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Abstract

The qualitative structure of objects and their spatial dis-
tribution, to a large extent, define an indoor human en-
vironment scene. This paper presents an approach for
indoor scene similarity measurement based on the spa-
tial characteristics and arrangement of the objects in
the scene. For this purpose, two main sets of spatial
features are computed, from single objects and object
pairs. A Gaussian Mixture Model is applied both on
the single object features and the object pair features, to
learn object class models and relationships of the object
pairs, respectively. Given an unknown scene, the object
classes are predicted using the probabilistic framework
on the learned object class models. From the predicted
object classes, object pair features are extracted. A fi-
nal scene similarity score is obtained using the learned
probabilistic models of object pair relationships. Our
method is tested on a real world 3D database of desk
scenes, using a leave-one-out cross-validation frame-
work. To evaluate the effect of varying conditions on the
scene similarity score, we apply our method on mock
scenes, generated by removing objects of different cat-
egories in the test scenes.

1 Introduction
As robots are becoming more capable of performing a wide
range of tasks in applications such as surveillance, service
robotics, object search and retrieval, human care, security
and object manipulation, and as they increase their inter-
action with humans, the ability to predict scene categories
is becoming more important in robotics. An indoor scene
category can be defined as the general concept of a limited
region in 3D space that has specific properties or serves a
specific purpose. Examples of indoor scene classes are desk
area, kitchen, living room and bedroom (see Figure 1).

The traditional object-based computer vision approaches
for indoor scene category recognition have limitations
(Quattoni and Torralba 2009) due to the variety of object
poses and appearance, since the object classifiers (Felzen-
szwalb et al. 2010) are highly dependent on object pose,
colour, texture, camera viewpoint and illumination. Another
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Figure 1: Examples of indoor scenes of different categories:
(a) bedroom, (b) office desk, (c) kitchen and (d) living room.

limitation of traditional computer vision methods is that per-
formance worsens with increasing number of object cate-
gories. In spite of having this huge variety in object cate-
gories, shapes, poses, texture, etc., it is interesting to note
that in our living environments the objects are not placed
randomly but tend to maintain a certain ordering and ar-
rangement. In particular, the type of an indoor scene already
defines a subset of objects that can be expected to be seen
and may also infer a certain relative positioning of the ob-
jects. For example, in a desk scene we could expect to see a
monitor, a keyboard and a mouse in a certain configuration.

This paper presents an approach for joint object prediction
and scene similarity measurement in indoor environments,
based on the spatial relations of the objects. A spatial rela-
tion specifies how an object is located in space in relation to
a reference object (Freeman 1975). Spatial relationships can
be roughly divided into two categories, topological and met-
ric relationships. The latter can further be grouped into dis-
tance relationships and directional relationships. Addition-
ally, size-based relationships can be defined. In this study,
we consider directional, distance and size relations on the



3D geometrical characteristics of the objects.
To compute scene similarity, we learn a probabilistic

model for indoor scene category by training on example
scenes. A scene is described using a layered representation.
In the first layer, the scene is defined as a set of objects, and
in the second layer as the set of their spatial relations. To
describe these layers, two main feature sets are computed, i)
from single objects and ii) object pairs. As single object fea-
tures, we use pose, bearing with respect to the reference sys-
tem defined by a landmark, volume and length of the object
projection along the X,Y and Z axes. For object pairs, Eu-
clidean distance, vertical displacement, bearing between ob-
ject centroids and ratio of object volumes are computed. The
object categories and the spatial relations of pair of objects
of different categories are modeled by fitting a probability
distribution - a Gaussian Mixture Model (GMM) - to these
sets of features. For an unknown test scene, we first predict
the object class categories using the learned object category
model. From the predicted object classes, object pair fea-
tures are extracted. Scene similarity is then computed using
the object category based object pair relationships. By ap-
plying a threshold on this similarity score, the test scene can
be classified.

This paper presents the above mentioned concept in a sim-
plistic dataset, which will be extended in the future. The
method is tested on a database of 3D data of office desk
scenes acquired with an RGB-Depth sensor. The scene in-
formation is represented as a 3D point cloud. Points cor-
responding to separate objects are segmented by a manual
annotation where 3D bounding boxes are used to define the
objects. 3D geometrical characteristics are computed from
the segmented objects. A leave-one-out cross-validation ex-
periment is performed to evaluate the performance of ob-
ject classification and scene similarity measurement. The
method is also applied on mock scenes, generated by remov-
ing objects of different categories, to investigate the effect of
varying conditions on the scene similarity score.

The remainder of this paper is organized as follows. Re-
lated work is surveyed in Section 2. The proposed method
for joint object and scene classification is described in Sec-
tion 3. The experimental results are presented in Section 4.
Finally, Section 5 concludes the paper.

2 Related work
Recent studies (Southey and Little 2007; Kasper, Jakel, and
Dillmann 2011) compute the distribution of spatial relations
of objects over a set of scenes, and show how the obtained
data and models can be used in typical scenarios for ser-
vice robotics, such as the recognition of individual objects
given the knowledge of the other objects types in the scene.
Kasper et al. (Kasper, Jakel, and Dillmann 2011) develop
an empirical base for scene understanding by encoding the
structure of the scene in the spatial relations between the ob-
jects. The distribution of the spatial relations in office desk
scenes is learned from a real world 3D dataset and statistical
measurements are computed. Different types of spatial rela-
tions are considered: size of the 3D object bounding boxes,
Euclidean distance between object centers, relative position
of an object with respect to the reference system defined by

a reference object. Southey et al. (Southey and Little 2007)
learn a maximum entropy model of 3D spatial relations be-
tween objects from artificial indoor scenes of a video game,
and test the model in an object recognition task.

Spatial 3D features and spatial relations between pairs of
objects are used in several robotics studies, in the context of
navigation planning, object recognition, object position pre-
diction and manipulation (Rosman and Ramamoorthy 2011;
Ye and Hua 2013; Burbridge and Dearden 2012). Rosman
et al. (Rosman and Ramamoorthy 2011) redescribe a 3D
scene in terms of a layered representation, consisting in the
skeletonized description of the objects structure as a net-
work of contact points, as well as a symbolic description
of the spatial relationships between objects. The scene de-
scription is based on the assumption that the objects are in
contact. Ye et al. (Ye and Hua 2013) compute 3D directional
spatial relations between pairs of object by dividing the 3D
space around an object into 26 primitive directions, using
a method inspired by ray-tracing. In the work of Burbridge
et al. (Burbridge and Dearden 2012), a bi-directional map-
ping is learned between geometric and symbolic states of
object configurations in the context of a manipulation plan-
ning system, by using Gaussian Kernel Density estimation.
Dee et al. (Dee, Hogg, and Cohn 2009) propose a method
for scene modeling and classification from RGB video data,
using quantized descriptions of motion. The method learns
spatial relationships between parts of frames in videos which
correspond to regions experiencing similar motion.

State-of-the-art methods for scene classification include
object-based and context-based approaches. In object-based
scene categorization, the objects are recognized and used as
landmarks. Different vision-based features are proposed in
the literature for object recognition, such as SIFT, HOG,
SURF and PIRFS (Lowe 1999; Dalal and Triggs 2005;
Bay et al. 2008; Kawewong, Tangruamsub, and Hasegawa
2010). Many approaches for visual classification are re-
stricted in their ability to classify large number of objects.
Moreover, visual object recognition methods fail on seem-
ingly simple examples, when the objects lack sufficiently
distinctive appearance data. In context-based scene recog-
nition, features of the whole scene are described after com-
pression in a low-dimensional space, based on mechanisms
that humans use to recognize scenes. Olivia et al. (Oliva
and Torralba 2006) propose Gist as a feature to describe
global characteristics of a scene. Gist is used popularly in
context-based feature description. Several approaches have
also been developed for vision-based semantic scene recog-
nition, from 2D images representing outdoor environments
(Boutell, Luo, and Brown 2006; Yao, Fidler, and Urtasun
2012). However, when applying the state-of-the-art outdoor
scene classification methods in indoor scenes, it is observed
that accuracy drops dramatically (Quattoni and Torralba
2009). On the other hand, the probabilistic approach for in-
door scene similarity measurement proposed in this paper
does not need the computation of complex features and vi-
sual classifiers.

The most recent papers (Ye and Hua 2013; Kasper, Jakel,
and Dillmann 2011) on the spatial distribution of objects
are typically tested on RGB-Depth databases. Depth infor-
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Figure 2: Overview of the proposed system. The indoor scene information is represented in the form of a 3D point cloud.
Different objects are segmented from the point cloud. Spatial features are extracted from single objects and from object pairs. A
learning module trains a GMM on features of different object categories and on spatial relations of objects of different classes,
on a set of indoor scenes of same scene class type. Given an unknown scene, the method predicts object classes and computes
a measure of scene similarity with respect to the modeled scene class type.

mation can also be obtained by using multi-camera stereo
technology (Rosman and Ramamoorthy 2011). Point clouds
are commonly used to represent the 3D scene informa-
tion (Ye and Hua 2013; Kasper, Jakel, and Dillmann 2011;
Rosman and Ramamoorthy 2011). Some studies also use
data in simulated environments (Burbridge and Dearden
2012). In our work, we acquire an RGB-D database using
the Asus Xtion Pro-Live sensor and we work on the obtained
3D point clouds.

The contributions of this paper are as follows. We intro-
duce a wider set of spatial features, both for single objects
and object pairs, along with the features inspired by the
state-of-the-art methods. We extend the concept of object
class prediction described in Kasper et al. (Kasper, Jakel,
and Dillmann 2011) and Southey et al. (Southey and Little
2007) to joint object classification and scene similarity mea-
surement using a probabilistic framework. Finally, we apply
the proposed approach on a simple dataset of desk scenes
and obtain encouraging results.

3 Proposed method
Let N be the number of examples of indoor human environ-
ment scenes of scene class type t, St = {s1, s2, . . . , sN}.
We assume that each example scene, si, i = 1, 2, . . . , N ,
contains a landmark object, ol, and a set of other ob-
jects of different categories, shapes and sizes, O =
{o1, o2, . . . , om}. The landmark is used to define a reference
system for the other objects. For example, in an office desk
scene, the landmark can be the desk, and other objects can
be monitor, keyboard, mouse, mug, lamp, pens, etc. We take
into account that these object classes can be missing from

the scene or be present in multiple instances.
The proposed algorithm for scene similarity measurement

is composed of three main steps: feature extraction, model-
ing of object classes and object pair relationships in a learn-
ing phase, and object class prediction and computation of
a scene similarity score in test scenes. The pipeline for the
proposed method is described in Figure 2.

3.1 Feature extraction
To model the object categories and the relationships between
pairs of objects of different categories, it is necessary to ob-
tain a feature set that best captures the object geometry and
the spatial distribution of objects in the scene. Following are
the proposed feature sets for single objects and object pairs.

Single object features Single object features foi are com-
puted from the 3D spatial characteristics of the object itself
w.r.t. a landmark object. These features are inspired by the
state-of-the-art methods (Kasper, Jakel, and Dillmann 2011;
Burbridge and Dearden 2012), but unlike in the previous lit-
erature, we use the table as the landmark object and we con-
sider the angles formed by the objects w.r.t. the table cen-
troid and the front-left table corner. The 7 computed features
are distributed in 4 main categories:

• Position features: 3D position of the object centroid (1×
3).

• Angle features, computed in the extrinsic coordinate sys-
tem (see Figure 4):

– 2D (horizontal) bearing of object centroid from front-
left table corner, θ1 (1× 1).
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Figure 3: Examples of (a) single object features: the histograms of the bearing of the object centroid from the front-left table
corner for the objects monitor, keyboard and mouse and (b) object pair features: the histograms of the Euclidean distance
between object centroids, for three pairs of object classes, monitor-keyboard, monitor-mouse and keyboard-mouse.

– 2D (horizontal) bearing of object centroid from table
plane centroid, θ2 (1× 1).

• Volume (1× 1).

• Projected length features: length of the object projection
along X, Y and Z axes (1× 3).

In Figure 4, a scheme representing the desk surface and
the described angle features computed for an example ob-
ject is illustrated. Figure 3-a shows the distribution of one of
these features, the angle between object centroid and front-
left table corner, θ1, for the object categories monitor, key-
board and mouse, over a set of analyzed office desk scenes.

X

Y

θ1

θ2

A

O

CA

Figure 4: Representation of the computed angle features: the
bearing of the object centroid CA from the front-left table
corner, θ1, and the bearing of CA from the table centroid,
θ2, where the large rectangle represents the desk surface.

Object pair features To capture the spatial distribution of
the objects we introduce the feature set foi,oj as object pair
features, keeping the same extrinsic reference system as for

single object features. The proposed feature set consists of 5
features:

• d(Coi , Coj ), where d is the Euclidean distance and Coi ,
Coj are the centroids of objects oi and oj , respectively
(1× 1) (Kasper, Jakel, and Dillmann 2011).

• dXY (Coi , Coj ) projected on the X-Y plane (1 × 1)
(Kasper, Jakel, and Dillmann 2011).

• 2D (horizontal) bearing from Coi to Coj (1× 1).

• Ratio of object volumes (1× 1).

• dZ(Coi , Coj ), where dZ is the vertical displacement (1×
1).

The ratio of object volumes and the vertical displacement
between object centroids are novel features. In Figure 3-b,
a plot of the Euclidean distance between object centroids is
illustrated for different object category pairs, computed over
a set of desk scenes.

3.2 Learning object categories and object pair
relationships

As the object class prediction and the scene similarity mea-
surement (described in Section 3.3) follow the probabilis-
tic framework, we choose to learn both the object class cat-
egories and the object pair relationships using a Gaussian
Mixture Model based representation. By observing the plots
of the features (see Figure 3) we infer that a GMM would
be a reasonable choice to model the multivariate probability
distribution of both single object and object pair features.

Object class modeling To model the object class category
of oi ∈ O, a set of single object features foi is extracted from
the pre-segmented objects. The object class model is learned



by applying a Gaussian Mixture Model on the single object
feature set foi :

GMM(foi , µ
z
oi ,Σ

z
oi) =

nc∑
z=1

πz
1

K
exp(−1

2
ζzoi), (1)

where: ζzoi = (foi − µz
oi)

T Σz
oi
−1(foi − µz

oi),

K =
√

(2π)dim|Σz
foi
|, πz ≥ 0,

∑d
z=1 πz = 1, nc is the

number of mixtures, πz is the weight of the zth mixture, µz
oi

is the mean of the normal distribution, Σz
oi is the covariance

matrix and dim is the dimensionality of the feature space.

Learning object pair relationships Object pair relation-
ships are the next important factor in the scene similarity
measurement. To learn these relationships, a different set
of features foi,oj is computed as object pair features. For
m objects in O we compute object pair features for all the
combinations of object classes (oi, oj), where i 6= j. Only
the relations of objects of different categories are learned.
For example, in a desk scenario with two monitors, the re-
lations between the two monitors will not be computed, al-
though the relations between each of the two monitors and
all the other objects are considered. The probability distri-
bution of these features is modeled in a multi-dimensional
feature space by applying a Gaussian Mixture Model on the
object pair feature set foi,oj :

GMM(foi,oj , µ
z
oi,oj ,Σ

z
oi,oj ) =

nc∑
z=1

πz
1

K
exp(−1

2
ζzoi,oj ), (2)

where:
ζzoi,oj = (foi,oj − µz

oi,oj )T Σz
oi,oj

−1(foi,oj − µz
oi,oj ),

K =
√

(2π)dim|Σz
foi,oj

|, πz ≥ 0,
∑d

z=1 πz = 1, nc is

the number of mixtures, πz is the weight of the zth mix-
ture, µz

oi,oj is the mean of the normal distribution, Σz
oi,oj is

the covariance matrix and dim is the dimensionality of the
feature space.

3.3 Scene similarity measurement
After training the models for object classes and object pair
spatial relations, the scene similarity score sim(su, St) of an
unknown scene su with respect to the modeled scene class
type t, St, is computed.

Object class prediction As a first step, object classes are
predicted using a probabilistic framework in the learned ob-
ject class models. We assume that the objects are already
segmented from the input point cloud data. Given an un-
known object ou ∈ su, the set of single object features fou
are extracted. The probability that ou is an object of given
object class type j can be formulated by applying the Bayes’
theorem:

Pr(oj |fou) =
Pr(fou |oj) · Pr(oj)

Pr(fou)
,∀oj ∈ O, (3)

where Pr(fou |oj) is the likelihood of the trained object cat-
egory model given the features from ou, which is equal to
the conditional probability of the features given the parame-
ter values of the model, Pr(oj) is the a-priori probability of
the object class j and Pr(fou) is the probability of the fea-
ture set fou . Since Pr(fou) does not depend on the object
class, Equation 3 can be simplified as:

Pr(oj |fou) ∝ Pr(fou |oj) · Pr(oj),∀oj ∈ O. (4)

In our work, the a-priori probability Pr(oj) is computed
based on the frequency of appearance of the object category
j in the training dataset:

Pr(oj) =
max(1, Noj )

(1 +Ntot)
, (5)

where Noj is the number of training scenes where oj is
present and Ntot is the total number of training scenes. The
object class is predicted as:

j∗ = argmaxj
(
GMM(fou , µ

z
oj ,Σ

z
oj ))·

max(1, Noi)

(1 +Ntot)

)
, (6)

where oj ∈ O and GMM(fou , µ
z
oj ,Σ

z
oj ) is the learned

object class model (Equation 1).

Detecting the other object class An additional outliers
detection stage is proposed to address the presence of ob-
jects which are not learned during training in the test scenes
and thus make the framework more general. A threshold
υj is set on the likelihood of each object category j. If
GMM(fou , µ

z
oj ,Σ

z
oj ) < υj , the category j is not consid-

ered in Equation 6. The object ou is classified as other object
category if GMM(fou , µ

z
oj ,Σ

z
oj ) < υj ,∀j. In this case the

object is not considered in the successive scene similarity
score computations. This threshold, υj , is set to the min-
imum value of the likelihood GMM(foj , µ

z
oj ,Σ

z
oj ) com-

puted over the training data.

Scene similarity score From the predicted object classes
(Equation 6), object pairs are identified and the features from
object pairs are computed, foi,oj , ∀oi, oj ∈ O, i 6= j.

A final scene similarity score is obtained using the learned
probabilistic models of object pair relationships (Equation
2). The similarity score, sim(su, St), is computed as a sum
of the likelihoods of the trained object pair relation mod-
els, for all the object pairs identified in su, weighted by the
probability of co-occurrence of the corresponding object cat-
egories. This weight is introduced because relationships be-
tween objects that are more frequently found together should
have a larger impact on the similarity score:

sim(su, St) =
∑

oi,oj∈su
i6=j

Pr(foi,oj |St) · Pr(oi, oj), (7)

where Pr(foi,oj |St) is the likelihood of the trained ob-
ject pair spatial relation model given the features from that



object pair computed in su, which corresponds to the condi-
tional probability of the features from su given the parame-
ter values of the model and Pr(oi, oj) is the probability of
co-occurrence of the object categories i and j. This second
term represents how often this type of relation has been ob-
served and is an important information about the relation. In
our work, Pr(oi, oj) is computed based on the frequency of
co-occurrence of the object categories in the training dataset:

Pr(oi, oj) =
max(1, Noi,oj )

(1 +Ntot)
, (8)

where Noi,oj is the number of training scenes where both
oi and oj are present andNtot is the total number of training
scenes. Equation 7 can be expressed as:

sim(su, St) =
∑

oi,oj∈su
i6=j

GMM(foi,oj , µ
z
oi,oj ,Σ

z
oi,oj )·

max(1, Noi,oj )

(1 +Ntot)
, (9)

where GMM(foi,oj , µ
z
oi,oj ,Σ

z
oi,oj ) is the learned object

pair relation model.
The presented approach for scene similarity measurement

can be viewed as labeling each object in the test scene as one
of the training object categories (or as the other class) and
computing a scene similarity score based on the object pair
spatial relations. Only a particular set of object class labels
assigned to the objects in the test scene will give the maxi-
mum scene similarity score. Exhaustive search by consider-
ing all the possible object category labels is an NP problem.
To make this problem solvable in polynomial time, we apply
object class prediction (Equation 6) to obtain an initial guess
of the object class labels and then use the object pair features
to compute the final scene similarity score (Equation 9).

4 Experimental results
The proposed method is trained on a database of desk scenes
where seven object categories, namely monitor, keyboard,
mouse, mug, lamp, laptop and pen/pencil, are manually an-
notated with their bounding boxes and object category la-
bels. Performance is evaluated by using leave-one-out cross-
validation and by performing tests with mock scenes.

4.1 Database description
Our experiments are performed on a database of 3D of-
fice desk scenes which contains 42 scene examples. The
database scenes contain 57 monitors, 42 keyboards, 37
computer mice, 15 mugs, 26 lamps, 5 laptops and 43
pens/pencils. The data are acquired using an RGB-D sensor,
namely the Asus Xtion Pro Live sensor. Single snapshots are
captured and stored as point clouds. The database is manu-
ally annotated by labeling the desk and objects on the desk
using 3D cuboidal bounding boxes, as shown in Figure 5.
In the annotated scenes, a local reference frame is defined
by the desk, having its Cartesian axes aligned with the two
axes of the desk and with the vertical direction, respectively,

and having its origin in the front-left desk corner. The out-
put of the annotation for each scene is an XML file which
stores the information on the object types, the geometry of
the bounding boxes and the point cloud indexes of each ob-
ject.

(a)

(b)

Figure 5: (a) Point cloud with object annotations for two
monitors (blue and yellow), a keyboard (green), a mouse
(red) and two pens (cyan and magenta) and (b) the 3D
bounding box of a monitor is highlighted in the same scene.

4.2 Object classification performance
A leave-one-out cross validation experiment is performed on
the whole dataset and object classification accuracy is com-
puted for each fold. In the experiment, nc = 2 mixture com-
ponents are used for the GMM of each object class.

In a first experiment we investigate the influence and rele-
vance of the different single object features, by training and
testing the models on different subsets of features. Table 1
shows the F-Measure1 (Rijsbergen 1979) computed for each
of the seven object categories by using all the proposed fea-
tures and by using different subsets of features: position, an-
gles, volume, projected object lengths along the X,Y and
Z axes and 2D (horizontal) position + angles. It can be ob-
served that the set of all proposed features (column [a]) and
the subset of projected object lengths features (column [e])

1The F-Measure is defined as the harmonic mean of precision
and recall: F = 2 · precision·recall

precision+recall
.



Table 1: Comparison of average object classification F-
Measure (%) for each of the considered object categories,
by using all the proposed single object features foi (column
[a]) and by using different subsets of features: position ([b]),
angles ([c]), volume ([d]), projected object lengths along the
X,Y and Z axes ([e]), horizontal position + angle ([f]).

[a] [b] [c] [d] [e] [f]
Monitor 96.49 93.1 78.74 85.95 94.01 81.53

Keyboard 100 75 50 87.8 100 61.36

Mouse 98.63 81.08 56 100 100 53.76

Mug 96.77 96.55 0 82.35 100 0

Lamp 92.59 90.56 42.1 83.33 82.35 47.36

Laptop 75 57.14 46.15 0 75 66.66

Pen/pencil 100 85.71 0 100 100 21.91

yield the best results. Both the angle features alone (column
[c]) and the 2D (horizontal) position + angle features (col-
umn [f]) fail in recognizing mugs and pens/pencils. This lat-
ter is a predictable result, since the 2D location of mugs,
pens and pencils on the desk typically has high variability.
These results show that, in this simple scenario, the object
size is sufficient to identify the category of the objects. How-
ever, we expect that in a more realistic scenario the relative
relevance of the other features will increase, because, with a
higher number of possible object categories, more of them
will present similar volume.

In a second experiment, the effect of the proposed strategy
to detect the other object class is explored. Table 2 shows the
performance scores of precision, recall and F-Measure com-
puted in the cross-validation (considering all the features)
both without and with the presented outliers detection strat-
egy. As expected, outliers detection increases the precision,
while the recall and the F-Measure slightly decrease, and it
can be observed that the system remains robust. For the lap-
top class, much lower scores are obtained than for the other
object classes, because the number of training samples is
particularly low: only 5 laptops are present. We additionally
test the outliers detection strategy on two scenes where ob-
jects of two other classes are annotated: a notebook and a
telephone. Both objects are correctly detected as outliers.

4.3 Scene similarity measurement performance
In the same cross-validation framework, the scene similarity
score sim(su, St) is computed for each scene in the dataset,
by using the probabilistic models of object pair relationships
learned on the training scenes (Equation 9). In the experi-
ments, nc = 2 mixture components are used for the GMM
of each object pair relation. It is observed that the GMM
model is not robust when few samples are used for training.
To obtain meaningful likelihood values for the scene simi-
larity score computation, the GMM models are trained only
if a sufficient number of samples is present, which in these
experiments is set to 10 samples. This constraint excludes
all object pair relationships involving the laptop, which is
present in only 5 scenes.

Table 2: Object classification performance in terms of preci-
sion (P), recall (R) and F-Measure (F) (%) without the out-
liers detection stage (columns 2-4) and by setting a threshold
on the likelihood of the single object features to discard out-
liers (columns 5-7).

Without outliers detection With outliers detection

P R F P R F
Monitor 96.49 96.49 96.49 100 92.98 96.36

Keyboard 100 100 100 100 97.61 98.79

Mouse 100 97.29 98.63 100 91.89 95.77

Mug 93.75 100 96.77 100 86.66 92.85

Lamp 89.28 96.15 92.59 88.88 92.30 90.56

Laptop 100 60 75 100 20 33.33

Pen/pencil 100 100 100 100 88.37 93.82

To evaluate the effect of varying conditions on the scene
similarity score, our method is applied on mock scenes gen-
erated by removing all object instances of each of the seven
objects categories from the test scenes. This experiment re-
flects a typical situation of a real world sensor acquisition,
when some objects may not be correctly segmented, or not
all of the expected object classes may be present. The scene
category can be predicted by defining a threshold τ on the
similarity score sim(su, St) and classifying the scene as
su ∈ St if sim(su, St) > τ . Figure 6 shows the plots
of the average True Positive (TP) rate for scene class pre-
diction as a function of τ , for both the original scenes and
the scenes obtained by removing different categories of ob-
jects. It can be observed that when removing an object,
sim(su, St) tends to decrease. For example, when τ is set to
have 97% TP on the test scenes with all object categories, the
TP score becomes 85% for ‘no monitors’, 85% for ‘no key-
boards’, 76% for ‘no computer mice’, 97% for ‘no mugs’,
95% for ‘no lamps’ and 88% for ‘no pens/pencils’. These
results, obtained by testing the method on a limited dataset
of only one scene category (an office desk scene), are rea-
sonable and in line with our expectations. The extension of
our dataset to more scene categories will allow further tests
on scene similarity measurement.

5 Conclusion and Future work
This paper presents an approach for indoor scene similar-
ity measurement and object classification using 3D spatial
relations of objects. The proposed method does not require
the computation of complex features. Moreover, since the
method is based on the spatial distribution of the objects,
variations in object pose, appearance and texture are not a
limitation, as it happens for visual object classifiers. The
method is tested in a simple scenario covering a single scene
type, i.e. office desk scenes, with encouraging experimen-
tal results. The probabilistic object category classification
achieves high accuracy. Our object class prediction frame-
work can provide a prior probability for visual object clas-
sification. We perform an analysis of the influence of the
different features on object class prediction, which will be
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Figure 6: Plots of the average True Positive rate for scene
class prediction as a function of the threshold on the scene
similarity score (τ ), for the original scenes (dotted black
line) and scenes where removed objects. The values on the
horizontal axis are in logarithmic scale.

more relevant in a more complex dataset. An outliers detec-
tion strategy is integrated to identify the presence of unseen
object categories in the test scenes. We evaluate the effect
of varying conditions on the scene similarity score by re-
moving objects of different categories in the test scene and
we observe the expected behaviour of the scene similarity
score. Acknowledging the limitations of our dataset, future
work will include the acquisition of more scene categories,
with a higher number of object classes per scene category
and a higher number of scene examples, to make the train-
ing data more representative. This will also help us to test the
generality of the proposed concept. Moreover, future work
will address the introduction of pairwise object features in
the object classification phase. In fact, the need for a reliable
reference object such as the table can be overcome by using
object pair features and volume in the object classification
phase. It would also be interesting to integrate the proposed
spatial relation based scene classification method with state-
of-the-art computer vision based features for scene classi-
fication. Finally, the presented approach could be extended
to obtain a set of qualitative spatial relations between object
pairs, such as right of, bigger and near etc.
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