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Abstract— In this paper we propose to augment a well-
established Qualitative Trajectory Calculus (QTC) by incor-
porating social distances into the model to facilitate a richer
and more powerful representation of Human-Robot Spatial
Interaction (HRSI). By combining two variants of QTC that
implement different resolutions and switching between them
based on distance thresholds we show that we are able to
both reduce the complexity of the representation and at the
same time enrich QTC with one of the core HRSI concepts:
proxemics. Building on this novel integrated QTC model, we
propose to represent the joint spatial behaviour of a human
and a robot employing a probabilistic representation based on
Hidden Markov Models. We show the appropriateness of our
approach by encoding different HRSI behaviours observed in
a human-robot interaction study and show how the models can
be used to represent and classify these behaviours using social
distance-augmented QTC.

I. INTRODUCTION

Human-Robot Spatial Interaction (HRSI) is the study of
joint movement of robots and humans through space. It
is concerned with the investigation of models of the ways
humans and robots manage their motions in vicinity to
each other. These encounters might, for example, be so-
called pass-by situations where human and robot aim to pass
through a corridor trying to circumvent each other given
spatial constraints (see Fig. 1). In order to resolve these kind
of situations and pass through the corridor the human and
the robot need to be aware of their mutual goals and have
to have a way of negotiating who goes first or who goes
to which side. Our work aims to equip a mobile robot with
understanding of such HRSI situations and enable it to act
accordingly.

In early works on mobile robotics humans have merely
been regarded as static obstacles [1] that have to be avoided.
More recently, the dynamic aspects of “human obstacles”
has been taken into account, e.g. [2]. Currently, a large body
of research is dedicated to answer the fundamental questions
of HRSI and is producing navigation approaches which plan
to explicitly move on more “socially acceptable and legible
paths” [3], [4], [5]. The term “legible” here refers to the
communicative – or interactive – aspects of motions which
previously has widely been ignored in robotics research.
According to Ducourant et al. [6], who investigated human
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Fig. 1. Left: The SCITOS G5 robot with a hight of 1.72m and a diameter of
∼ 61cm. Right: Head-on encounter. Robot tries to reach the table while the
human is trying to reach the kitchen counter. Also showing the experimental
set-up with the kitchen counter on the left and the two tables on the right.
Black lines represent the corridor. The blue circle labelled ”R” represents
the robot, the oval reddish figure represents the human. The green circle
around the robot represents ds.

spatial behaviour, humans also have to consider the actions of
others as well when planning their own actions. Hence, mov-
ing around is also about communication and coordination of
movements between two agents – at least when moving in
close vicinity to one another, e.g. entering each others social
or personal spaces [7].

For the analysis of HRSI, knowing the exact human and
robot trajectories is often not necessary or even detrimental
when trying to capture the “essence” of the interaction.
Instead, it is more important to represent qualitatively how
the agents move with respect to each other, in order to
understand underlying social rules and conventions. In our
previous work, we proposed a qualitative framework based
on the analysis of relative position and movement direction
between two interacting agents on a 2D environment [8], [9],
[10]. In particular, to reduce the space domain and focus only
on those terms relevant to HRSI, we adopted the well-defined
set of symbols and relations provided by the Qualitative
Trajectory Calculus (QTC), a formalism representing the
relative motion of two points in space in a qualitative
framework [11].

In this work, we go beyond our previous work by propos-
ing a probabilistic model of mixing different QTC variants
with increasing granularity depending on the distance of
human and robot. Social distances are an essential factor
in HRSI as shown in Hall’s proxemics theory [7] and
numerous works on HRSI itself, e.g. [12]. So far it was these
distances have not been represented in QTC which deprived
it of the ability to generate appropriate behaviour regarding
HRSI standards. Lichtenthäler et al. [13], for example,
suggested to model distances explicitly by expanding the
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Fig. 2. Example of moving points k and l. The respective QTCB and
QTCC relations are (−+) and (−+− 0).

QTC representation to incorporate this and other quantitative
measures. To preserve the qualitative nature and the resulting
generalisability and simplicity of QTC representations we
propose to model distance implicitly by transitioning between
a coarse and a fine variant of QTC according to a distance
threshold, e.g. Hall’s personal space. This does not only
give the possibility to model this crucial HRSI metrics in
QTC but also makes use of more detailed detailed action
representation only when robot and human are in close
vicinity to one another. Thereby, we simplify our previously
presented probabilistic model [10] by employing a rather
coarse representation when the human and robot are far
apart and only switch to finer-grained representations when
the two interactants are getting closer to one another. We
argue that this social distance-augmented representation of
QTC is able to represent pass-by situations, so that they
are still reliably classifiable, and reduces the complexity of
the resulting model while, most importantly, enabling us to
represent the crucial social distance value.

II. THE QUALITATIVE TRAJECTORY CALCULUS

A. QTC Basic and QTC Double-Cross

QTC belongs to the broad research area of qualitative spa-
tial representation and reasoning [14], from which it inherits
some of its properties and tools. There are several versions
of QTC, depending on the number of factors considered
(e.g. relative distance, speed, direction, etc.) and on the
dimensions, or constraints, of the space where the points
move. The simplest version, called QTC Basic (QTCB),
represents the relative motion of two points k and l with
respect to the reference line connecting them (see Fig. 2).
It uses a 2-tuple of qualitative relations (a b), where each
element can assume any of the values {−, 0,+} as follows2:

a) movement of k with respect to l
− : k is moving towards l
0 : k is stable with respect to l
+ : k is moving away from l

b) movement of l with respect to k: as above, but swap-
ping k and l

Therefore, the state set SB = {(a, b) : a, b ∈ {−, 0,+}}
for QTCB has |SB | = 32 possible states and |τB | =
|{s s′ : s, s′ ∈ SB ∧ s 6= s′}| = 32 legal transitions as

2The actual versions considered here are QTCB11 and QTCC21 [11],
but for simplicity we refer to them as QTCB and QTCC respectively.
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Fig. 3. CND of QTCB . Note that due to the original formulation [11],
there are no direct transitions in the CND between some of the states that,
at a first glance, appear to be adjacent (e.g. (−0) and (0−)).

defined in the Conceptual Neighbourhood Diagram3 (CND)
shown in Fig. 3 [11]. By restricting the number of possi-
ble transitions – assuming continuous observations of both
agents – a CND reduces the search space for subsequent
states, and therefore the complexity of temporal QTC se-
quences.

Another version of the calculus, called QTC Double-Cross
(QTCC), extends the previous one to include also the side
the two points move to, again with respect to the reference
line connecting them (see Fig. 2). In addition to the 2-tuple
(a b) of QTCB , the relations (c d) are considered, where each
element can assume any of the values {−, 0,+} as follows:

c) movement of k with respect to
−→
k l

− : k is moving to the left side of
−→
k l

0 : k is moving along
−→
k l

+ : k is moving to the right side of
−→
k l

d) movement of l with respect to
−→
l k: as above, but

swapping k and l
The resulting 4-tuple (a b c d) representing the QTCC state

set SC = {(a, b, c, d) : a, b, c, d ∈ {−, 0,+}}, has |SC | = 34

states, and |τC | = |{s s′ : s, s′ ∈ SC ∧ s 6= s′}| = 1088
legal transitions as defined in the corresponding CND [11].

As shown in [9], QTCB and QTCC can be “manually”
combined to represent and reason about HRSIs. In the
following section, however, we formalise and automatise this
process.

B. Integrating QTCB and QTCC

To achieve the desired implicit modelling of social dis-
tances and simplification of QTC state chains for HRSI we
propose the integration of QTCB and QTCC referring to it
as QTCBC .

The set of possible states for QTCBC is a simple unifi-
cation of the fused QTC variants. In the presented case the
integrated QTCBC states are defined as:

SI = SB ∪ SC

with |SI | = |SB |+ |SC | = 90 states.
The transitions of QTCBC include the unification

of the transitions of QTCB and QTCC but also

3We are adopting the notation s1  s2 for valid transitions according to
the CND from [11].



the transitions from QTCB to QTCC : τBC =
{sb  sc : sb ∈ SB , sc ∈ SC} and from QTCC to QTCB :
τCB = {sc  sb : sb ∈ SB , sc ∈ SC}, respectively. This
leads to the definition of the integrated QTCBC transitions
as:

τI = τB ∪ τC ∪ (τBC ∪ τCB)

τBC and τCB are simply regarded as an increase or
decrease in granularity. There are two different types of
transitions:

1) Pseudo self-transitions where the values of (a b) do
not change, plus all possible combinations for the 2-
tuple (c d): |SB | · 32 = 81, e.g. (++) (++−−) or
(+ +−−) (++).

2) Normal QTCB transitions, plus all possible combi-
nations for the 2-tuple (c d): |τB | · 32 = 288, e.g.
(+0) (+ +−−) or (+0−−) (++).

Resulting into:

|τBC |+ |τCB | = 2 · (81 + 288) = 738

transitions between the two QTC variants. This leads to a
total number of QTCBC transitions of:

τI = |τB |+ |τC |+ (|τBC |+ |τCB |)
= 32 + 1088 + 738

= 1858

These transitions depend on the previous and current
euclidean distance of the two points d(k, l) and the threshold
ds representing an arbitrary social distance:

τI =


τB if d(k, l)t−1 > ds ∧ d(k, l)t > ds,
τBC else if d(k, l)t−1 > ds ∧ d(k, l)t ≤ ds,
τCB else if d(k, l)t−1 < ds ∧ d(k, l)t ≥ ds,
τC otherwise

These transitions, distances, and thresholds play a vital
role in our probabilistic representation of HRSI which will
be described in the following section.

III. PROBABILISTIC MODEL OF QTCBC

In previous work [10] we proposed a Hidden Markov
Model (HMM) [15] based representation of QTCC . This
enabled us to represent actual sensor data by allowing for
uncertainty in the recognition process. With this approach
we were able to reliably classify head-on (see Fig. 1) and
overtake4 scenarios and showed that the QTCC representa-
tions of these two scenarios are significantly different from
each other due to the distinctly different directions of travel.

To be able to model distance and represent events in a
way that highlights the interaction in close vicinity to the
human we propose a probabilistic representation of QTCBC .
Compared to our previous work, we now model the proposed
QTCBC instead of just QTCC which allows to dynamically

4The human is overtaking the robot while both are trying to reach the
same goal.
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Fig. 4. The HMM transition matrix for QTCBC representing τI .

switch between the two combined variants. This results in
an extended transition probability matrix for τI (see Fig. 4).

Similar to the HMM based representation described in
[10] we have initially modelled the “correct” emissions, e.g.
(+−) actually emits (+−), to occur with 95% probability
and allow the model to account for classification errors with
5%. Our HMM contains |τI |+2·|SI | = 1858+2·90 = 2038
legal transitions stemming from QTCBC and the transitions
from and to the start and end state, respectively.

To represent different HRSI behaviours, the HMM needs
to be trained from the actual observed data. For each different
behaviour to be represented, a separate HMM is trained using
Baum-Welch training [15] (Expectation Maximisation) to ob-
tain the appropriate transition and emission probabilities for
the respective behaviour. In the initial pre-training model, the
transitions that are valid according to our QTCBC definition
are modelled as equally probable (uniform distribution). We
allow for pseudo transitions with a probability of Ppt =
1e−10 to overcome the problem of a lack of sufficient
amounts of training data and unobserved transitions therein.
To create the training set we have to transform the recorded
data to QTCC state chains that include the euclidean distance
between k and l and define a threshold ds at which we
want to transition from QTCB to QTCC and vice-versa. If
d(k, l) > ds, the values for (c d) of the QTCC representation
are simply omitted and the remaining (a b) 2-tuple will be
represented by the QTCB part of the transition matrix. If
the distance crosses the threshold, it will be represented by
one of the τBC or τCB transitions. QTCC is used in the
remainder of the cases. Afterwards, all distance values are
removed from the representation because the QTC state chain
now implicitly models ds.

IV. EXPERIMENT

To evaluate our QTCBC model we used the data of a
previously conducted pilot study (initially described in [10]),
investigating the movements of a human and a robot in a
confined, shared space. The original aim of the study was to
find hesitation signals in HRSI [16].

A. Experiment Design

In this study the participants where put into a hypothetical
restaurant scenario together with a human-size robot (see
Fig. 1). The experimental set-up had a size of 5m2 and
was situated in a large motion capture lab surrounded by



12 motion capture cameras, tracking the x, y, z coordinates
of human and robot with a rate of 50Hz. The physical set-up
itself was comprised of two large boxes (resembling tables)
and a bar stool (resembling a kitchen counter). The tables and
the kitchen counter were on different sides of the room and
connected via a ∼ 2.7m long artificial corridor to elicit close
encounters between the two agents while still being able to
reliably track their positions (see Fig. 1. For this pilot study
we had 14 participants (10 male, 4 female) who interacted
with the robot for 6 minutes each. All of the participants were
employees or students at the university and 9 of them have
a computer science background; out of these 9 participants
only 2 had worked with robots before. The robot and human
were fitted with motion capture markers to track their x, y
coordinates for the QTC representation.

During the interaction the robot showed two different
behaviours, i.e. adaptive and non-adaptive velocity control.
The adaptive velocity control gradually slowed down the
robot until it came to a complete stand still before entering
the personal space [7] of the participant. The non-adaptive
velocity control only regarded the human as a static obstacle
trying to be as efficient as possible concerning the actual
path planning. We chose to use these two distinct behaviours
because they mainly differ in the speed of the robot and
the distance it keeps to the human. Hence, they produce
very similar, almost straight trajectories which allowed us to
investigate the effect of distance and speed on the interaction
while the participant was still able to reliably infer the robot’s
goal. This was necessary to find hesitation signals [16].

Before the actual interaction the human participant was
told to play the role of a waiter together with a robotic co-
worker. This scenario allowed to create a natural form of
pass-by interaction (see Fig. 1) between human and robot
by sending the participants from the kitchen counter to the
tables and back to deliver drinks. At the same time the
robot was taking orders from the supposed guests, driving
autonomously from the kitchen counter to the tables and
back, showing the two described behaviours. The behaviour
was switched at random (p = 0.5) upon the robots arrival at
the kitchen counter to enable a within participant comparison
of reactions to these two different behaviours. This task
only occasionally resulted in encounters between human and
robot but due to the incidental nature of these encounters
and the fact that the participants were trying to reach their
goal as efficient as possible we hoped to achieve a more
natural and instantaneous participant reaction. We chose to
use the within-subject comparison approach to evaluate if
certain hesitation signals differ from person to person but
this is of no importance for the qualitative representation
because all participants showed very similar behaviour when
circumventing the robot [10].

B. Evaluation

For the evaluation we followed a similar approach as de-
scribed in [10]. We defined two virtual cut-off lines on either
side of the corridor because we want to investigate close
encounters between human and robot and therefore use only

(- -)

(- - - -)

(- - + +)

(0 0 - -)

(0 0 + +)

(+ +)

(+ + - -)

(+ + + +)

QTCCQTCB QTCB

Fig. 5. QTCBC example of a head-on encounter. From left to right:
approach, pass-by on the left or right side, moving away. Dashed lines
represent the distance threshold ds.

trajectories inside the corridor. Out of these trajectories we
manually selected 71 head-on and 87 overtaking encounters
and employed two forms of noise reduction on the recorded
data. The actual trajectories were smoothed by averaging
over the x, y coordinates for 0.1s, 0.2s, and 0.3s. The z
coordinate is not represented in QTC. To determine 0 QTC
states – one or both agents move along

−→
k l or along the two

perpendicular lines (see Fig. 2) – we used three different
quantisation thresholds: 1cm, 5cm, and 10cm, respectively.
Only if the movement of one or both of the agents exceeded
these thresholds it was interpreted as a − or + QTC state.
This smoothing and thresholding is necessary when dealing
with discrete sensor data which otherwise would most likely
never produce 0 states due to sensor noise.

To find appropriate distance thresholds for QTCBC we
evaluated distances for 0.1m ≤ ds ≤ 3m. The ds =
0.1m threshold represents pure QTCB because the robot and
human are represented by their centre points, therefore, it
is impossible for them to get closer than 10cm which will
cause QTCBC to never switch from QTCB to QTCC . On the
other end of the scale, the ds = 3m threshold represents pure
QTCC – QTCBC never switching from QTCC to QTCB –
because the corridor was only ∼ 2.7m long so human and
robot were always closer than 3m.

To evaluate the generalisability and the meaningfulness
of the representation, we used our previously described
HMM based QTCBC representation as a classifier to find
similar encounters in our dataset. In order to show that
this is possible, we employed k-fold cross validation with
k = 5, resulting in five iterations with a test set size of
20% of the selected trajectories. This was repeated ten times
– to compensate for possible classification artefacts due to
the random nature of the test set generation – resulting in
50 iterations over the selected trajectories. Subsequently, a
normal distribution was fitted over the classification results
to generate the mean and 95% confidence interval. This
validation procedure was repeated for all nine smoothing and
thresholding combinations.

V. RESULTS & DISCUSSION

To verify that QTCBC has no negative effect on the clas-
sification rate of our HMM based approach we evaluated the
classification rate for our two different classes of encounters,
i.e. head-on and overtake, like in our previous work [10].

In order to show the benefits of QTCBC we also evaluated
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Fig. 6. Classification results for head-on passing on the left vs. right, lowest
and highest smoothing parameters. Left 1cm and 0.1s smoothing, right
10cm and 0.3s smoothing. The point represents the mean and the errobar
the 95% confidence interval. Horizontal line: Null Hypothesis. Vertical
dashed lines: Hall’s intimate (45cm) and personal (1.2m) space [7].
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Fig. 7. Classification results for head-on adaptive vs. non-adaptive. Left:
5cm and 0.2s smoothing, right: 1cm and 0.3s smoothing. The point
represents the mean and the errobar the 95% confidence interval. Horizontal
line: Null Hypothesis. Vertical dashed lines: Hall’s intimate (45cm) and
personal (1.2m) space [7].

passing on the left vs. passing on the right and adaptive vs.
non-adaptive behaviour for the head-on cases. Fig. 5 shows
an example of a resulting QTCBC representation of a head-
on encounter.

A. Results

Table I shows the minimum and maximum classification
rates (µ) for the general head-on vs. overtaking case and the
according QTCBC thresholds (ds). The best classification
result µ = 0.978, taken from all the different smoothing
levels, was achieved for ds = 2.2m. On the other hand, for
the majority of the different smoothing levels (7/9), the best
classification results were achieved using distance thresholds
of 0.1m ≤ ds ≤ 0.6m.

The comparison of passing on the left vs. passing on the
right, is shown in Table II. All of the results show bad
performance if ds is set low, and high classification results
for values of ds that are close to pure QTCC . Fig. 6 shows
two typical results. The left hand side shows the classification
rates for the lowest smoothing settings and the right hand side
shows the results for the highest smoothing level. In all of
the cases a sudden increase in performance – jumping from
µ ≈ 0.5 to µ > 0.8 – can be seen at 0.9m ≤ ds ≤ 1.2m.

The third case, adaptive vs. non-adaptive robot behaviour
in head-on encounters, is shown in Table III. The best
results were achieved at distances of 0.1m ≤ ds ≤ 0.7m,
all but one lying on the diagonal of Table III. Fig. 7
shows two exemplary results. The left hand side depicts
the best classification result with classification rates of up

TABLE I
HEAD-ON VS. OVERTAKE

Smoothing 0.1s 0.2s 0.3s

Res. µ ds µ ds µ ds

1cm
min 0.897 0.7m 0.885 1m 0.909 0.7m

max 0.973 3m 0.963 0.6m 0.978 2.2m

5cm
min 0.842 0.8m 0.883 0.8m 0.872 0.7m

max 0.915 0.5m 0.974 0.1m 0.940 0.1m

10cm
min 0.704 2m 0.787 1.2m 0.791 0.9m

max 0.817 0.3m 0.874 0.5m 0.885 0.4m

TABLE II
HEAD-ON: LEFT VS. RIGHT

Smoothing 0.1s 0.2s 0.3s

Res. µ ds µ ds µ ds

1cm
min 0.504 0.3m 0.580 0.3m 0.521 0.2m

max 0.969 1.9m 0.952 2.4m 0.960 2.3m

5cm
min 0.407 0.2m 0.413 0.2m 0.492 0.2m

max 0.895 2.9m 0.926 2.8m 0.940 2.9m

10cm
min 0.503 0.2m 0.434 0.1m 0.521 0.5m
max 0.924 3m 0.898 1.2m 0.950 3m

TABLE III
HEAD-ON: ADAPTIVE VS. NON-ADAPTIVE

Smoothing 0.1s 0.2s 0.3s

Res. µ ds µ ds µ ds

1cm
min 0.461 1.4m 0.483 1.8m 0.467 0.5m

max 0.661 0.1m 0.603 0.8m 0.643 1.5m

5cm
min 0.516 1m 0.546 1.4m 0.544 1.3m

max 0.694 1.5m 0.748 0.7m 0.721 0.5m

10cm
min 0.461 1.2m 0.486 0.8m 0.587 1.6m
max 0.593 1.8m 0.638 1m 0.742 0.7m

to µ = 0.748 for ds = 0.7m. The right hand side shows
the results for a smoothing level that did not yield the best
results for low but medium distance threshold of ds = 1.5m
with a classification rate of µ = 0.643.

B. Discussion

Our presented approach QTCBC uses d(k, l)t−1 and
d(k, l)t to determine if the representation should transition
from QTCB to QTCC or vice-versa. This might lead to
unwanted behaviour if the distance d(k, l) oscillates around
ds. Due to the manual selection of data, we did not face such
problems in this evaluation but it is a clear limitation of this
approach which has to be overcome for “live” applications.
For the following discussion we can assume that this had no
negative effect on the presented data.

The classification of head-on vs. overtaking produced
similar results to our previous evaluation [10]. This shows
that QTCBC does not decrease the generalisability of our
HMM based representation for this two class example. We
have also seen that there are cases where pure QTCB

outperforms pure QTCC . This is not surprising because the
main difference of overtaking and head-on lies in the (a b) 2-



tuple of QTCB , i.e. both agents move in the same direction,
e.g. (−+), vs. both agents are approaching each other (−−).
The (c d) QTCC information can therefore be disregarded
in most of the cases. This indicates that QTCB would be
sufficient to classify head-on and overtaking scenarios but
would of course not contain enough information to generate
an appropriate behaviour. QTCBC allows to incorporate the
information about which side robot and human should use
to pass each other and the distance at which to start circum-
venting. Since all of the found classification results were
significantly different from p = 0.5 – the Null Hypothesis
(H0) for a two class problem – this distance can be chosen
to represent a meaningful value like Hall’s personal space.

The comparison of left vs. right pass-by actions in head-
on encounters shows that using pure QTCB does, not
surprisingly, yield bad results because the most important
information – on which side the robot an the human pass
by each other – is completely omitted. All the classification
results show that more information about the values of
(c d) increases the performance of the classification. On the
other hand, the results also show that the largest increase
in performance of the classifier happens at a distance of
0.9m ≤ ds ≤ 1.2m (see Fig. 6), which resembles Hall’s
personal space of 1.2m [7]. These results show that the
human interaction partner granted the robot its personal space
or tried to avoid having the robot violate their own. Judging
from our data, the results indicate that information about the
(c d) 2-tuple is most important if both agents enter, or are
about to enter, each others personal spaces. The information
before and after this threshold can be disregarded and is
not important for the reliable classification of these two
behaviours.

Using the previous probabilistic model of QTCC , it
was not possible to reliably distinguish between the two
behaviours the robot showed during the experiment [10].
We investigated if QTCBC would sufficiently highlight the
difference between these two classes to enable a correct
classification. Indeed, the results indicate that using a very
low distance threshold ds enables QTCBC to distinguish
between these two cases for some of the smoothing levels.
Like for head-on vs. overtake, the main difference between
the adaptive and non-adaptive behaviour lies in the (a b)
2-tuple, i.e. (−−) vs. (−0), but, in contrast to that, the
classification rate for adaptive vs. non-adaptive drops to
p = 0.5 (H0) at ds = 1.3m. On the other hand, there is also
an interesting example where this does not hold true and we
see a slight increase in classification rate at ds = 1.5m which
was the stopping distance of the robot. All these results seem
to be very dependent on the smoothing parameters (see Table
III) and are therefore quite inconclusive.

VI. CONCLUSION & FUTURE WORK

We presented a novel approach of implicitly modelling
social distances in QTC by combining different variants
of the calculus, i.e. QTCB and QTCC , into one integrated
QTCBC model. To further improve this model, we will work
on a generalised version of our presented QTCBC to deal

with different and possibly multiple variants of QTC, which
are not restricted to QTCB and QTCC , based also on other
metrics beside Hall’s social distances.

Our HMM based probabilistic model of QTCBC is able
to create a qualitative representation of HRSI which in-
corporates social distances, e.g. Hall’s personal space, and
only represents the essence of pass-by situations by filtering
unwanted information. Our experiments showed that this
representation is able to classify two of the three presented
two-class problems correctly for certain ranges of distance
thresholds. The results for the adaptive vs. non-adaptive
behaviour classification showed improvements compared to
previous work but is still inconclusive. This was not unex-
pected and future work will investigate further methods of
improving classification results for this particular case.

A subsequent user study will show if this representation
and our model are able and suited to not only classify and
represent HRSI but also to generate behaviour for a mobile
robot.
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