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Abstract— Dense semantic segmentation of 3D point clouds
is a challenging task. Many approaches deal with 2D semantic
segmentation and can obtain impressive results. With the
availability of cheap RGB-D sensors the field of indoor semantic
segmentation has seen a lot of progress. Still it remains unclear
how to deal with 3D semantic segmentation in the best way.
We propose a novel 2D-3D label transfer, based on Bayesian
updates and dense pairwise 3D Conditional Random Fields.
This approach allows us to use 2D semantic segmentations to
create a consistent 3D semantic reconstruction of indoor scenes.
To this end, we also propose a fast 2D semantic segmentation
approach based on Randomized Decision Forests. Furthermore,
we show that it is not needed to obtain a semantic segmentation
for every frame in a sequence in order to create accurate
semantic 3D reconstructions. We evaluate our approach on
both NYU Depth datasets and show that we can can obtain
a significant speed-up compared to other methods.

I. INTRODUCTION
3D scene understanding is required in many robotics

applications. For scenarios such as autonomous navigation
or general object interaction, knowledge of the surrounding
scene is vital. While semantic segmentation can be an
important cue for scene understanding, many approaches are
not efficient enough and only focus on 2D images.

In order to truly utilize semantic information we want
to create a semantically annotated 3D reconstruction of a
surrounding scene, where every 3D point is assigned a
semantic label. Furthermore, we want to enforce spatial and
temporal consistency in such reconstructions. However, there
is no clear-cut method for the transfer of 2D labels into a
globally consistent semantic 3D reconstruction yet.

In this paper we address the task of dense semantic 3D
scene understanding of indoor scenes. We build a point cloud
reconstruction of the scene and assign a semantic label to
each 3D point. As an initial step, we perform an efficient
2D semantic segmentation of the RGB-D frames. Our main
contribution is a novel way to transfer the 2D image labels
into a 3D reconstruction based on Bayesian updates [1] and
dense pairwise Conditional Random Fields (CRFs) [2], that
allows us to enforce temporal and spatial constraints.

Semantic segmentation of 2D images recorded from in-
door scenes has been shown to be an especially challenging
task [3]. This is caused by the large variability of both object
and scene types, varying illumination and unconstrained
scene layouts. Current methods achieve good results, but they
typically need more than one minute per image [4], [5], [6].
As a first step towards a more efficient method, we propose
a semantic segmentation approach based on Randomized
Decision Forests (RDFs). Due to their parallel nature, RDFs
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Fig. 1: A high level overview of our approach. We classify RGB-D images
using a Randomized Decision Forest and refine the result using a dense
CRF. Based on a sequence we create a 3D point cloud reconstruction of a
scene. Based on our novel 2D-3D label transfer approach we can assign a
class label to each 3D point, giving us a dense semantic reconstruction.

are well suited for efficient semantic segmentation. It has
previously been shown that they can obtain impressive results
[7]. However, the more expressive variants tend to suffer
from expensive feature computations [6]. We propose a
set of features for RDFs to keep them efficient, without
loosing too much accuracy. When compared to fast semantic
segmentation methods we obtains state-of-the-art results for
both speed and classification accuracy.

Considering that in most typical scenarios the movement
between two consecutive frames is small, the question arises
as to whether it is necessary to segment every frame in a
sequence. An important insight we gain is that semantic
segmentation does indeed not need to be performed for
every frame. We analyze how our semantic segmentation
approach, coupled with the 2D-3D label transfer, behaves
when processing only a subset of the frames. Based on this
we show that it is not critical that each part is real-time
capable, but that it still suffices if certain components of our
approach run at far lower frame rates.

This paper is structured as follows. The next section gives
an overview of related work. Section III describes the general
idea of our complete approach. Sections IV, V and VI then
describe the components of our approach in more details.
Finally, Section VII discusses our experimental results.

II. RELATED WORK
Several 3D semantic segmentation approaches exist for

both outdoor [8], [9], [10] and indoor [11], [12], [13], [5]
scenes. Floros et al. [8] create a sterro 3D reconstruction and
enforce temporal consistency through an additional potential
in a CRF ranging over several frames in a sequence. Triebel
et al. [9] label scene reconstructions in an unsupervised
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Fig. 2: Overview of our method. Between the input ( ), where each box represents an input frame, and output ( ) our approach is split into three
processes. The 3D Reconstruction ( ) fuses new frames into the point cloud reconstruction. The 2D Semantic Segmentation ( ) classifies the RGB-D
image and accumulates the results for each 3D point. Finally, the 3D Refinement ( ) fuses this accumulated information with the previous state of a point.
It can clearly be seen that the different processes can be executed at different rates. The visualized frequencies do not correspond to actual values.

way. They focus on the actual learning of different classes
based on online clustering and incremental belief updates.
Hu et al. [10] create a labeled 3D scene reconstruction.
They aim to speed up the fusion of streamed laser scan data
for outdoor scenes, based on an efficient representation of
the point cloud. In contrast, we would also like to use the
valuable information obtained from color images. Nüchter
et al. [11] create 3D maps from laser scan data and reason
about planes they find in the scene. They use heuristics
to decide if a plane belongs to a wall, floor, ceiling or a
door and furthermore detect some objects in the scene based
on additional classifiers. This approach is limited to certain
classes, while our approach can learn a larger number of
classes using the RDF classifiers. Stückler et al. [12] obtain
a 3D voxel reconstruction of a scene from an RGB-D slam
approach and fuse the labels of different RGB-D frames
using Bayesian updates. They focus on a subset of object
classes and label the remaining scene as background, while
we use classes covering general indoor scenes. Anand et
al. [13] stitch together a small set of RGB-D frames to an
indoor point cloud reconstruction. They segment the point
cloud into patches and use both visual and geometrical cues
for labeling the scene. They propose a relaxed version of
their initially slow inference method, but it is unclear how
long the feature computation takes. Valentin et al. [5] create
a 3D mesh for the scene and obtain label hypotheses for
every face based on appearance and geometric properties
using a boosted classifier. A CRF is defined over the 3D
mesh to get a globally consistent segmentation. They only
perform inference on a full scene once, instead of building
the semantic segmentation incrementally.

For 2D image semantic segmentation, common pipelines
use a Textonboost framework [14], [15], which is optimized
using a CRF [15], [2]. While these approaches obtain im-
pressive results for outdoor scenes, different approaches are
needed for the more complex indoor scene scenes. Silberman
and Fergus [3] use a neural network classifier, based on SIFT
features extracted from both the color and depth images and
optimize the result using a grid CRF. Ren et al. [4] use
a complex approach based on kernel descriptors and linear
support vector machines evaluated on different levels of a
segmentation tree. For the second NYU Depth dataset, Sil-
berman et al. [16] focus on structural labels and support rela-
tionships. These are jointly inferred, formulated as an integer

programming problem. Couprie et al. [17] use a multiscale
Convolutional Neural Network (CNN) to infer both semantic
and structural classes. To label video sequences, they enforce
a simple temporal consistency based on temporally smoothed
superpixels in consecutive frames. Gupta et al. [6] obtain
state-of-the-art performance by creating superpixels based on
depth and appearance contours and classifying these using
either SVMs or RDFs. Apart from the CNN approach [17],
all of the above 2D semantic segmentation methods need
around a minute to obtain semantic segmentation results for
a single image. The CNN approach needs approximately 0.7
seconds per image.

III. 2D-3D LABEL TRANSFER

We focus on 3D point cloud reconstructions with dense
and consistent label information. Our approach is decoupled
into three separately running processes (see Fig. 2). The 3D
reconstruction process takes a new image from a sequence
of RGB-D images and adds it to the currently existing
3D reconstruction. The 2D semantic segmentation process
creates a soft classification for each pixel that corresponds
to a 3D point in the cloud and accumulates this information
for the points. The 3D refinement process, which is the core
of our approach, takes the newly accumulated information
for each point and fuses it into the point’s current state,
which is represented by a class distribution. To obtain a
globally optimal class labeling for the 3D reconstruction, we
distribute the information over neighboring points depending
on the distance, color similarity, and normal orientation. Fig.
2 also shows that the input data arrives at a higher rate
than the other processes are executed. This is justified by
the observation that the camera position tends to be very
similar from frame to frame, so it suffices to run both
the reconstruction and the semantic segmentation process
only for a subset of the input frames. This also means
we can accumulate information from several frames before
we update a 3D point’s state in the refinement process.
Consequently we need to store a 3D point’s current state
and its currently accumulated information.

The next sections will explain each process in detail.
As the 3D refinement does not depend on the type of 2D
semantic segmentation and 3D reconstruction we will start
with the 3D refinement, which is the core of our approach.



IV. 3D REFINEMENT
The 3D refinement process consists of two steps. The first

step takes newly accumulated classification data and fuses it
with the current state. We model the first step as a Bayesian
update [1] that takes the current belief for a 3D point and
updates it with the new predictions. The second step enforces
spatial consistency which we achieve by applying a dense
pairwise CRF over the 3D point cloud. A new point’s state
is initialized with an equal class distribution.

A. Fusing New Classification
Our goal is to obtain a class distribution for each 3D point.

At time t, we denote the class distribution of a single point
as ct and all the pixel measurements that contribute to this
point are denoted as xt0 = {x0, x1, ...xt}, meaning we are
interested in p(ct|xt0). Applying Bayes’ rule to this gives us:

p(ct|xt0) =
1

Zt
p(xt|xt−10 , ct)p(ct|xt−10 ), (1)

where Zt = p(xt|xt−10 ). Here we can use a first or-
der Markov assumption and assume that p(xt|xt−10 , ct) =
p(xt|ct) because the measurement xt is conditionally in-
dependent of previous measurements given the class ct.
Furthermore, we assume a smoothness of the posterior and
thus use p(ct|xt−10 ) ≈ p(ct−1|xt−10 ). This gives us:

p(ct|xt0) =
1

Zt
p(xt|ct)p(ct−1|xt−10 ). (2)

Based on this we can take the the 3D point’s current
state p(ct−1|xt−10 ) and update it with the accumulated new
predictions from the 2D semantic segmentation. Considering
we use a RDF classifier, we get a prediction for the posterior
p̂(ct|xt). Again using Bayes’ rule, we reformulate Eq. 2 to:

p(ct|xt0) =
1

Zt

p(ct|xt)p(xt)
p(ct)

p(ct−1|xt−10 ). (3)

While we cannot estimate the actual prior probability p(xt),
we can simply fuse it with the normalization factor Zt as it
does not depend on ct, giving us our final update equation:

p(ct|xt0)← 1

Z ′t

p̂(ct|xt)p(ct−1|xt−10 )

p(ct)
, (4)

with Z ′t = p(xt0|xt−10 ) · p(xt)−1. This can now be computed
as both the old state, the class prior and the new prediction
are known and we do not need to compute Zt explicitly, but
can instead normalize the probability distribution.

B. Enforcing Spatial Consistency
After the new data has been fused into the state, we want to

both distribute this information over neighboring points and
also obtain information from neighbors. Influence between
neighbors should be proportional to their distance and their
visual and geometrical similarity. For this purpose, we use a
dense CRF. Let C = {C1, C2, ..., CN} be a set of random
variables corresponding to the 3D points i ∈ {1, ...N}. Each
random variable Ci takes a label from L = {l1, l2, ..., lk}
when considering k different classes. Based on a CRF, the
probability distribution for a possible labeling c ∈ LN given
a point cloud X is defined by:

P (C = c|X) =
1

Z(X)
exp (−E(c|X)) , (5)

where E(c|X) is the Gibbs energy defined over the CRF
graph and Z(C) is the partition function. The dense CRF
graph G = (V, E) contains vertices vi corresponding to
the random variables Ci, with edges between each pair of
vertices (E = V × V). The Gibbs energy is defined over the
unary and pairwise cliques in the graph given by:

E(c|X) =
∑
i∈V

ψu(ci|X) +
∑

(i,j)∈E

ψp(ci, cj |X). (6)

As the unary potential we use ψu(ci|I) the negative loga-
rithm of the current state of point i. The pairwise potential
ψp(ci, cj |X) is given by a linear combination of Gaussian
kernels:

ψp(ci, cj |X) = µ(ci, cj)

K∑
m=1

w(m)k(m)(fi, fj), (7)

where µ(xi, xj) is a simple Potts model, w(m) are weights
for the different kernels, fi and fj are feature vectors for the
points i and j, and k(m) are Gaussian kernels, given by:

k(m)(fi, fj) = exp
(

1

2
(fi − fj)

TΛ(m)(fi − fj)

)
. (8)

These are characterized by the symmetric positive-definite
precision matrix Λ(m), which defines the shape of the kernel.
When limiting the pairwise potential to a combination of
Gaussian kernels, the efficient mean-field approximation
inference approach introduced by Krähenbühl and Koltun [2]
can be applied. The probability distribution P (C) is ap-
proximated by a distribution Q(C) that minimizes the KL-
divergence D(Q||P ), such that Q is a product over its
marginals Q(X) =

∏
iQi(Ci). This distribution is approxi-

mated by an iterative approach with linear complexity in the
number of points. After a number of iterations, the globally
optimal labeling can be obtained for each point by setting
the label Ci = arg maxlQi(l).

In our case we use two Gaussian kernels for the pairwise
potential. The first is an appearance kernel,

w(1)exp

(
−|pi − pj |2

2θ2α
− |li − lj |2

2θ2β

)
, (9)

where p are the 3D positions of the points and l are color
vectors in LAB colorspace. The parameters θα and θβ ,
specify the range in which points with similar coordinates
and colors affect each other, respectively. This kernel is
used to model longer range connections between points
with a similar appearance. The second Gaussian kernel is
a smoothness kernel,

w(2)exp
(
−|pi − pj |2

2θ2γ
− |ni − nj |2

2θ2δ

)
, (10)

where n are the 3D normals of the points. This kernel
operates on a smaller range, specified by θγ , thus enforcing a
local, appearance-agnostic smoothness amongst points whose
normal vectors are similar. These parameters can be obtained
using piece-wise learning.

These models tend to converge very fast (∼10 iterations)
in which case the probability distribution of the possible
classes collapses to a single class. As we want to use the
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Fig. 3: Visualization of different features. (a) A pixel value comparison,
used by several features. (b) Patches relative to a pixel. The feature value
is the average of the patch.

probability distribution in further Bayesian updates, we only
execute a few iterations of the dense CRF. However, since
the distributions can already be very focused on a single
class after one iteration, we do not set the new distribution
as the new state directly. Instead we use the distribution as
a prediction in another Bayesian update step as defined in
Eq. 4. This gives us the final class distribution after the 3D
refinement step.

V. 2D SEMANTIC SEGMENTATION
To create 2D semantic segmentations we use a RDF. As

each pixel is evaluated separately by a RDF, the results can
be rather noisy. To obtain a spatially smoother result, we
apply a dense pairwise CRF in 2D on the RDF output.

A. Randomized Decision Forest
We use a typical RDF framework, containing a number

of binary trees. A pixel traverses the tree and the path is
decided based on a feature and a threshold stored in every
node. Once the pixel reaches a leaf node, it is assigned the
corresponding class distribution. The final result is obtained
by averaging the distributions of the different leaf nodes.

1) Features: The RDFs draw their strength from the
features used to make splitting decisions. More expressive
features can lead to higher classification accuracies [6]. But
often these features are based on computationally expensive
superpixel and segment computations. Only using simple
features such as pixel comparisons can already yield impres-
sive results [7], however the classification accuracies are not
comparable to state-of-the-art classifiers. We have evaluated
a large set of computationally feasible features to find a good
balance between speed and accuracy. Among others we tried
pixel and patch comparisons in the image or depth map,
normal vectors, and more complex geometrical features. This
section will describe the seven features in our final selection.

Following [7], we use a simple color feature. It returns the
value of a color channel c1, from a pixel px1,y1,c1 , relative
to the current pixel p within a d×d patch surrounding p
(as shown in Fig. 3a). Our second feature takes two relative
pixels and compares their depth values by subtraction [18].
Furthermore, the relative distances are normalized by the
depth of the current pixel, which makes the feature more
robust to camera translations. The third feature is the same
as the second, with the difference that now again color values
are compared instead of depth values. Both color features are
evaluated on the LAB colorspace. The two most expressive

features are the height of a point in 3D and the relative depth
in the scene. The relative depth is defined as the depth of a
pixel, normalized by the furthest depth in the corresponding
image column [3]. The last two features we use are based
on patches in the image, relative to a pixel (see Fig. 3b). We
calculate oriented gradients over either the L color channel
or the depth map and perform soft binning similar to [19].
Then we extract average values of patches within these bins.
Empirically we have found this feature set to work best for
our purposes of indoor semantic segmentation.

2) Training: Our training procedure is similar to that of
[7]. Initially, we sample our training samples I uniformly
from the training images. Each of the trees is trained on a
subset of these training samples I ′ ⊆ I . A set of samples I ′

is assigned to the root node of a tree and the set is recursively
split up and distributed to the child nodes. For each node,
500 splitting features and for each of these 13 thresholds are
considered. Unlike [7], we use the normalized information
gain [20] to select the features with the best score. In our
experiments this gave slightly better classification accuracies
than the unnormalized information gain [7]. Splitting is
stopped once either the maximum tree depth is reached, the
leaf nodes are pure, or they contain less than a minimum
number of samples nmin.

The used training data contains a large bias towards
certain classes, which is reflected by a bias towards these
classes in the resulting segmentations. In [7], this effect is
alleviated by weighting each training pixel with its inverse
class frequency during information gain computation. How-
ever, this re-weighting scheme only partially alleviates the
problem and the bias is still clearly visible. To overcome this
problem, we sample a set of training pixels, with an equal
class distribution for each tree. This set is passed through
the tree to learn new class distributions in the leaf nodes.
Although this slightly decreases the global accuracy of the
RDF, it gives a significant improvement of the class-average
accuracy. Furthermore, we can assume an equal class prior in
the Bayesian update steps as all used probabilities are based
on results of RDFs trained with this scheme.

B. 2D Dense Pairwise CRF
To obtain smoother 2D semantic segmentation results, we

apply a Dense Pairwise CRF as described in section IV-B.
The difference being that the unary potential is now directly
obtained from the RDF and that the pairwise potentials
are different. We again use a smoothness kernel and an
appearance kernel, but the feature vectors differ. For the
smoothness kernel we only use the 2D pixel locations,
which simply enforces smoothness in the image and for the
appearance kernel we replace the 3D point location by the
2D pixel location. As we only evaluate the RDF for pixels
with a valid depth, all other pixels are initialized using a
class equal unary potential.

VI. 3D SCENE RECONSTRUCTION
Our 3D reconstruction approach is based on our previous

work for stereo depth reconstruction [8]. We slightly adjusted
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Fig. 4: Quantitative reconstruction results. (left) The colored lines each
represent results for different numbers of 3D dense CRF iterations. The
different measurements represent after how many new frames the 3D
refinement is executed. Dashed lines represent the global accuracy and
full lines class-average accuracy. (right) Results for different rates of
the processes. The first number represents the execution rate of the 3D
Reconstruction, the second that of the 2D Semantic segmentation and the
third that of the 3D Refinement.

it to handle RGB-D frames, but the idea remains similar.
We use Visual Odometry (VO) information to merge the
point clouds of each depth map to a global reconstruction
of the scene. For the VO estimation we use the fovis
library [21], which finds 2D feature matches across images
and computes 3D transforms based on the correspondences.
The VO information is computed for every frame in a
sequence in order to be able to correctly fuse frames into
the reconstruction. However, this step is fairly inexpensive
as it only takes ∼25ms for each frame on a single core.

Given the camera position and orientation, we project
points into global 3D space and associate each point with a
zero-velocity Kalman filter, which tracks the point’s spatial
uncertainty. We initialized the Kalman filter using forward
error propagation, which uses the image level uncertainties
and propagates them into 3D space, based on the projection
matrix. The forward error propagation for the Kinect sensor
is explained in [22]. To find correspondences between new
points and existing points, we project every existing point
onto the camera plane, giving us a hypothetical depth value
at a certain pixel location. If the difference between the
actually measured depth value and the hypothetical depth
is below a threshold we fuse the new point with the existing
point. We then use the new point as a measurement to update
the Kalman filter, giving us an updated spatial uncertainty
and 3D position. If no matching point exists in the point
cloud, we create a new point. In order to obtain clean point
cloud reconstructions we only create a new point if the
spatial uncertainty is below a threshold, if it has a valid
normal vector, and if this normal vector is not close to
perpendicular to the vector between the camera center and
the 3D point. We assign each point a color and a normal
vector and track the pixel-point correspondences to transfer
the 2D class probabilities to the 3D points once available.

VII. EXPERIMENTAL RESULTS
A. Datasets

We evaluate our 2D semantic segmentation approach on
the two NYU Depth datasets [3], [16]. Both contain images
from indoor scenes, recorded with a Kinect sensor. The first
dataset contains 2284 labeled RGB-D images, for which
missing depth values in the depth maps have been filled.

We evaluate our approach on the 12 core classes provided in
[3]. The second dataset contains 1449 labeled images with
the same preprocessing. While it contains fewer annotated
images, it contains a larger variety of scenes and objects.
We use the default training and test set splits. Furthermore,
both datasets contain a large amount of raw images, which
we use for the reconstructions. The test images from the first
NYU Depth dataset are taken from 29 scenes. We created
reconstructions for all of these scenes. For four scenes the
visual odometry failed to produce correct trajectories, caused
by missing frames in the sequences. We excluded these
scenes and evaluated on the remaining 25 scenes, containing
bathrooms, bedrooms, a bookstore, kitchens, living rooms
and offices. In total we used over 25k images, with 652
ground truth annotations. Unless specified differently, results
are based on the first dataset, as our main evaluation is
done on this dataset. While the second dataset has a higher
annotation quality, fewer images are labeled per scene,
rendering it less suitable for the reconstruction experiments.

B. 3D Scene Experiments
We evaluate our approach in a causal way, meaning after

fusing a new image into the 3D reconstruction we track
the 2D-3D correspondences and for each pixel, we take
the most likely label of the corresponding 3D point. This
gives us a label for every pixel with a valid depth value.
We then evaluate based on the 2D annotations. We run the
3D reconstruction and 2D semantic segmentation for each
frame in a sequence and accumulate the predictions for each
3D point. For the 2D semantic segmentation we use the RDF
described in Section V-A and refine the segmentation using a
2D dense CRF which runs for 3 iterations. The 3D refinement
is only executed every nth frame. To limit the computational
cost of the refinement step, we only update points that
accumulated new predictions in the past 10 frames.

As a baseline for our approach we take our single image
semantic segmentation, which evaluates a RDF and then
applies a dense pairwise CRF in 2D, using 12 iterations. Here
we also only consider pixels with a valid depth to obtain a
fair comparison (Fig. 4, shown in black). We also show the
results when only evaluating the 2D semantic segmentation
for every frame and simply accumulating the output in the
3D points (Fig. 4, shown in magenta).

The left graph in Fig. 4 shows both class-average (contin-
uous lines and global accuracy (dashed lines) for different
values of n and for different numbers of 3D dense CRF
iterations. As it can be seen, our approach outperforms
the baseline in every tested configuration. The improvement
mainly depends on the number of 3D dense CRF iterations.
The best results are obtained using 3 iteration and running
the 3D refinement every 5th frame. This gives a class average
accuracy of 66.62%, which improves the baseline of 65.03%
by more than 1.5%. Qualitative results for three scenes using
this configuration can be seen in Fig. 5. While numerically
the improvement seems rather small, it should be noted that
it is purely based on spatial and temporal consistency. We
did not consider a higher number of iterations due to the



Fig. 5: Qualitative results of our 3D reconstructions. (top row)) Semantic reconstructions (bottom row) Corresponding RGB reconstructions. For these
reconstructions a semantic segmentation was created for every frame and the 3D refinement was done every five frames, using three 3D dense CRF
iterations. All scenes are from the first NYU Depth dataset. (left) Office 14, (middle) bedroom 4 and (right) kitchen 3. Label colors are listed in Table II.
TABLE I: Timing results. The upper part of the table lists the time needed
to execute different components of our approach. Times are averaged over
the different scenes and a range is listed if the times differ due to the
different point cloud sizes. The lower part shows different frames rate of
different configurations. All timings are based on a Intel i7 3.4GHz CPU.

Component Consumed time (ms)
General Preprocessing ∼110
Gradient calculation ∼70
Visual Odometry ∼25
Point cloud fusion 70 - 120
RDF evaluation ∼200
2D CRF 3 or 12 Iter. ∼360 ∼960
3D CRF 1, 2 or 3 Iter. 400 - 1800 500 - 2200 600 - 2500
Setup Frame rate (Hz)
Single Image baseline ∼0.75
[1,1,5] 1 3D CRF Iter. 0.8 - 1.0
[3,3,15] 1 3D CRF Iter. 2.2 - 2.5
[6,6,30] 1 3D CRF Iter. 3.9 - 4.6

consequences for the runtime.
It can also be seen that the results are relatively stable

regarding the number of executed refinement steps. In fact
for a higher number of 3D dense CRF iterations it is better
to execute the 3D refinement less often. We believe this is
due to the fact that the class distributions will collapse if the
dense CRF is applied too often, which in turn does not work
well with the Bayesian updates.

C. Runtime Analysis
Table I shows the runtime of several components in our

approach. The upper part gives a detailed time for different
steps in our pipeline. The general preprocessing includes
color conversions, normal, and basic feature computations.
Together with the gradient calculation, the RDF evaluation,
and a 2D CRF this makes up the basic 2D segmentation.
The 3D reconstruction consists of the VO and the point
cloud fusion. The point cloud fusion tends to vary based
on the number of points in a scene, as we loop over all
points to find corresponding pixels. The 3D refinement step
consists of a 3D dense CRF and two Bayesian updates. The
later do not contribute to the actual runtime significantly.
The lower part of Table I show the frame rates for the

different configurations. The single image baseline, which
uses 12 dense CRF iterations, runs at ∼0.75Hz. Our full 3D
reconstruction approach, running the 3D refinement every
5th frame, runs slightly faster while obtaining better results
and creating a reconstruction of the scene.

Motivated by the fact that we do not need to run the
3D refinement every frame to improve results, we wanted
to know how the results are affected if we do not run the
3D reconstruction and 2D semantic segmentation for every
frame either. Starting out from the configuration where the
3D refinement is executed every 5 frames, we ran several
experiments where we increased the number of completely
skipped frames. Results for these experiments can be seen
in the right graph of Fig. 4. On the x-axis we plot the
different configurations, the first number specifies after how
many new frames the 3D reconstruction is executed, the
second after how many the 2D semantic segmentation and
the last after how many frames the 3D refinement is done. For
the 3D dense CRF we only update points that accumulated
new predictions in the previous 10 frames that we actually
evaluated. Meaning the window size is twice the number
of the skipped frames. As we can see, results decrease
rapidly at first, but then seem to be somewhat stable. The
accuracy when only generating semantic segmentations for
each 6th frame is very similar to that of the single image
baseline. However, the speed improves by a factor of more
than five. Improving the frame rate of ∼0.75Hz to a frame
rate around 4Hz (see the lower part of Table I). Also lower
subsampling rates result in a significantly higher frame rate.
To our knowledge no other methods create semantic 3D
reconstructions of indoor scenes at such speed.

Our code can further be optimized and currently does not
exploit parallelism to its full potential. The three processes
currently still run sequential and thus block the progress
of the other processes. By actually running the processes
in parallel, we are optimistic that we can achieve higher
frame rates. This is especially motivated by the fact that
even though the RDF uses eight threads in our current
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Fig. 6: RDF parameter experiments. The graphs show both the class average and global classification accuracy. (a) The number of trees in the RDF.
(b) The maximum tree depth. (c) The minimum number of samples needed further splitting of a node. (d) The number of training samples used during
training. (Each tree is trained on a subset). (e) The weight for the new and old class distribution, when repassing equally sampled data through the trees.

implementation, it fails to fully use the capacity of the CPU,
most likely due to many memory accesses. These currently
wasted clock cycles might otherwise be used by the 3D
refinement or the reconstruction of the next frame. So even
while our current implementation does not run at a video
frame rate, we believe this is within reach, even if the actual
components of our pipeline run at a lower frame rate.

D. RDF Experiments
To gain a better understanding on how RDFs work for

indoor semantic segmentation we investigate the influence of
several parameters. We do this by varying a single parameter
at a time. As seen in Fig. 6 certain parameters have a big
influence. Both the number of trees and the maximum tree
depth converge to a stable range. We limited our experiments
to 8 trees for efficiency reasons (Fig. 6a). The performance of
the RDF changes significantly with the allowed tree depth
(Fig. 6b). Generally trees are limited in depth to prevent
overfitting, this could not be confirmed in our experiments;
even when growing the trees without depth constraints,
the results did not degrade significantly. Closely related is
the minimum number of samples required in a node, to
consider further splitting (Fig. 6c). This parameter has a
less significant effect. The number of training samples has
a small effect on the performance. Fig. 6d suggests that
larger training sets increase classification accuracy slightly,
however the training time increases linearly as well. The
repassing of the equally sampled training data has the most
significant impact. To show the effect, we add the original
and the new class distribution, weighted with (1 − p) and
p respectively, where p ∈ [0, 1] (Fig. 6e). While the global
classification accuracy is reduced by ∼ 3%, the class average
accuracy increases by ∼ 15% when using p = 1. We did
similar experiments for other parameters, such as the number
of considered splits or specific features parameters. In our
experiments these parameters were less significant. In general
the RDF parameters seem robust to minor changes when
values from the stable ranges are used.

E. 2D Semantic Segmentation Experiments
Finally we show how our single image segmentation ap-

proach (RDF followed by 12 iterations of the 2D dense CRF)
compares to other 2D semantic segmentation approaches, we
evaluated it on both NYU Depth datasets. Here we use the
preprocessed images, thus being able to label every pixel.

1) NYU Depth version 1: We compare our 2D segmenta-
tion approach to the Extended Textonboost approach (based
on the publicly available ALE library [15]). Here we only

use the 12 core classes defined in [3]. We clearly improve the
results, as can be seen in Table II. Even when we only use
the RDF, the quantitative results are better for several classes
already. This yields rather noisy results, but the dense CRF
removes most of the noise (see Figs. 7d and 7e). Compared
to the Extended Textonboost approach, the results are better
aligned to actual image contours (see Figs. 7c and 7e).

Two other approaches provide results on this datasets, but
they use an additional background class. This contains all
labels in the dataset that could not be mapped to one of the
12 classes. We did not use this class in our experiments,
as we think it contains no useful information. For a fair
comparison we train an additional classifier using 13 classes.
Silberman and Fergus [3] only provide their class average
accuracy of 56.6%. Which we improve by almost 3%. Ren
et al. [4] obtain better results for all classes, but their complex
approach takes over a minute per image.

2) NYU Depth version 2: For all experiments we use
the same parameters as for the first dataset. Couprie et al.
[17] group all classes in the dataset to 13 semantic classes.
Silberman et al. [16] provide results for the segmentation
based on 4 structural classes. Quantitative results for both
class sets are shown in Table III. We obtain better results for
9 of the 13 semantic classes and improve both the global and
class average classification accuracy. Gupta et al. [6] also
report results on the second NYU Depth dataset, however
they use different evaluation measurements. Similar to Ren
et al. [4], their approach is more accurate than our 2D
segmentation, however also runs significantly slower. To our
current knowledge, only Couprie et al. [17] evaluated their
approach with regards to its runtime. We outperform their
approach both in accuracy and speed. On downscaled images
(320 × 240) they need 0.7 seconds per frame. This means
that our single image approach is almost three times faster.

VIII. CONCLUSION

We have introduced a novel way to create a semantic 3D
reconstruction of indoor scenes. We show how 2D semantic
segmentation of RGB-D images can be achieved efficiently,
using RDFs and 2D dense CRFs. We then apply our 2D-
3D label transfer to obtain a semantic segmentation of a 3D
reconstruction. Finally, we show that for our approach it is
not needed to label every frame in a sequence and analyze
how this affects the quality of the 3D reconstruction. In future
work we plan to change our implementation to fully exploit
parallelism, which we believe will further increase the speed
of our approach.



TABLE II: NYU Depth dataset version one. (upper half) Comparison to the Extended Textonboost approach [15]. (lower half) Comparison of our single
image semantic segmentation to two other approaches. We improve the class average accuracy of Silberman and Fergus [3]. However, we cannot compete
with the method of Ren et al. [4] yet.
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Extended Textonboost (no CRF) 14.6 3.5 56.1 34.5 58.8 73.8 47.7 31.8 45.7 53.3 88.7 12.2 - 67.1 43.3
Extended Textonboost (CRF) 16.4 1.2 53.3 38.4 64.8 80.6 30.8 33.3 52.8 53.4 92.1 13.4 - 70.4 44.2
Extended Textonboost (dense CRF) 14.1 3.2 57.2 34.5 59.2 75.9 48.6 33.8 47.0 56.3 90.3 11.4 - 68.2 44.3
Ours (RDF only) 51.5 41.6 48.5 54.1 88.3 87.2 62.1 50.0 40.0 73.4 69.6 18.9 - 65.0 57.1
Ours (full 2D segmentation) 57.6 57.3 67.5 58.2 92.7 88.5 56.6 66.7 45.7 82.0 77.6 17.2 - 71.5 64.0
Silberman and Fergus [3] - - - - - - - - - - - - - - 56.6
Ren et al. [4] 85 80 89 66 93 93 82 81 60 86 82 59 35 - 76.1
Ours (full 2D segmentation) 50.7 57.6 59.8 57.8 92.8 89.4 55.8 70.9 48.4 81.7 75.9 18.9 13.5 44.4 59.5

(a) (b) (c) (d) (e)
Fig. 7: Qualitative results for the first NYU Depth dataset. (a) Color Images. (b) Ground truth annotations. (c) Extended Textonboost results, using the
dense CRF. (d) Intermediate RDF results. (e) Final results, after applying the 2D dense CRF. See Table II for label colors.

TABLE III: NYU Depth dataset version 2. (left) Using classes defined by [17]. (right) Using the structural classes defined by [16]. We improve both
the results from Silberman et al. [16] and Couprie et al. [17]. Especially when using the semantic classes, we get improved results for several classes.
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Silberman et al. [16] - - - - - - - - - - - - - - - 68 70 42 59 58.6 59.6
Couprie et al. [17] 38.1 8.7 34.1 42.4 62.6 87.3 40.4 24.6 10.2 86.1 15.9 13.7 6.0 52.4 36.2 87.3 45.3 35.5 86.1 63.5 64.5
Ours (full 2D segmentation) 68.4 8.6 41.9 37.1 83.4 91.5 35.8 28.5 27.7 71.8 46.1 45.4 38.4 54.2 48.0 97.4 61.8 40.9 76.1 68.1 69.0
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