded,
see Figure 2.

Thus, our model of the state consists of a finite set P
representing the periodic processes and an outlier set O.
The set P consists of l triples abs(Pi), arg(Pi) and ωi,
which describe the amplitudes, phase shifts and frequencies
of the model spectrum. Each such triple is an estimate of
the importance, time offset and periodicity of one particular
periodical process influencing the state s(t). The number
of modeled processes l (i.e. the number of triples in P)
defines the ‘order’ of the spectral model. The outlier set O
contains instances when the state s(t) does not match the
state s′(t) calculated as p(t) > 0.5. The setO is implemented
as a sequence of values, indicating the starts and ends of
time intervals when the observed and predicted states do not
match, i.e. s′(t) 6= s(t).

2) Spectral model operations: To be able to create, main-
tain and use this representation, we define four operations:
state estimation, state reconstruction, measurement addition
and model update.

a) State estimation: The estimation of the state s′(t)
from the spectral model allows us to interpolate or even
predict the model’s state s(t) by the following equation:

s′(t) = p(t) > 0.5 = ς(IFT (P)) > 0.5, (1)

where ς(x) is a saturation function that limits the values of
x in interval < 0, 1 >. The idea behind this equation is to

reconstruct the probability p(t) from the spectrum P and set
the state estimate s′(t) to 1 if p(t) exceeds 0.5.

b) State reconstruction: However, the function of s(t)
is not composed only of periodic processes and s′(t) might
not be equal to s(t). To allow lossless representation of the
function s(t), we employ the outlier set O and reconstruct
the original state s(t) means of the following equation:

s(t) = s′(t)⊕ (t /∈ O) = (IFT (P) > 0.5)⊕ (t /∈ O), (2)

where ⊕ represents a binary XOR operation. The equation
first estimates s′(t) from the spectrum P by means of
equation 1 and then inverts the result if t belongs to the
set of outliers O.

c) Measurement addition: When a new observation of
a real state sm(t) is obtained at time t, we calculate s(t)
by means of Equation (2) and if it differs from sm(t), the
current time t is added to the set O:

sm(t) 6= ((IFT (P) > 0.5)⊕ (t /∈ O))→ O = O ∪ t. (3)

Since p(t) does not predict s(t) with perfect accuracy, the
set O is likely to grow larger as measurements are added.

d) Model update: To update the spectral model, we
reconstruct the state s(t) in the desired time interval <
tstart, tend > and calculate its spectrum P . Again, we
select the l coefficients with highest absolute values |Pi| and
reconstruct the outlier set O by means of Equation 3. In
a typical situation, the updated spectrum P would reflect
s(t) more accurately, causing reduction of the set O. Note,
that the spectral model order l can be changed prior to the
update step without causing any loss of information. Due
to the fact that the Fourier Transform is a well-established
mathematical tool and its implementations are optimized
for speed, the model update is computationally efficient.
Calculating a frequency spectrum of an s(t) with 1000000
samples takes less then 100 ms on an entry level PC.

Measured state − s(t)
Probability function − p(t)

Estimated state − s’(t)
Outlier set − O

Discarded coeficients
Model cefficients

 0  2  4  6  8  10

Time [s]
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−2 −1.5 −1 −0.5  0  0.5  1  1.5  2
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Text representation of the actual model

abs(P): { 196,   46,   23 }
arg(P): {  0,  1.57, 1.57 }
Frequencies: { 0, 0.2, 0.6 }
Outlier set O: { 3.7, 3.8 }

Fig. 2. An example of the measured state and its spectral model. The left
part shows the time series of the measured state s(t), probability estimate
p(t), predicted state s′(t) and outlier set O. The upper right part shows
the absolute values of the frequency spectrum of s(t) and indicates the
spectral coefficients, which are included in the model. The last part is a text
representation of the model itself.

To further illustrate the spectral representation, the Fig-
ure 2 provides an example of a third-order spectral model of
a quasi-periodic function.



C. Spectrum and periodical processes

In the previous article [4], we have examined the tractabil-
ity of using the Fourier transform as a core tool for tem-
poral domain representation of traditional world models for
mobile robotics. We have shown that storing information
about the three most prominent periodic processes allows
to represent and predict the environment’s appearance with
∼90% accuracy over several weeks while the static envi-
ronment representations achieve accuracies of about ∼70%.
Since these three processes described by nine real numbers
represent several thousand independent measurements of the
environment’s state, the efficiency of the representation in
terms of compression rate exceeds 1:1000. However, the
proposed method achieves a lower compression rate than tra-
ditional environment models that describe each world’s state
by a single real number indicating the state’s probability.
Therefore, there is a tradeoff between the models’ accuracy
and memory efficiency. Although the paper [4] has shown
that the dynamic world model is more accurate, it did not
investigate if using the proposed representation provides an
advantage in classical problems of mobile robotics like path
planning or self-localization. In this paper, we investigate
whether introduction of the proposed temporal representa-
tion provides an advantage for mobile robot localization in
changing environments. We apply the proposed approach to
two types of environment models gathered by a mobile robot,
which was continuously operating in a human-populated in-
door environment for several months. In particular, we build
spatiotemporal representations of eight different places in an
office environment and let the robot identify its location by
comparing the place description to the current observation.

IV. TOPOLOGICAL LOCALISATION FOR LONG TERM
OPERATION

In this paper we represent the working environment of our
service robot using a topological map, which is composed of
a number of pre-defined locations. In particular we use eight
different locations in our laboratory as depicted in Fig. 3.
Each topological place is assigned a set of observations
taken at that specific place by the service robot during a
certain period of time. In our case, the service robot took an
observation every ten minutes during one week of non-stop
operations. Each place is then composed of approximately
8000 observations. Our observations are composed of image
and point clouds obtained using an RGB-D sensor. Each
sensor modality was used to learn a local spectral map that
represented the surroundings of each location during one
week. In particular, we create a first spectral map represented
by 3D occupancy grids obtained by the 3D point clouds;
and a second spectral map using visual descriptors from the
captured images.

A. 3D Occupancy Grids

A 3-dimensional occupancy grid of each topological lo-
cation was built from the gathered point clouds. Since the
robot’s position information is never absolutely precise, the
snapshots of the monitored places were taken from slightly

Fig. 3. Topology of our working environment together containing eight pre-
defined topological locations. In addition, example observations for some
of the locations are shown.

different viewpoints. To deal with variances of robot posi-
tions between the different visits, the point clouds gathered
by the robot at each topological location aligned by an
adaptive iterative closest keypoint method described in [23].
Moreover, and since the registered point clouds share a
common coordinate frame, we can partition the perceived
scene in a 3-dimensional occupancy grid and consider the oc-
cupancy of each grid’s cell as a function of time. Considering
that the dimensions of the grid are given and the occupancy
of individual grid cells is considered to be independent, we
can represent each location l ∈ L by an ordered set of states
Sl, where each state slj ∈ Sl is associated with a spectral
model gathered over the whole week. The spatio-temporal
occupancy grid representation of place l thus consists of an
ordered set of state evolution functions Sl(t), where each
state representing the occupancy of a particular cell contains
its own spectral model.

In the localisation step, we first predict the Sl(t) of the
individual places for the particular time and estimate the
occupancy grids. Then, we align the currently perceived
point cloud with each grid and use the aligned point cloud
to calculate an ordered set V that represents an occupancy
grid of the place the robot is located in. After that, we
calculate the similarities of V to Sl(t) by means of Hamming
distance and assume that the robot is at location k where k
= argmin|V,Sl|.

B. Visual Descriptors

The spectral models for images are created using the
BRIEF [24] algorithm, which was evaluated as a best per-
forming image feature extractor in scenarios of long-term
localization [25]. The extracted BRIEF features have been



used to build a description of a particular place in a similar
way as described in [26]. In this approach, the set of
visual features Fl describing a particular place l can be
built incrementally from a sequence of sets V(t) representing
the features detected from an image taken at time t. The
description of each feature fj ∈ Fl consists of its image
coordinates uj , vj , descriptor vector ej and a binary vector
sj(t) indicating the presence of the feature fj in a set V(t).
Each time an image is processed by the BRIEF algorithm, the
set V(t) is populated and tentative correspondences between
the sets V(t) and Fl are established. These correspondences
are filtered by epipolar geometry constraints and the vectors
sj(t) of the associated features in the set Fl are updated.
The un-associated features in the set V(t) are added to the
set Fl. Once the entire dataset consisting of eight places is
processed, we have eight sets Fl containing the image feature
descriptors along with their positions and functions of their
occurrence in the particular images. Thus, we can reconstruct
eight sets of image features that are likely to be perceived at
the eight places at a particular time t.

To determine the location of the robot by means of image
feature extraction and matching, we first extract the salient
points of the current location’s image by the CenSurE detec-
tor [27]. Then the descriptor of the point’s neighbourhood
is calculated by means of the BRIEF [24] algorithm. These
positions and descriptors form a set V(t) that describes the
robot’s perception of the current location. Then, eight sets
Fl that contain the features likely to be seen at the various
locations at the particular time t are created from the spectral
environment models. Tentative correspondences between the
sets Fl and the set of currently perceived features V are
established and filtered by means of epipolar geometry. The
number of correctly established correspondences is consid-
ered as a similarity measure of the lth place to the current
view. Again, the robot is considered to be located at a place
that is most similar to the captured image, i.e. the place with
the highest amount of corresponding features.

V. EXPERIMENTAL EVALUATION

To evaluate the proposed spectral map extension, we
have applied it to the problem of topological localization
in long-term robotic scenarios. Our experiments have been
carried out in the open-plan office of the Lincoln Centre for
Autonomous Systems (UK). The experimental platform used
was the SCITOS-G5 mobile robot (see Figure 4) equipped
with an RGB-D camera and a laser rangefinder.

The autonomous patrolling behaviour was based on com-
bination of the improved ROS navigation stack and the visual
localization method proposed in [28]. The robot reported
its status regularly using a social network interface, so its
occasional failures could be dealt with immediately. While
the robot’s SICK laser rangefinder was used primarily for
autonomous navigation, obstacle avoidance and localization,
the primary sensor used to gather the long-term data was the
Asus Xtion RGB-D camera, which was placed on the robot’s
head.

Fig. 4. The SCITOS-G5 robot patrolling the LCAS Witham Wharf office.

The robot was programmed to capture 3D point clouds
and RGB images of eight designated areas (see Figure 3) of
the office every ten minutes. Since it has been continuously
patrolling for a week (the second week of November 2013),
the entire training dataset consists of approximately 8000
point clouds and 8000 images. Representative examples of
the captured images are shown in Figure 3.

During the dataset collection, the RGB-D raw data were
used to build the different models of the eight monitored
topological locations. These models were based on coarse
(cell size 1 m) 3D occupancy grids, and visual features as
introduced in Sec. IV. The spectral representations for im-
ages and point clouds were obtained using 8000 observations
corresponding to one week of robot operation during which
the robot travelled over 35 km fully autonomously.

A. Results

To test the topological localisation we used a set of
∼1000 observations corresponding to 24 hours of a day
following the week used to learn the spectral models on
November 2013. This would correspond to a situation when
a robot attempts to localize itself while having an up-to-
date spatio-temporal model of the environment. The second
testing dataset consists of approximately ∼1000 observations
gathered during the 24 hours of a day in early February 2014.
This test is aimed at the long-term predictive ability of the
spatio-temporal models, because the models learned during
the week in November are used to localize the robot after
more than two months.

Each of the ∼1000 observations corresponding to each
day in November and February was matched against the
predicted representations obtained for that specific time from
the spectral models in the different modalities. The matching
errors are presented in Table I. An error occurs when
the robot matches its observation with one from a wrong
topological location. The experimental results in Table I
indicate that modelling the environment by our approach



TABLE I
OVERALL LOCALIZATION ERROR (%)

Image Occupancy
Model Model features grids
type order Nov Feb Nov Feb

static - 35% 45% 21% 17%
spectral 1 25% 26% 14% 13%
spectral 2 22% 27% 14% 8%
spectral 3 18% 24% 14% 17%
spectral 4 17% 29% 7% 17%

reduces the localization error. Moreover, the results show that
while the predictive capability of high-order temporal models
is better in short-term horizons (November dataset), models
that include one or two periodic processes perform better
in the long term (February dataset). The most important
fact is that while the error rate of the static world models
increased in the long term, the dynamic models of lower
orders perform similarly. One can also see that increasing the
number of modelled processes is beneficial only for short-
term predictions because only the most significant processes
are persistent over long-time periods.

VI. CONCLUSION

A novel approach for mobile robot localization in chang-
ing environments has been presented. The approach is
based on spatio-temporal mapping in the context of mobile
robotics. We assume that in a mid- to long-term perspective,
the environment’s appearance is affected by a set of hidden,
periodic processes. We assume that the dynamics of the
environment can be described by the frequency, amplitude
and time shift of these processes.

To identify the parameters of these processes and to
predict the environment’s local state we use the direct and
inverse Fourier transform. The core of the proposed temporal
representation is composed of the most prominent frequency
components of the Fourier spectrum – these relate to the most
important periodical processes influencing the environment.

To evaluate the applicability of the method for mobile
robot localization in changing environments, we enabled
the robot to learn about the environment dynamics by au-
tonomously patrolling an office environment for a period of
one week, during which the robot built two types of spatio-
temporal models of eight office locations with different
dynamics. The applicability of the spatio-temporal models
learned has been tested in a topological localization scenario,
where the robot had to estimate its location based on its
current observation and the spatio-temporal models gathered.
Short and long term scenarios were considered. In the first
one, the robot had to recognize its position during a 24 hour
operation on the day following the week the models were
created. In the long-term test, we repeated the procedure after
three months with the same spatio-temporal models.

The results show that the proposed approach significantly
increased the localization success rate compared to the

static models, indicating that the knowledge of the assumed
periodic processes in the environment helps to explain a
significant part of the environment variations observed.
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