
Meta-rooms: Building and Maintaining Long Term Spatial Models in a
Dynamic World

Rares, Ambrus, 1, Nils Bore1, John Folkesson1 and Patric Jensfelt1

Abstract— We present a novel method for re-creating the
static structure of cluttered office environments - which we de-
fine as the ”meta-room” - from multiple observations collected
by an autonomous robot equipped with an RGB-D depth cam-
era over extended periods of time. Our method works directly
with point clusters by identifying what has changed from one
observation to the next, removing the dynamic elements and at
the same time adding previously occluded objects to reconstruct
the underlying static structure as accurately as possible. The
process of constructing the meta-rooms is iterative and it is
designed to incorporate new data as it becomes available, as
well as to be robust to environment changes. The latest estimate
of the meta-room is used to differentiate and extract clusters
of dynamic objects from observations. In addition, we present
a method for re-identifying the extracted dynamic objects
across observations thus mapping their spatial behaviour over
extended periods of time.

I. INTRODUCTION

Robots are operating for longer times and collecting much
more data than just a few years ago. We are currently
studying long term unsupervised learning by robots operating
for months at a stretch, which results in many challenges that
need to be addressed. For instance, the handling of the huge
amounts of data and extracting the interesting and relevant
parts of that data is critical. In this paper we develop a
framework for doing just that by separating the static parts
of a room scene from the dynamic ones and improving this
separation as the robot returns to the room many times.

By being able to identify these static parts the robot can
better localize itself and navigate the environment. It can also
detect when a change in the environment is ’normal’, that is,
only dynamic objects have moved or when it is anomalous,
that is, something that was believed to be static has now
moved. This is important in, for example, a watchman robot
scenario.

The data from dynamic parts of our environment properly
registered and segmented will be valuable as input to object
classifiers to find out what they might be or to initialize
new object classes. The motions of these objects can then be
recorded and analysed for patterns leading to more complete
models of them. Unusual motion can then also be detected as
an another kind of anomaly. All of this is outside the scope
of this paper but relies on a good way to recursively estimate
the dynamic/static separation in our 3D sensor data.

In this paper we present a method that allows an au-
tonomous robot to iteratively learn to distinguish between

1 The authors are all with the Centre for Autonomous Systems at
KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden.
{raambrus, nbore, johnf, patric}@kth.se

static and dynamic parts in the environment. In particular, we
focus on the problem of reconstructing the static structure of
the environment and we analyse the stability and convergence
of our approach to iteratively rebuilding the static structure
from partial observations. Finally, we show that using our
method we can successfully extract dynamic objects which
can further be matched across observations.

II. RELATED WORK

The problem of long term operation in dynamic environ-
ments has received a fair amount of attention in the robotics
community. In the context of SLAM on 2D grid maps,
the study of dynamics has lead to complex formulations
of the traditional, static grid cell occupancy that take into
account, in addition to occupancy, the dynamic element.
For example, Saarinen et al use an independent Markov
chain to model dynamics within grid cells [1]; Kuchner et
al extend the traditional grid map approach with a Con-
ditional Transition Map which models, for each grid cell,
the transition probability of a dynamic object moving to
one of its neighbouring cells, using a roundabout as a test
scenario [2]. Walcott-Bryant et al. address the problem of
changing environments in a Pose-Graph SLAM system by
augmenting a node in the graph with information concerning
its dynamic state, and they maintain two separate maps -
active and dynamic - to better represent the environment [3].
Bieber and Duckett maintain the traditional occupancy grid
cell definition but they employ a number of maps, called
sample maps, which adapt to changes at different rates and
time scales [4]. The Normal Distribution Transform (NDT)
approach to grid map representation has also been applied
successfully for the detection of dynamic cells in 3D, by
Andreasson et al. in the context of an autonomous security
patrol robot [5] and, more recently, by Saarinen et al. in
complex and highly dynamic environments [6]. Our approach
to dealing with dynamic environments over large periods
of time takes a significant paradigm shift from traditional
grid based methods of representing occupancy and dynamics.
Instead, we focus on well-localized clusters of points, and
we reconstruct the environment based on their motion (or
the absence of it).

At the semantic map level, Gunther et al. build large scale
3D maps from RGB-D data which they further augment
with recognized objects based on clustered planar regions;
finally they refine the map by replacing the objects with
their corresponding CAD models [7]. Mason et al. describe
experiments over extended periods of time in which they
build semantic maps for object query as well as change



detection, and they focus on objects lying on top of tables
and other planar surfaces; the matching of these objects
is done on the basis of the overlap between their convex
hulls in 2D [8]. In contrast, our approach does not actively
look for objects, but instead we focus on reconstructing the
static structure of the environment, on the basis of which the
dynamic objects can be easily obtained.

Another way of looking at the problem of dynamics
in the environment is by actively searching the scene for
objects which are known to be dynamic, such as chairs,
tables, cups, etc. The problem of cluster segmentation and
object recognition and/or reconstruction from RGB-D data
has become a very active topic, especially with the advent
and wide availability of low cost sensors capable of recording
such data with high accuracy. There is a wide body of work
that deals with recognition in a single view / single scene,
however, as this is not the primary aim of our work we
will focus on some of the more relevant methods which deal
with combined data from multiple scenes. Koppula et al.
fuse individual RGB-D frames into larger point clouds from
which they extract and label objects via a graphical model
based on individual object features as well as inter-object
relationships in the form of proximity, visual similarity,
etc; they demonstrate their system in an online experiment
where the robot is able to actively search and re-identify
these objects in cluttered scenes [9]. Ruhnke et al. take a
different approach to object reconstruction: the input to their
method is a set of of 3D laser range scans on which they
perform plane segmentation to remove the floor and walls
and subsequently form clusters from the remaining points;
further they compare clusters across different observations
and use range images to obtain likely matches, after which
they proceed to merging the clusters into objects [10]. We
take a similar approach, however, we deal with much larger
spaces and we use partial clusters for the reconstruction of
complete rooms as opposed to focusing on individual objects.
Within the sphere of object recognition, the works closest to
our method are the ones that rely on change detection across
observations. The method proposed by Herbst et al. in [11]
and further refined in [12] uses surface patches to describe a
scene (usually of a table top with various objects), and they
develop a sophisticated method of tracking and re-identifying
the surface patches across observations. Along similar lines,
Alimi et al. use scene differencing for both object extraction
as well as for modelling the static scene background [13].
Finman et al. also use change detection for object extraction
[14], however their method is geared towards dealing with
large RGB-D maps, and they use differencing to filter out
the static structure and extract point clusters which are later
matched in new observations of the map. Beuter et al. use
scene differencing to extract static, moving and movable
entities [15] in the vista space (short observations of some
part of the world from the same view-point).

Our method relies on scene differencing for static struc-
ture reconstruction, however, we differ from the approaches
in [11], [12], [13], [14], [15] in a few key points: our work
environment is much larger, we deal with whole rooms as

opposed to table tops, and we perform our experiments over
longer periods of time; in addition to incorporating occluded
clusters (which we determine via a more capable method than
that described in the papers cited) into the static structure, our
method has the capability of adapting to other objects that
have been introduced in the environment, such as additional
pieces of furniture; and finally, we perform an analysis on
the convergence and stability of the static structure created.

III. SYSTEM OVERVIEW

Our system consists of the robot collecting a sequence
of RGB-D frames from a room and registering them in a
common reference frame. This dense point cloud over the
contents of the room is down sampled and filtered to remove
outliers. The data is compared to our current model of the
static room which we call a meta-room. The differences
between them are analysed to see what should be added or
removed from the meta room and what parts of the current
data are dynamic. In doing so care must be taken to consider
the effect of occlusions and of the noise inherent in the
sensor. It is important that parts of the meta-room that appear
dynamic due to noise are not removed. At the same time,
parts that were previously occluded but now can be seen
need to be added. The meta-room should be able to change
if there is repeated evidence of a new static part in the room.

After we have a good stable meta-room it is possible
to analyse the dynamic parts of each point cloud to find
dynamic clusters of points. By registering these clusters from
different visits to the room we can build up meta-object
models of, for example, chairs that are always present but
moving between visits.

Fig. 1: Registered scans of different office rooms.

Fig. 1 shows the resulting registered point clouds of three
different rooms on the 2D map, each point cloud consisting
of about 2 million points. In addition to the method described
in the next sections, we contribute the collected dataset.

IV. META-ROOMS

As said, a meta-room consists of those parts of a room
which have been observed as static over time, and we con-
struct one meta-room for each different room. Fig 2 shows
different observations of the same room, and it also serves
the purpose of exemplifying some of the issues that need to
be addressed in order to reconstruct the static structure of a



(a) (b) (c) (d)

Fig. 2: Four observations of the same office room at different times. The red ellipses in b) and c) indicate missing data due
to sensor error and due to occlusions.

room accurately (the ceiling points have been removed for
better visibility). The red ellipse in fig 2 b) indicates an area
where data is missing due to sensor error - the cupboard on
the right. Second, the issue of occlusions: as objects move
around, whatever part of the environment is behind them is
occluded to the depth camera; this can be seed in Fig 2 c)
where the red ellipse shows part of the couch that is missing
as it is occluded by the chair in front of it.

A. Initialization

A meta-room is constructed through an iterative process,
taking into account new room observations when they are
available. In the beginning the meta-room is empty and it is
initialized with the first room observation. The second step
performed in the initialization phase is to detect bounding
primitives, using a RANSAC based estimator; this is pri-
marily used to filter out points that lie outside the room (i.e.
points observed through windows or doors).

Fig. 3: Room observation segmented into bounding primi-
tives (red), interior points (blue) and points outside the room
(green). The ceiling points have been removed for better
visibility. Best viewed in color.

The algorithm we have developed first extracts the floor
and ceiling primitives, the heights of which we determine
through a histogram analysis of the heights of all the points
in the point cloud and assuming that the vertical direction is
known. For detecting the bounding primitives we first com-
pute all the primitives perpendicular to the floor primitive,
and subsequently through simple geometric operations we
find the ones on the ”outside” (i.e. the ones for which all

other primitives lie only on one side, in 3D space) - as shown
in Fig 3. The rooms involved in our experiments are square
and have planar surfaces as boundaries, but the method can
deal with different shaped rooms which don’t necessarily
have planar walls, the limitation currently being that we can
only handle convex room shapes.

B. Update

After initialization, the meta-room contains both static and
dynamic elements. The update step is twofold: the dynamic
elements will be removed while the space occluded by them
will have to be added, as it could be a previously obscured
part of the static structure. Whenever a new room observa-
tion is available, it is first registered with the meta-room
(i.e. transformed into the meta-room frame of reference);
although both the meta-room and the new room observation
are acquired by a robot which is already localized on the 2D
map, this registration step is required because the underlying
localization module assumes a static environment and suffers
from small errors which would propagate through the rest
of the pipeline. For the registration of complete room point
clouds we use the Normal Distribution Transform (NDT)
algorithm [16] which in our experiments outperforms the
Iterative Closest Point (ICP) algorithm [17]. ICP, however,
performs better when aligning individual point clouds (de-
scribed in more detail in section V).

Once the point clouds have been aligned we update the
meta-room by looking at the differences between the two
point clouds. We define the difference operator 	 such that
S = P	Q , where P and Q are point clouds, results in the
point cloud S given by:

S = {p | p ∈ P ∧ ∀q ∈ Q, ||p,q||> d} (1)

where d is a threshold, which in our experiments is set to 1
cm. Thus the set S contains all the points of the first point
cloud that don’t have a nearest neighbour within the specified
threshold in the second point cloud. Note that in our context
this operation can only be performed on aligned point clouds.

1) Handling occlusions: The point cloud representing
the difference between the meta-room and the new room
observation contains all the points which are present in the
meta-room and are not present in the new room observation.



(a) Meta-room (b) New room observation

(c) Meta-room (blue), clusters to be re-
moved (green) clusters to be added (red)

(d) Updated meta-room

Fig. 4: Meta-room update process. Best viewed in color.

However, it cannot immediately be concluded that all these
points should be removed from the meta-room, as some of
them might be part of the static structure and are simply
occluded by other points in the new room observation. In
fact, every dynamic part in the meta-room results in an
occluded part in the room and vice-versa, and this needs to
be taken into account during the meta-room update process.

Fig 4 shows an example of a meta-room (subfigure a) and
a new room observation (subfigure b). Clearly some things
are dynamic and should be removed from the meta-room,
and at the same time, parts of the static structure present in
the new room observation, like the desk, should be added.
Before dealing with occlusions we first cluster the differences
using a connected components analysis of the point cloud,
where all the points belonging to the same component are
within a certain distance of each other. This allows us to
reason about objects, or at least parts of objects, and also
helps to remove some points corresponding to noise.

Algorithm 1 outlines the method we employ to update
the meta-room. We first take the point cloud difference (as
defined in equation 1) both ways (i.e. from the room to the
meta-room and from the meta-room to the room), we cluster
both difference point clouds and we subsequently check both
sets of clusters for occlusions (with C1 being the set of
clusters from the meta-room to room difference point cloud
and C2 being the set of clusters from the room to meta-room
difference point cloud):

• If a cluster from C1 is occluded by another cluster from
C2, it should not be removed from the meta-room, as it
could be part of the static structure.

• If a cluster from C2 is occluded by another cluster from

Algorithm 1 Check occlusions (mr - metaroom, r - room)

1: procedure CHECKOCCLUSIONS(mr,r)
2: S1← mr	 r
3: S2← r	mr
4: C1← connectedComponents(S1)
5: C2← connectedComponents(S2)
6: toRemove← /0
7: toAdd← /0
8: for c1 ∈C1 do
9: for c2 ∈C2 do

10: if ¬ occluded(c1,c2) then toRemove += c1
11: end if
12: if occluded(c2,c1) then toAdd += c2
13: end if
14: end for
15: end for
16: mr += toAdd
17: mr −= toRemove
18: end procedure

C1, it should be added to the meta-room, as it could be
part of the static structure.

To check whether one cluster occludes another cluster
(operation performed on lines 10 and 12 of algorithm 1, we
project both clusters on a sphere located in the center of the
room (i.e. the position of the depth camera when the data
was recorded - explained in more depth in section V).

Figure 4 c) shows the clusters to be removed from the
meta-room in green and the clusters to be added in red, while
figure 4 d) shows the updated meta-room after this iteration.



Fig. 5: Meta-room points (red), points to be removed (blue),
points to be added from a new room observation (yellow).
Best viewed in color.

Figure 5 shows a part of the meta-room point cloud during
the update process: the points in blue are meta-room points
classified as dynamic and are to be removed, while the
points in yellow belong to the new room observation and
are considered to be occluded and are to be added. However,
the points in yellow also contain the chair, which is in fact
dynamic, but it appears as (partially) occluded by the cluster
of points previously present in the meta-room (the person
on the chair). This is a direct result of the way we reason
about occlusions, however in the long run, as the chair is
indeed dynamic it moves around and it will be eliminated
altogether.

C. Dealing with room changes

Another situation that needs to be handled involves
changes in the environment which do not fall in the category
of dynamic objects (e.g. the addition of a new cupboard in
a room, or changing the position of a desk), and the meta-
room needs to be able to reflect these changes accordingly.
In order to account for these changes, we have developed
a statistical component that identifies, for a given meta-
room, static clusters of points that have been left out. To
achieve this we employ a sliding window over past room
observations used to update the meta-room, we take the
point cloud difference between the room observations and
the meta-room as defined in equation 1 and we look for
similar clusters which are present in most of the differences.
The reasoning is that if a cluster is not in the meta-room but
it is present in all the room differences considered, and in the
same position spatially, it is a static cluster and it should be
added to the meta-room. To find these ”similar” clusters, we
use a kd-tree on the centroids of the clusters to find the ones
that have very close neighbours across the room observations
(the threshold in our experiments is 5 cm, thus accounting
for small alignment errors), and we use the Visual Feature
Histogram (VFH) [18] on the matched clusters to make sure
they belong to the same class.

Future experiments will be performed over much longer
periods of time (up to six months), and we will modify our

sliding windows algorithm to take into account the temporal
distribution of the observations, i.e. we will differentiate
between observations which are minutes and observations
which are days apart.

(a) (b)

Fig. 6: Meta-room vs updated meta-room with sliding win-
dow clusters. Best viewed in color.

This method also helps correct some inconsistencies in the
meta-room, as for example the absence of a cluster which has
been eliminated (or hasn’t been added) due to an alignment
error when updating the meta-room with a new observation.
Fig.6 shows an instance where the sliding window algorithm
has identified static clusters that should be a part of the meta-
room (the cupboard, part of the couch and part of the desk,
shown in green in fig. 6 b).

V. EXPERIMENTAL SETUP

Fig. 7: Scitos G5 Robot Fig. 8: 2D map with
waypoints

The data used for the experiments presented in this paper
is collected by an autonomous Scitos G5 robot conducting
patrol runs in an office environment, over the course of one
week. A 2D map of the office is built in advance using
Gmapping [19], and the robot navigates through a set of pre-
defined waypoints while using a probabilistic particle filter
based method (AMCL [20]) for localization on the 2D map.
The robot (displayed in fig. 7) is equipped with an Asus



(a) (b)

(c) (d)

Fig. 9: Meta-rooms with dynamic clusters. Best viewed in color.

Xtion depth camera mounted on top of a pan tilt unit at
a height of 1.60 meters above the ground. The navigation
waypoints have been chosen in the center of three different
office rooms (as shown in fig. 8), and the robot performs
an autonomous patrol run at a certain time every day and
collects data inside the rooms using the depth camera.
After reaching a waypoint, the robot stops moving while
the pan-tilt unit executes a sweep, pausing for one second
at a number of positions while the sensor records approx-
imately 15 frames (for filtering); for our experiments we
used increments of 60 degrees horizontally and 30 degrees
vertically, resulting in a total of 28 different positions of the
pan-tilt which cover the room entirely, except for parts of
the floor and the ceiling which are directly above and below
the robot. The data acquired at each individual position is
first filtered (and downsampled) through a voxel grid with a
leaf size of 1 cm to remove some of the sensor noise, and
then registered together using the ICP algorithm. The robot
position as given by the AMCL localization combined with
the pose of the pan-tilt unit gives a good initial estimate
for the pose of each individual scan, and the ICP refinement
removes almost all the alignment errors. Further, to eliminate
outliers and spurious points in the resulting registered point
cloud we run a statistical outlier removal procedure based
on the mean and standard deviation of neighbouring points
[21].

VI. RESULTS

Fig. 10: Analysis of meta-room convergence with respect to
points removed / added over all iterations

Fig. 10 shows the progression of all the meta-rooms over
the update iterations; after a while the meta-rooms converge
and the number of points added or removed approaches zero.

Once the meta-room has converged to a stable state, it can
be used effectively to extract dynamic objects, by subtracting
it from new observations. Fig. 9 displays a few examples of
the meta-rooms and the dynamic objects detected.



TABLE I: Percentage difference in meta-rooms created from
random sequences of observations of the same room. The
point cloud difference is obtained using a distance threshold
of 1 cm. The average meta-room difference is 2.2 % of its
point clouds size.

Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 Seq 6 Avg
Seq 1 (%) 0 0.5 0.5 1.0 0.5 3.8 1.2
Seq 2 (%) 0.7 0 0.7 1.1 1.1 5.6 1.9
Seq 3 (%) 0 4.1 0 3.7 0 2.9 2.1
Seq 4 (%) 2.8 2.9 2.9 0 2.5 6 3.4
Seq 5 (%) 0 3.5 0 3.5 0 2.6 1.9
Seq 6 (%) 1.2 6.1 1.3 4.8 0.7 0 2.8

Fig. 11: Analysis of meta-room difference with various
difference thresholds (in cm).

To check the consistency of the meta-room creation
method, we have run an offline test in which we process
observations of a room in random order. We generated
six such random sequences, processed the observations and
created six different meta-rooms which we then compared
against each other; the comparison between two meta-rooms
is based on the difference between their point clouds, and
we quantify the error as the ratio between the size of the
difference (in terms of number of points) and the size of
the meta-room, with 0% being identical and 100% being
completely different. The results are show in table I, with
the average difference between meta-rooms being 2.2%. This
difference is primarily due to sensor noise, especially for
objects close to the wall the furthest away from the sensor,
where the accuracy of the depth camera goes down and
second due to the misalignment of the observations during
the NDT registration phase. Fig. 11 shows the trend in
meta-room difference when varying the difference threshold,
between 0.1 cm and 3 cm. As expected, when increasing
the threshold the average difference percentage goes down,
which further reinforces our conclusion that the minute
differences between the computed meta-rooms are mostly
due to small misplacements in the point cloud due to sensor
noise.

Fig. 12 shows that the current method can be applied
to successfully extract and cluster various dynamic objects.
Currently, we are able to detect objects that include chairs
of various sizes and shapes, backpacks, monitors, jackets,

(a) Chair (b) Pillow (c) Person on chair

(d) Laptop screen (e) Chair (f) Lamp

(g) Backpack (h) Bicycle (i) Chair

Fig. 12: Examples of dynamic clusters

lamps and up to objects as small as laptop screens. We plan
to extend the method to be able to distinguish smaller objects
such as cups, particularly on table tops, however, currently
we are limited in this respect by the down-sampling and
noise filtering techniques we employ.

Fig. 13: Sets of clusters matched across observations (dark
green, light green, yellow and red) rendered alongside the
meta-room (blue). Best viewed in color.

Matching objects across observations is inherently a hard



problem due to the fact that the objects are rarely seen from
the same angle and that usually they are only partially seen.
We have implemented a simple matching algorithm that takes
into account a few features, such as space proximity (we have
taken a radius of one meter around a given cluster), similar
point clouds size and a few other characteristics such as
height from the ground and cluster width; we also use VFH
for further disambiguation. Once we have matched clusters
we are able to map their position in time, across observations.
Fig. 13 shows an example of matched clusters, with each set
of matched clusters rendered in a different color.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented a method that allows an
autonomous robot to distinguish between static and dynamic
objects as it learns about its environment over extended
periods of time and without any human supervision or
intervention. In particular, we have made no prior assumption
about the environment and we have focused on a purely point
cloud based approach to detecting and separating dynamic
elements from static ones. In addition, we show that it is
possible to reconstruct the static structure of the environment
from multiple observations where parts of the environment
might be occluded or missing, and that our method can cope
with changes in the environment such as the addition of
furniture. We further show that, once we have reconstructed
the static structure of the environment, we can use it to detect
clusters of dynamic objects in new observations, and that
these clusters can be re-identified across observations, thus
mapping out their spatial distribution in time. In addition
to the method presented, we will make the collected dataset
consisting of 21 registered room observations (588 individual
RGB-D scans) publicly available.

The method described presents us with a few avenues for
further research: first, we will modify the underlying local-
ization module, using the created meta-room as a feedback
system to indicate which parts of the environment are static
and thus good candidates for localization features. Second,
we will focus on improving the cluster matching algorithm
across observations, and we will try to reconstruct the objects
from partial data. Our next goal is the creation of meta-
objects, which would result from the matching of these
partial clusters as they are observed across observations.
And finally, we will use the system to estimate object
likelihoods both spatially and temporally, and use this to
detect anomalies in the environment (e.g. fig. 9 d, bicycle
in the kitchen should clearly be flagged as an anomaly).

VIII. ACKNOWLEDGEMENTS

The work presented in this papers has been funded by the
European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement No 600623 (”STRANDS”), the
Swedish Foundation for Strategic Research (SSF) through its
Centre for Autonomous Systems and the Swedish Research
Council (VR ) under grant C0475401.

REFERENCES

[1] J. Saarinen, H. Andreasson, and A. J. Lilienthal, “Independent markov
chain occupancy grid maps for representation of dynamic environ-
ment,” in IROS, 2012 IEEE/RSJ International Conference on. IEEE,
2012, pp. 3489–3495.

[2] T. Kucner, J. Saarinen, M. Magnusson, and A. J. Lilienthal, “Condi-
tional transition maps: Learning motion patterns in dynamic environ-
ments,” in IROS, 2013 IEEE/RSJ International Conference on. IEEE,
2013, pp. 1196–1201.

[3] A. Walcott-Bryant, M. Kaess, H. Johannsson, and J. J. Leonard,
“Dynamic pose graph slam: Long-term mapping in low dynamic
environments,” in IROS, 2012 IEEE/RSJ International Conference on.
IEEE, 2012, pp. 1871–1878.

[4] P. Biber and T. Duckett, “Experimental analysis of sample-based maps
for long-term slam,” The International Journal of Robotics Research,
vol. 28, no. 1, pp. 20–33, 2009.

[5] H. Andreasson, M. Magnusson, and A. Lilienthal, “Has somethong
changed here? autonomous difference detection for security patrol
robots,” in IROS,2007. IEEE/RSJ International Conference on. IEEE,
2007, pp. 3429–3435.

[6] J. Saarinen, T. Stoyanov, H. Andreasson, and A. J. Lilienthal, “Fast 3d
mapping in highly dynamic environments using normal distributions
transform occupancy maps,” in IROS, 2013 IEEE/RSJ International
Conference on. IEEE, 2013, pp. 4694–4701.

[7] M. Gunther, T. Wiemann, S. Albrecht, and J. Hertzberg, “Building
semantic object maps from sparse and noisy 3d data,” in IROS, 2013
IEEE/RSJ International Conference on. IEEE, 2013, pp. 2228–2233.

[8] J. Mason and B. Marthi, “An object-based semantic world model for
long-term change detection and semantic querying,” in IROS, 2012
IEEE/RSJ International Conference on. IEEE, 2012, pp. 3851–3858.

[9] H. S. Koppula, A. Anand, T. Joachims, and A. Saxena, “Semantic
labeling of 3d point clouds for indoor scenes,” in Advances in Neural
Information Processing Systems, 2011, pp. 244–252.

[10] M. Ruhnke, B. Steder, G. Grisetti, and W. Burgard, “Unsupervised
learning of 3d object models from partial views,” in ICRA, 2009. IEEE
International Conference on. IEEE, 2009, pp. 801–806.

[11] E. Herbst, P. Henry, X. Ren, and D. Fox, “Toward object discovery
and modeling via 3-d scene comparison,” in ICRA, 2011 IEEE
International Conference on. IEEE, 2011, pp. 2623–2629.

[12] E. Herbst, X. Ren, and D. Fox, “Rgb-d object discovery via multi-
scene analysis,” in IROS, 2011 IEEE/RSJ International Conference
on. IEEE, 2011, pp. 4850–4856.

[13] P. Alimi, D. Meger, and J. J. Little, “Object persistence in 3d for home
robots,” 2012.

[14] R. Finman, T. Whelan, M. Kaess, and J. J. Leonard, “Toward lifelong
object segmentation from change detection in dense rgb-d maps,” in
Mobile Robots (ECMR), 2013 European Conference on. IEEE, 2013,
pp. 178–185.

[15] N. Beuter, A. Swadzba, F. Kummert, and S. Wachsmuth, “Using
articulated scene models for dynamic 3d scene analysis in vista
spaces,” 3D Research, vol. 1, no. 3, pp. 1–13, 2010.

[16] T. Stoyanov, M. Magnusson, and A. J. Lilienthal, “Point set registra-
tion through minimization of the l 2 distance between 3d-ndt models,”
in ICRA, 2012 IEEE International Conference on. IEEE, 2012, pp.
5196–5201.

[17] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek, “The trimmed
iterative closest point algorithm,” in Pattern Recognition, 2002. Pro-
ceedings. 16th International Conference on, vol. 3. IEEE, 2002, pp.
545–548.

[18] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recognition
and pose using the viewpoint feature histogram,” in IROS, 2010
IEEE/RSJ International Conference on. IEEE, 2010, pp. 2155–2162.

[19] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” Robotics, IEEE
Transactions on, vol. 23, no. 1, pp. 34–46, 2007.

[20] D. Fox, “Adapting the sample size in particle filters through kld-
sampling,” The international Journal of robotics research, vol. 22,
no. 12, pp. 985–1003, 2003.

[21] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, “To-
wards 3d point cloud based object maps for household environments,”
Robotics and Autonomous Systems, vol. 56, no. 11, pp. 927–941, 2008.


