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Abstract
In order to behave autonomously, it is desirable for
robots to have the ability to use human supervision and
learn from different input sources (perception, gestures,
verbal and textual descriptions etc). In many machine
learning tasks, the supervision is directed specifically
towards machines and hence is straight forward clearly
annotated examples. But this is not always very prac-
tical and recently it was found that the most preferred
interface to robots is natural language. Also the su-
pervision might only be available in a rather indirect
form, which may be vague and incomplete. This is fre-
quently the case when humans teach other humans since
they may assume a particular context and existing world
knowledge. We explore this idea here in the setting of
conceptualizing objects and scene layouts. Initially the
robot undergoes training from a human in recognizing
some objects in the world and armed with this acquired
knowledge it sets out in the world to explore and learn
more higher level concepts like static scene layouts and
environment activities. Here it has to exploit its learned
knowledge and ground language into perception to use
inputs from different sources that might have overlap-
ping as well as novel information. When exploring, we
assume that the robot is given visual input, without ex-
plicit type labels for objects, and also that it has access
to more or less generic linguistic descriptions of scene
layout. Thus our task here is to learn the spatial struc-
ture of a scene layout and simultaneously visual object
models it was not trained on. In this paper, we present a
cognitive architecture and learning framework for robot
learning through natural human supervision and using
multiple input sources by grounding language in per-
ception.

Introduction
One of the approaches to make autonomous systems and
robots more robust is to impart them the ability to learn
in open-ended environments, where they interact with non-
expert users through multiple input sources. But the usual
approach in machine learning as well as computer vision for
building knowledge is using supervision in the form of la-
belled (annotated) examples where the examples come from
a single source. This approach is not convenient if a robot
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should follow a life-long learning strategy as providing la-
belled examples is not natural to humans. Also the robot will
come across different sources of input in several forms such
as videos and images (perception), verbal, gesture and text
(direct or indirect human supervision) etc. and combining
these inputs to form a coherent source for learning is a chal-
lenge for robots. In order to make robot learning more ro-
bust and ubiquitous, we require the robot to cope with natu-
ral human supervision (i.e. through gestures and natural lan-
guage description) (Scopelliti, Giuliani, and Fornara 2005)
and multiple sources of input for learning. In this paper, we
present a cognitive architecture and learning framework that
enable robots to adapt to novel environments. These robotic
systems must consist of many tightly coupled modules and
handle large size data.

We motivate this approach using a scenario from the
restaurant domain where the robot is an apprentice. The
robot is trained on several objects to recognize them in a
natural scene environment and then instructed to approach
several tables and learn the table-top layouts on those ta-
bles. The teacher gives a description of the layouts of the
cutlery in natural language and the layouts have several ob-
jects that the robot has not seen before during training. Then,
the robot is instructed to approach another table and check
if the table-top layout on that table is correct and also rec-
ognize the never-seen-before objects during training. In this
scenario, the robot is trained to recognize objects by point-
ing at the objects and naming them which is how humans
normally teach others when introducing new objects. Also
in table-layout analysis the robot has to analyse input from
different sources, i.e. from perception by looking at the table
and language (verbal/text description of scene by teacher).

We approach this problem by converting data from differ-
ent sources into relational format using spatial and temporal
relations and then converting this data into graphs. Informa-
tion from different sources can be compared and contrasted
using graph similarities to learn relational knowledge and
models. We present the related work and our approach to
learning object models and cutlery layout models from in-
complete, vague but related sources. Additionally, to sup-
port these functionalities, we propose a cognitive architec-
ture, which comprise perception, object conceptualization,
scene layout learning, user interface, multiple memory sys-
tem and so on.



Related Work
As robots are expected to increasingly interact and collabo-
rate closely with humans, robotics researchers need to look
at human cognition as a source of inspiration for developing
robot capabilities that simplify and enhance this interaction
and make robots more human-friendly. Such an ability al-
lows the robot to adapt to new environments, improve their
knowledge with accumulated experiences and conceptual-
ize new discovered categories. Learning is closely related to
memory in human cognition. In the cognitive science liter-
ature, the existence of multiple memory systems is widely
accepted. Recent literature converges on five major memory
systems (Tulving 1991): Procedural memory, for sensory-
motor skills; Perceptual representation memory, mainly for
the identification of objects; Working memory, to support ba-
sic cognitive activity; Semantic memory, mainly for spatial
and relational information; and Episodic memory, for spe-
cific past happenings, enabling “mental time travel”.

In robotics, learning about spatial layouts of scenes
clearly relates to human semantic memory and learning the
time-independent features of objects can be related to per-
ceptual representation memory. The architecture presented
in this paper consists of multiple memory systems, includ-
ing Semantic memory and Perceptual representation mem-
ory. In support of computational efficiency, the architecture
supports runtime multiplexing mechanism of object percep-
tion pipelines, one for each tracked object. The architecture
can also be configured to launch modules as independent
processes or as threads in a single process.

There have been attempts to combine language and per-
ception for smooth interaction of robots with humans. For
example, the Grounded Situation Model (GSM) (Mavridis
and Roy 2006) was proposed as a modular architecture
for combining language, visual and proprioceptive inputs
but conceptualization using past experiences is missing in
the proposed work. Instead it ‘remembers’ past which is
available for resolving temporal issues. Learning a joint
model for language and perception has been attempted (Ma-
tuszek et al. 2012) for the object selection task by inducing
weighted groups of words where the weights correspond to
the attribute classifiers the words are paired with. Note that
this approach only handles attribute based concepts such as
’yellow’ etc. and cannot handle relations.

In (Seabra Lopes and Chauhan 2007), an open-ended ob-
ject category learning system is described based on one-
class learning (with support vector data descriptions) and
human-robot interaction. The authors also proposed a teach-
ing protocol for performance evaluation in open-ended
learning. In (Seabra Lopes and Chauhan 2008), a system
with similar goals is described. In this case, the learning
approach is based on multiple representations, classifiers
and classifier combinations, and a meta-learning component
monitors classifier performance, reconfigures classifier com-
binations and chooses the classifier to be used for prediction.
This is related to attentional selection, a biological mech-
anism for focusing on specific features or representations
based on recent experience (Kruschke 2005). These works
are based on 2D images collected in static scenes, when a
target object is selected either by the user, or by the robot.

Since there is no continuous stream of data being stored,
memory requirements are easily satisfied. A life-long learn-
ing approach for interactive learning of multiple categories
has been proposed (Kirstein et al. 2012) which involves se-
lecting the most crucial features from a series of high di-
mensional feature vectors that almost exclusively belong to
that specific category. This work showed successful learn-
ing of 5 color categories and 10 shape categories observed
in 56 objects, just based on 2D images. However, the authors
still follow a standard train-and-test procedure, which is not
plausible in open-ended scenarios. Moreover, the authors did
not provide details of their software architecture.

We use graph similarity for grounding language in per-
ception. There has been significant work in graph similarity
measures and the notion of graph similarity depends on the
domain of interest. Graph similarity has been used in spatial-
scene similarity queries (Nedas and Egenhofer 2008) where
a spatial database and the query are converted to graphs and
graph similarity is used to find the answer for the query. A
generic approach for finding similarity of graphs based on
node similarity was proposed in (Blondel et al. 2004). Hey-
mans and Singh (Heymans and Singh 2003) also proposed
a similarity measure between nodes of two graphs that are
in turn used to compute the similarity measure between the
graphs. They propose that not only the similarity between
nodes but also dissimilarity between the nodes of graphs is
important for computing the similarity measure for graphs.
We extend this algorithm to graphs with labelled edges and
discard certain terms in the similarity computation because
they are no longer valid in our case.

Software Architecture

The software architecture developed for the project Ro-
bustness by Autonomous Competence Enhancement (RACE)
is illustrated in Fig. 1. The functional components of the
RACE architecture are represented by boxes in Fig. 1.
Each component may contain one or more modules, which
are implemented as Robot Operating System (ROS) nodes
(Cousins et al. 2010). The Reasoning and Interpretation
component includes a high-level interpreter, a temporal rea-
soner, a spatial reasoner and a description logic reasoner.
Perception contains several modules for symbolic propi-
oception and exteroception. Experience Management pre-
processes occurrences produced by Perception and extracts
relevant experiences, which are then used to create new con-
cepts by the Conceptualization. New concepts are added to
the Semantic Memory and stored in an OWL ontology for-
mat. User Interface sends instructions that generate a goal
which is then relayed to Planning. Planning is carried out
using SHOP2, a Hierarchical Task Network planner (Nau et
al. 2003). It outputs a plan which is collected by the Plan
Execution and Management component. Finally, actions are
conveyed to the robot. These functional components were
recently extended with new modules for object perception,
perceptual memory, object conceptualization and human-
robot interaction (Oliveira et al. 2014).



Figure 1: High level overview of the RACE architecture.

Multiple Memory Systems
The RACE software architecture accommodates two dis-
tinct memory systems: Semantic Memory and Perceptual
Memory. The Semantic Memory (SMem) is implemented as
a RDF database used as blackboard for all processes, the
contents of which are similar to what can be found in an
ABox in Description Logics. It is used for providing com-
mon knowledge to all high level processes. To cope with per-
ception and data functionalities, an additional memory sys-
tem,s employed, the Perceptual Memory. Unlike the SMem,
which is specifically designed to store small size seman-
tic data, the Perceptual Memory (PMem) database should
be able to store large amounts of data and be very effi-
cient in doing so. The implementation is carried out using
a lightweight NoSQL database developed by Google called
LevelDB 1. LevelDB is a fast key-value storage database that
provides an ordered mapping from string keys to string val-
ues. NoSQL databases are known for their simplicity, flexi-
bility and scalability, which are key requisites for our Per-
ceptual Memory System (Cattell 2011). In addition, Lev-
elDB operates in memory and is copied to the file sys-
tem asynchronously, which significantly improves its access
speed. LevelDB allows for simultaneous access to the stor-
age.

The multiple memory system implemented in RACE
is very effective at storing and retrieving both semantic
and perceptual data, especially, conceptualizing objects and
scenes and grounding linguistic descriptions necessarily in-
volves memory systems for semantic information and per-
ceptual information. These memory systems support learn-
ing loops at multiple levels of abstraction from visual and
text-based sources. In addition, there is strong evidence that
human memory contains several memory systems (Tulving
1991).

1https://code.google.com/p/leveldb/

Perception, Learning and Interface Modules
The Perception functional component is composed of two
software modules: Detection and Multiplexed Object Per-
ception. The Detection module is responsible for detect-
ing novel objects in the scene. This module periodically re-
trieves a list of all the objects currently on top of the ta-
ble 2 (Rusu and Cousins 2011). Then it extracts from that list
all objects that are not currently being tracked. For each of
those, a Multiplexed Object Perception pipeline is launched.
Figure 2 (a) shows an example where three objects are seg-
mented, but only one is not currently being tracked, i.e., does
not have a bounding box around it.

There is one Multiplexed Object Perception pipeline run-
ning for each object being tracked. Each pipeline provides
tracking, feature extraction and object recognition function-
alities. Tracking is based on a particle filter based approach 3

that uses both geometric as well as color information. Peri-
odically, features are extracted from the tracked object and
then classified by the object recognition module. To provide
a 3D object description, we use regional surface descriptors
as proposed in (Johnson and Hebert 1999).

The Conceptualization is triggered when a user provides
a category label for an object. This operation is handled by
the User Interface module, as will be discussed next. When
triggered, Object Conceptualizer (OC) reads the current ob-
ject categories from the PMem, as well as a set of features
describing the labelled object. With this information, a new
set of object categories is produced and written back to the
PMem.

The User Interface functional component is responsible
for the interaction with the user. The user skeleton is tracked
in real-time and pointing gestures detected by computing the
direction of the forearm. When a pointing direction inter-
sects a tracked object bounding box, it is assumed that the
user is pointing to that object. To produce an object category
label (which is sent to the Conceptualization), the point-
ing detection must occur simultaneously with the object la-
belling. In this way, the simplicity of the pointing detection
mechanism does not cause any false positive detections. The
object labelling mechanisms are implemented as rviz inter-
active menu markers 4. An example is shown in Fig. 2 (c).

Object Conceptualization By Grounding
Language In Perception

In order to adapt to new service environments, robots need
to categorise physical objects and acquire vocabulary about
them (Lim, Suh, and Suh 2011). We approach this problem
from a long-term perspective and with emphasis on domain
open-endedness, i.e. not assuming a pre-defined set of cat-
egories (Chauhan et al. 2013), (Kasaei et al. 2013). If the
robot does not know what a ‘mug’ looks like, it may ask
the user to point to one. Such situation provides an opportu-
nity to collect a training instance (an experience) for object

2http://wiki.ros.org/tabletop object detector
3http://www.willowgarage.com/blog/2012/01/17/tracking-3d-

objects-point-cloud-library
4http://wiki.ros.org/interactive markers



(a) (b) (c)

Figure 2: Examples of some of the software modules: (a) Object Detection; (c) Gesture Recognizer; and (d) Interface Manager.

conceptualization. Concerning category formation, the base-
line is a purely memory-based (instance-based) learning ap-
proach.

We adopt object-centered 3D shape features for object
recognition. Firstly, a down-sampling filter based on oc-
trees (Potmesil 1987), which keeps balance between com-
putational efficiency and robustness, is applied to extract re-
liable feature keypoints from objects. A spin-image descrip-
tor, which is rotation, scale and pose invariant in 3D percep-
tion (Johnson and Hebert 1999), is utilized to describe the
surrounding shape in each keypoint.

In order to estimate the dissimilarity between a target ob-
ject view, vt, and an object view contained in a category
model in the PMem, vm, the following distance function is
implemented:

DV

(
vt, vm

)
=

∑q
l=1 mink d(v

t
l , v

m
k )

q
(1)

where vtl and vmk represents the spin-image of the tar-
get object and the model object, respectively. q is the num-
ber of spin-image of target object view. A kd-trees based
fast approximate method is utilized to search nearest neigh-
bour in the high-dimensional feature spaces (Bentley 1975).
The minimum distance between the target object and the in-
stances of a certain category, C, is considered as the object-
category distance:

DC

(
vt, C

)
= min
vC∈C

DV

(
vt, vC

)
(2)

where vCare the view instances of object category C. In
3D object recognition, views in same category are more sim-
ilar than those in others. Thus,DC() can be utilized to distin-
guish “unknown” from each “known” category with its nor-
malized distance. Here the intra-category distance (ICD) of
each object category is defined, as follows:

ICD(C) =

∑
vi∈C

∑
vj∈C,vi 6=vj DV (vi, vj)

n · (n− 1)
(3)

where n is the number of category instances, and vi and
vjare two different instances of category C. Finally, the nor-
malized distance of object category, ND(), is computed
based on dividing DC(vt, C) by ICD(C), as follows:

ND (vt, C) =
DC(vt, C)

ICD(C)
(4)

The normalized distance is utilized to classify target ob-
jects. If the value is larger than a given threshold for all cate-
gories, then the object is classified as “unknown”. Otherwise
it is classified as the category which gives the smallest value
for ND.

Grounding Language In Perception With
Graph Matching

In this section, we explain the grounding of language in per-
ception using graph matching for scene layouts. We assume
the robot has perceived the table layout and has a textual
description of cutlery layout from a human. For our exper-
iments, the textual description of laying out the cutlery and
the perceived image of the final layout is taken from the
wikihow website5. In order to concentrate on the main task
of grounding, we hand annotated the objects in the image
and the robot has no knowledge of the objects labels (ide-
ally some of the object labels can be obtained from using
the object conceptualization module explained in the previ-
ous section). The textual description of the cutlery layout
is converted to relational form manually6; care was taken
to preserve the vagueness and incomplete nature of human
instructions. For example, in one of the scripts for laying
the cutlery for a formal dinner, the instructions say that the
dessert fork should be above the dinner plate and the dessert
spoon is also above the dinner plate, but it is not mentioned
whether the dessert spoon should be above the dessert fork
or vice versa. To simplify the task, we ignored the orienta-
tion of the cutlery and alternative positions and other options
mentioned in the instructions (these are addressed in future
work). Also we assume that the robot knows the orientation
of the scene i.e. the layout is seen and explained as if looking
from the chair in front of the dinner layout.

Relational Graph From Perception A spatial relational
description is obtained from the bounding boxes of the an-
notated objects in the image using the spatial relations in

5The idea of using knowledge from wikihow to guide learning
follows on from this approach in the Robohow project: http://
robohow.eu/project/approach

6We are currently developing a natural language parser to ob-
tain the required relational format.



Fig. 4. Note that the textual description uses a subset of
these relations to explain the layout. The relations are com-
puted by projecting the bounding boxes to X and Y axes and
then using the Rectangle Algebra (Balbiani, Condotta, and
Del Cerro 1998) to obtain the relations.

Figure 3: An annotated table top. The bounding boxes for
the annotated polygons are used for generating the spatial
relations among the cutlery and crockery.

top, bottom, right, left, on, under,
top right, top left, bottom left, bottom right,

Figure 4: Spatial relations used for obtaining a relational
graph from perception.

A graph is constructed from this spatial relational descrip-
tion of the layout by using each object as a vertex and the re-
lation between a pair of objects as the label for the edge con-
necting the corresponding vertices. The relations used are
not symmetric and hence the graph is a directed graph. Also
note that every pair of objects has a spatial relation resulting
in a complete graph where every vertex is connected to every
other vertex in both directions. In this experiment, the robot
does not know the labels of the annotated polygons, hence
vertices are given unique codes which we try to replace with
correct object names using the textual description.

Relational Graph From a Description The manually
generated spatial relational description is used to generate
the graph where each object becomes a vertex and the spa-
tial relations are used to label the edges between vertices.
Note that unlike the graph constructed from an image, this
graph is not a complete graph as the instructions do not ex-
haustively list all the relations and it is not possible to infer
them from available relations because of the inherent ambi-
guity in the relations possible. Relations that are possible to
be inferred are derived such as: if A is to the left of B, B is
to the left of C, then it can easily be inferred that A is to the
left of C. For the the experiments, we used two scripts with

instructions on how to set the table which we call script17

and script28. Figure 3 corresponds to script1 though we use
the same image for script2 to make the experiments more
generic and interesting because some objects mentioned in
the instructions from script2 are not present in the image and
also the number of objects mentioned in the textual descrip-
tion is different from the number of objects in the image. The
relational description that is manually derived from script1
is given in Fig. 7.

Similarity Scores Between Vertices In Graphs
Definition 1. A directed graph G is a 6-tuple G =
(V,E, λ, α, LV , LE), where V is the set of vertices (nodes),
E ⊆ V ×V is a set of edges, λ : V → LV and α : E → LE
are functions assigning labels to vertices and edges respec-
tively.

Definition 2. Let G be a directed graph as defined above.
Let Iv and Ov be the set of incoming and outgoing edges
of a vertex v in G. We can define a labelled edge histogram
for each vertex v denoted by Hv which is computed from Iv
and Ov and each bucket is labelled by an edge label from
the set LE and whether it is an incoming or an outgoing
edge. Let BG be the set of buckets in Hv . Hence there are a
total of 2 ∗ |LE | buckets in Hv . For example, Hv(li,1) and
Hv(lo,1) denote the number of incoming and outgoing edges
for vertex v labelled as l1 respectively.

Let G1 = (V1, E1, λ1, α1, LV1
, LE1

), where |V1| = n1,
and G2 = (V2, E2, λ2, α2, LV2

, LE2
), where |V2| = n2, be

two directed graphs. We aim to obtain a n1 x n2 similarity
matrix S, where the entry S(a, b) expresses the similarity
between nodes a and b where a ∈ V1 and b ∈ V2. Since we
will be dealing with two graphs from the same domain, we
expect LE1 ≡ LE2 .

Two nodes from different graphs can be similar not only
because of their properties alone but also because of their
neighbourhood. We first define a similarity measure Sim
that depends only on the properties of the individual nodes
and subsequently the similarity measure of their neighbours
is added. Sim is also an n1 x n2 matrix where the entry
Sim(a, b) expresses the similarity between nodes a and b
where a ∈ V1 and b ∈ V2 computed solely from a and
b without taking into account their neighbours. Sim(a, b)
captures the similarity by counting the types of incoming
and outgoing edges for the two nodes as given below.

Sim(a, b) =
∑

a∈V1,b∈V2,l∈BG1
∩BG2

min(Ha(l), Hb(l))

(5)

The similarity score matrix S is first initialized with S1 =
Sim and then iteratively updated (giving S2, S3, ...) using
the following two scores which capture the similarity of the
neighbourhood of two nodes. Equation 6 is based on the
rule: the similarity of two nodes increases if they are referred

7http://www.wikihow.com/Set-a-Dinner-Table
8http://www.wikihow.com/

Arrange-a-Place-Setting-for-a-Formal-Dinner
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∑
a2→a,b2→b,l∈LE1

∩LE2

Sk(a2, b2)
deglin(a)deg

l
in(b)

if deglin(a) 6= 0 and deglin(b) 6= 0

∑
a2∈V1,b2∈V2

Sk(a2, b2)
n1 × n2

if deglin(a) = deglin(b) = 0

0 otherwise

(6)

A
(k)
2 (a, b) =



∑
a→a2,b→b2,l∈LE1

∩LE2

Sk(a2, b2)
deglout(a)deg

l
out(b)

if degαi
out(a) 6= 0 and degαi

out(b) 6= 0

∑
a2∈V1,b2∈V2

Sk(a2, b2)
n1 × n2

if deglout(a) = deglout(b) = 0

0 otherwise

(7)

to (using incoming edges) by similar nodes by identically
labelled edges and Eq. 7 is based on the rule: the similarity
of two nodes increases if they refer (using outgoing edges)
similar nodes by identically labelled edges. In the equations
below, a → a2 means there is an edge with the given label
from node a to node a2 and deglin(a) and deglout(a) gives
the number of incoming and outgoing edges of vertex awith
label l.

The above scores are computed in an iterative fashion
(starting with k = 1) and the similarity matrix is updated
using the following equation.

S(k+1)(a, b) =
A

(k)
1 (a, b) +A

(k)
2 (a, b)

2
x Sim(a, b) (8)

Note that the similarity matrix has to be normalized (we use
Frobenius norm) during every iteration and this is done as

shown below:

S(k+1) ← S(k+1)

‖ S(k+1) ‖F
where ‖ A ‖F= [

∑
i,j

abs(ai,j)
2]1/2

(9)

This iterative process is repeated until the similarity ma-
trix stabilizes or until we exceed the specified number of
iterations. When computing the similarity matrix is finished,
the best matchings are obtained using the Hungarian algo-
rithm (Kuhn 1955) on this similarity matrix.

There are other rules that are used by Heymans and
Singh (Heymans and Singh 2003) but they are not rele-
vant here noting the fact that the graphs in our domain are
completely connected or are constructed using incomplete
knowledge. Hence we cannot rule out the fact that there
might be an edge between two vertices which is not present
in our knowledge.

Experimental Results
This section presents a qualitative analysis of the object
conceptualization module and results of graph matching for

grounding language in perception for scene layouts. For ob-
ject conceptualization, a typical case study is shown where
the system acquires knowledge about the objects through the
interaction with the user.

Scenario-Based Tests
To show the features and functioning of the complete object
conceptualization system, a scenario-based test was made.
The test consists of a sequence of about 1 minute long,
where the user is moving several objects in front of the cam-
era. During the experiment, the system must detect several
objects and user pointing gestures that occur. It must also
learn about new object categories when the user provides a
category label. At the start of the experiment, the system had
no prior knowledge, i.e., the PMem did not contain any data.

Figure 5 shows that the proposed architecture is capable
of functioning as an open-ended system. Objects that were
unknown at first were later labelled by the user. After that,
the system is capable of properly recognizing the objects.

Graph Matching for Scene Layouts
Grounding language in perception is achieved through
matching relational graphs obtained from textual description
and the corresponding perceived scene. A similarity matrix
is obtained as explained in the previous section and subse-
quently obtain the node matching by applying the Hungar-
ian algorithm on this matrix. From this node matching, the
system now has knowledge about objects such as how a din-
ner knife looks like etc. The system was able to correctly
identify all the objects from the image using script1 descrip-
tion (note that the image corresponds to script1). This was
the case when the number of objects in the text description
was equal to the number of objects in the image. Note that
the graph matching need not be exact, it is possible that
sometimes the instructions given to the robot are not ac-
curate and might have missing objects or extra objects and
in that case it will try to use a subgraph of the graph de-
rived from text to match with the graph from the image. It
will use the overall graph similarity measure to see which
subgraph (i.e. combination of nodes) selected has a good



Figure 5: Key frames of the sequence presented in this case study. All images shown are automatically generated by the system.

match. We experimented to test if overall graph similarity
measure is a good metric to maximize correct object match-
ings. Figure 6(a) shows different runs by choosing differ-
ent subgraphs from the graph derived from text (each point
in the plot corresponds to a subgraph) and the plot shows
that the graph similarity measure is a good metric to maxi-
mize the object matchings i.e. the higher the graph similarity
measure, the more the number of objects matched. In order
to test the robustness of the approach, we also used another
script (script2) to see if the robot can learn any objects from
a script not specifically describing the image in question. In
this experiment there were more objects in the graph derived
from text (15) compared to 12 objects in the image, hence we
did several runs by choosing different subgraphs with com-
binations of 12 objects from 15. The algorithm has to decide
which subgraph to consider for finalizing the match and once
again it is evident from the plot shown in Fig. 6(b) that the
graph similarity measure is a good metric to decide which
combination of objects to consider for best matching. Inter-
estingly, it obtained better objects matchings and high graph
similarity when it dropped objects that were not present in
the image (such as wine glasses, champagne glass etc).

The results are significant in the contexts where the robot
is asked to recognise place setting layouts and any mis-
matches. This could be done from hand coded layout knowl-
edge or from learned models such as we acquire here.

Conclusion and Future Work
In this paper, we proposed a cognitive architecture and learn-
ing framework for robot learning through natural human su-
pervision and using multiple input sources by grounding lan-
guage in perception. The results obtained in the restaurant
domain are encouraging though some of components (ro-
bust perception and natural language parser) need to be im-
plemented for the whole system to be completely automatic.
Future directions include using ego-centric videos and ver-
bal description as input for robot learning. The spatial prim-
itives used in the current framework are very simple (Rect-

right(water glass, dinner plate)
on(napkin, dinner plate)
top(bread plate, dinner plate) left
on(butter knife, bread plate)
left(salad fork, dinner plate)
left(dinner fork, dinner plate)
top(dessert fork, dinner plate)
top(dessert spoon, dinner plate)
right(dinner knife, dinner plate)
right(fish knife, dinner plate)
right(soup spoon, fish knife)

Figure 7: Spatial relations derived manually from script1
that describes a place setting on a table.

angle Algebra) and there is scope to use a combination of
spatial calculi for providing the description of scenes to the
robot. Another aspect to investigate is mapping the ground-
ing problem to the problem of merging and aligning ontolo-
gies (Noy and Musen 1999) where the information extracted
from text description and perception can be considered as
two different ontologies that need to be aligned.
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2013. Towards supervised acquisition of robot activity ex-
periences: an ontology-based approach. In 16th Portuguese
Conference on Artificial Intelligence - EPIA’2013.
Cousins, S.; Gerkey, B.; Conley, K.; and Garage, W. 2010.
Welcome to ROS topics [ROS Topics]. Robotics Automation
Magazine, IEEE 17(1):12 –14.
Heymans, M., and Singh, A. K. 2003. Deriving phyloge-
netic trees from the similarity analysis of metabolic path-
ways. Bioinformatics 19(1):138–146.
Johnson, A., and Hebert, M. 1999. Using spin images for
efficient object recognition in cluttered 3D scenes. PAMI,
IEEE Transactions on 21(5):433–449.
Kasaei, S.; Seabra Lopes, L.; Tomé, A.; Chauhan, A.; and
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