
1

On the Notion of Uncontrollable Marking
in Supervisory Control of Petri Nets

Bruno Lacerda and Pedro U. Lima

Abstract—We show that the notion of uncontrollable marking
commonly used in the literature on supervisory control theory
of Petri nets is not sound, by means of a counter-example. We
also show how the definition can be corrected and provide an
adaptation of a decidability proof for the problem of checking
controllability for specifications expressed as deterministic Petri
net languages.

Index Terms—Petri Nets, Discrete Event Systems, Supervisory
Control, Controllability

I. INTRODUCTION

SUPERVISORY control theory, as introduced in [1], is an
important field of study in automatic control and discrete

event systems (DES). The basic idea of this approach for
control of DES is to restrict the behaviour of a system to
an acceptable behaviour, through the use of a supervisor in
a feedback loop. An important notion in this scope is the
controllability of the supervisor. A supervisor is considered
controllable if it does not disable uncontrollable events that
would be active in the open-loop behaviour of the system. For
the case of finite state automata supervisors (i.e., supervisors
corresponding to regular language specifications), it has been
proved that checking for controllability is decidable [1].

In this work, we deal with the decidability problem of
checking controllability for Petri net (PN) supervisors. This
problem has been tackled as early as in [2], where the notion
of uncontrollable marking was first defined. With this notion,
it was proven that checking for controllability is decidable
for deterministic PNs, by reducing the problem to check-
ing the existence of reachable uncontrollable markings – if
uncontrollable markings are reachable, then the supervisor
is uncontrollable. However, this definition for uncontrollable
marking, which has been used in the literature since then,
is not correct. In fact, there exist deterministic PNs with
reachable uncontrollable markings, according to the original
definition, that do not represent an uncontrollable supervisor.
In this paper, we show an example of such a PN, provide
an adjustment to the definition of uncontrollable marking
that makes it correct, and prove the decidability of checking
for controllability of a deterministic PN supervisor using the
adjusted definition.

II. PETRI NETS AND SUPERVISORY CONTROL

In this section, we present a brief overview on Petri nets and
supervisory control with language specifications. We refer the
reader to [3] for a detailed overview on this topic.

Bruno Lacerda is with the School of Computer Science, University of
Birmingham, Birmingham, UK. e-mail: b.lacerda@cs.bham.ac.uk.

Pedro Lima is with the Institute for Systems and Robotics, Instituto Superior
Técnico, Lisboa, Portugal. e-mail: pal@isr.ist.utl.pt.

A. Petri Nets

Definition 1 (Petri Net). A Petri net (PN) is a tuple G =
〈P,T,W−,W+,M0,E, `〉 where:
• P is a finite, not empty, set of places;
• T is a finite, not empty, set of transitions;
• W− ∈ N|P|×|T | is the pre-incidence matrix;
• W+ ∈ N|P|×|T | is the post-incidence matrix;
• M0 ∈ N|P| is the initial marking.
• E is the finite set of events;
• ` : T → E is the labelling function, that assigns to each

transition an event from E.

The pre-incidence matrix represents arc weights between
places and transitions while the post-incidence matrix repre-
sents arc weights between transitions and places. The initial
marking M0 is a vector of size |P| that represents the initial
state of the system, with M0(p) = q meaning that there are q
tokens in place p in the initial state.

We will use the places and transitions themselves as the
indices of the matrices and vectors, e.g., given p∈P and t ∈ T ,
we use W−(p, t) to represent the entry W−i j that corresponds to
the arc weight from p to t. The dynamics of a PN are defined
by the firing rule, which determines the flow of tokens between
places, thus specifying how the initial marking can evolve.

Definition 2 (Firing Rule). Let G be a PN, t ∈ T and M ∈
N|P|. Transition t is said to be active in M if for all p ∈ P,
W−(p, t) ≤ M(p). A transition t active in a marking M can
fire, resulting in the marking M′ ∈N|P|, where, for each p∈ P,
M′(p)=M(p)−W−(p, t)+W+(p, t). This is denoted M t→M′.

Using the firing rule, one can define firing sequences and
the set of reachable markings of a given PN.

Definition 3 (Firing Sequence). Let G be a PN. A firing
sequence from a given marking M is a sequence of transitions
τ = t1t2...tn ∈ T ∗ such that there exists markings M1, ...,Mn
such that:

M
t1→M1

t2→M2
t2→ ...

tn→Mn (1)

We also write M τ→ Mn to represent that the firing of the
sequence τ leads the PN marking from M to Mn.

Definition 4 (Reachable Markings). The set of all reachable
markings in a PN G is denoted as:

R(G) = {M ∈ N|P| | exists τ ∈ T ∗ such that M0
τ→M} (2)

In addition to reachable markings, we will also be interested
in the sequences of events that can be generated by its different
runs. This set of sequences is called the language generated
by the PN.

2

Definition 5 (Language Generated by a PN). Let G be a PN.
The language generated by G is defined as:

L (G) = {`(t1)`(t2)...`(tn) ∈ E∗ |
t1t2...tn ∈ T ∗ is a firing sequence from M0}

(3)

We require the PNs is this work to be deterministic, in the
sense that a sequence of labels uniquely defines the sequence
of visited markings.

Definition 6 (Deterministic PN). A PN G is deterministic if
for all t, t ′ ∈ T and M ∈R(G):

If M t→M′, M t ′→M′′ and M′ 6= M′′ then `(t) 6= `(t ′) (4)

As will be seen later, a supervisor is formally a function over
sequences of events. It is assumed that the supervisor cannot
directly observe neither the markings visited, nor the fired
transitions. Thus, we require determinism of the PN model of
the system, so that the supervisor can keep track of the current
marking of the PN model of the system during execution while
only observing the sequence of events generated by the system.
We note that, in the cases where the supervisor can directly
observe either the markings visited by the PN model of the
system, or the fired transitions, the assumption of determinism
of the PN model of the system can be removed.

B. Supervisory Control
The purpose of supervisory control (SC), as introduced in

[1], is, given a system model – in our case a deterministic PN
G – of the open-loop uncontrolled behaviour of a system, to
restrict its behaviour to an acceptable language La ⊆L (G) –
in our case given by a deterministic PN H. We start by par-
titioning the event set E in two disjoint subsets E = Ec∪Euc.
Ec is the set of controllable events, i.e., the events that can
be prevented from happening by the supervisor and Euc is
the set of uncontrollable events, i.e., the events that cannot
be prevented from happening. This partition is due to the
fact that, in general, there are events that make a system
change its state that are not of the “responsibility” of the
system itself (e.g., failures in the execution of the system).
The set of uncontrollable events induces a set of uncontrollable
transitions for G.

Definition 7 (Uncontrollable Transitions). Let G be a PN with
event set E = Ec∪Euc. The set of uncontrollable transitions of
G is defined as:

Tuc = {t ∈ T | `(t) ∈ Euc} (5)

We now formally define the notion of supervisor and of
language generated by a supervised PN.

Definition 8 (Supervisor). Let G be a PN. A supervisor for
G is a function S : L (G)→ 2E that, given s ∈L (G), outputs
the set of enabled events for G, i.e., the set of events that G
can execute next.

Definition 9 (Language Generated by a Supervised PN). Let
G be a PN and S be a supervisor. The language generated by
G when controlled by S is given by:

L (S/G) = {e1e2...en ∈L (G) | ei+1 ∈ S(e1...ei) for all i∈N}
(6)

Fig. 1. The feedback loop of SC, where s ∈ E∗.

In words, the supervisor controls the system by, after the
firing of an event by G, “reading” the string s executed by
G so far, and outputting a set of enabled events S(s). When
executing the next event, G can only execute an event which
is active in its current state and which is enabled by S, i.e.,
which is in S(s). This feedback loop is depicted in Figure 1.

To formally define controllability of a supervisor, we need
to introduce some notation.

Definition 10 (Resulting Marking). Let G be a deterministic
PN and s = e1...en ∈ L (G). We define Ms as the marking
reached after executing a firing sequence τ = t1...tn ∈ T ∗ such
that `(ti) = ei for all i ∈ {1, ...,n} from M0.

Note that Ms is well-defined because (i) given that s ∈
L (G), there is always at least one firing sequence τ satis-
fying `(ti) = ei for all i ∈ {1, ...,n}, and (ii) given that G is
deterministic, the resulting marking after executing any firing
sequence satisfying `(ti) = ei for all i ∈ {1, ...,n} is unique.
Finally, we also define the active event function.

Definition 11 (Active Event Function). Let
G = 〈P,T,W−,W+,M0,E, `〉. We define the function
ΓG : R(G)→ 2E as:

ΓG(M) = {e ∈ E | exists t ∈ T such that `(t) = e

and t is active in M} (7)

Definition 12 (Controllable Supervisor). Let G be a PN, with
uncontrollable events Euc ⊆ E, and S : L (G)→ 2E . S is a
controllable supervisor for G if, for all s ∈L (G):

Euc∩ΓG(Ms)⊆ S(s) (8)

Intuitively, a supervisor is controllable if it never disables
uncontrollable events that would be active in the open-loop
behaviour of the system.

For analysis and implementation purposes, it is important to
represent the supervisor in a convenient way. This representa-
tion is referred to as a realization of the supervisor. The typical
approach is to also represent the supervisor as a PN. Given
the PN model G of the open-loop behaviour of the system,
this is done by performing the following steps:

1) Build a deterministic PN H, that represents the language
specification to be enforced;

2) Build the candidate supervisor realization R, given by
the parallel composition R = G ‖ H. By definition of
parallel composition, the resulting PN represents the run-
ning in parallel of G and H, where common events must

3

occur in a synchronized fashion. Thus, the behaviour of
G is restricted to the one specified by H;

3) Check if R realizes a controllable supervisor. If so, it
can be used to enforce the specification.

In addition to the determinism of G, we also require the
PN representation of the specification language H to be
deterministic, so that the result of the supervisor function is
unequivocally defined for a given input.

Remark 1. In general one also wants to guarantee that
the supervisor is non-blocking but, for the sake of brevity,
in this paper we focus on controllability checking. Also, we
will not deal with the problem of trimming an uncontrollable
supervisor so that it becomes controllable which, in the case
of PNs, is a very challenging – and sometimes impossible –
problem. We refer the interested reader to [3].

.
Before we introduce the notion of parallel composition

for PNs, we need to define the set of shared transitions.
In the following, let G1 = 〈P1,T1,W−1 ,W+

1 ,M0,1,E1, `1〉 and
G2 = 〈P2,T2,W−2 ,W+

2 ,M0,2,E2, `2〉 be two PNs.

Definition 13 (Shared Transitions). The set of shared transi-
tions of G1 and G2 is given by:

TE1∩E2 = {(t1, t2) ∈ T1×T2 | `G1(t1) = `G2(t2)} (9)

The set of shared transitions is simply the set of pairs of
transitions in G1 and G2 that share the same event label. These
transitions need to be synchronized in the composition.

Definition 14 (Parallel Composition). The parallel com-
position of G1 and G2 is the PN G = G1 ‖ G2 =
〈P,T,W−,W+,M0,EG∪EH , `〉, where:

• P = P1∪P2
• T is the union of the non-shared transitions of G1 and

G2 with the pairs representing the shared transitions, i.e.,
T = TE1\E2 ∪TE2\E1 ∪TE1∩E2 , where:

TE1\E2 = {t ∈ T1 | `1(t) ∈ E1 \E2} (10)

TE2\E1 = {t ∈ T2 | `2(t) ∈ E2 \E1} (11)

• W− ∈ N|P|×|T | maintains the same arc weights as W−1
and W−2 , taking into account that shared transitions of
G1 and G2 are now merged into a single transition:

W−(p, t) =



W−1 (p, t) if t ∈ TE1\E2 and p ∈ P1
W−2 (p, t) if t ∈ TE2\E1 and p ∈ P2
W−1 (p, t1) if t = (t1, t2) ∈ TE1∩E2

and p ∈ P1
W−2 (p, t2) if t = (t1, t2) ∈ TE1∩E2

and p ∈ P2
0 otherwise

(12)

• W+ ∈ N|P|×|T | is defined analogously to W−:

W+(p, t) =



W+
1 (p, t) if t ∈ TE1\E2 and p ∈ P1

W+
2 (p, t) if t ∈ TE2\E1 and p ∈ P2

W+
1 (p, t1) if t = (t1, t2) ∈ TE1∩E2

and p ∈ P1
W+

2 (p, t2) if t = (t1, t2) ∈ TE1∩E2
and p ∈ P2

0 otherwise
(13)

• M0 ∈N|P| maintains the respective initial markings of G1
and G2:

M0(p) =
{

M0,1(p) if p ∈ P1
M0,2(p) if p ∈ P2

(14)

• ` : T → E1∪E2 maintains the respective transition labels
of G1 and G2, taking into account the merging of shared
transitions:

`(t) =


`1(t) if t ∈ TE1\E2
`2(t) if t ∈ TE2\E1
`1(t1) = `2(t2) if t = (t1, t2) ∈ TE1∩E2

(15)

Note that in our case, given that H represents a language
specification for G to fulfil, the set of events of H is a subset
of the set of events of G, thus the sets of events of G and
R = G ‖ H are the same set E. Furthermore, by definition of
parallel composition, L (R) contains exactly the sequences in
L (G) that, when projected on the set of events of H, are in
L (H). Using G and R, the feedback loop depicted in Figure
1 is implemented as follows: at each step, G executes an
event e, according to the active events in its current state and
the current enabled events by R, evolving to a new marking.
This event is then sent to the supervisor realization R, which
passively executes e, also evolving to a new marking. The set
of enabled events after the execution of e is the set of active
events of R in the new marking. Thus, after the execution
of a string s ∈ E∗, the set of enabled events for G is given
by ΓR(Ms). In addition to simplifying the implementation, the
fact that we realize supervisors using the same formalism that
we use to model the system models also gives us analysis
benefits. These benefits stem from the fact that, for this
case, L (S/G) = L (R), i.e., R also models the closed-loop
behaviour of the system. Thus, we can use all the analysis
techniques available for PNs to analyse the controlled system.

To finalize this section, we concretely state the problem of
supervisor controllability.

Problem 1. Let G = 〈PG,TG,W−G ,W+
G ,MG,0,E, `G〉 and H =

〈PH ,TH ,W−H ,W+
H ,MH,0,EH , `H〉 be deterministic PNs (G rep-

resents the system model and H the language speci-
fication), where E = Ec ∪ Euc and EH ⊆ E. Let R =
〈PR,TR,W−R ,W+

R ,M0,R,E, `R〉 be the parallel composition of G
and H. Define a procedure to decide if R is a realization of a
controllable supervisor for G.

III. UNCONTROLLABLE MARKINGS REVISITED

To solve Problem 1, the notion of uncontrollable marking
has been introduced as early as in [2], as the set of markings
M for which an uncontrollable transition t = (tG, tH) in R is not

4

Fig. 2. (a) A PN G, representing the system. (b) A PN H, representing the
language specification.

Fig. 3. The parallel composition of G and H of Figure 2.

active but for which tG in G would be active for the projection
of M to the places of G:

Mb = {M ∈ N|PG|+|PH | |
exists t = (tG, tH) ∈ TR such that tG ∈ Tuc and
for all p ∈ PG, M(p)≥W−R (p, t) and
exists p ∈ PH such that M(p)<W−R (p, t)}

(16)

Then, it is proven in Theorem 1 of [4] that R realizes a
controllable supervisor for G and Euc if and only if none of
the markings in Mb is reachable in R. However, this proof
does not take into account the fact that, when building the
parallel composition R = G ‖H, one might add more than one
transition for each transition of G. Recall that if T e

G is the set
of transitions in G labelled with event e and T e

H is the set of
transitions in H labelled with the same event e, then the set
of transitions in R labelled with e will be T e

G×T e
H . Thus, for

each transition tG ∈ T e
G, |T e

H | transitions will be created in R.
We illustrate this in the following example.

Example 1. Consider the deterministic PNs G and H rep-
resented in Figure 2 (a) and (b) respectively, where event
Euc = {u}, i.e., t1 is an uncontrollable transition. It is clear
that both of them are deterministic. Their parallel composition
R = G ‖ H is depicted in Figure 3. It is also clear that R
realizes a controllable supervisor for G and Euc – in fact it
does not even restrict the language generated by G. However,
marking M =

[
1 1 0

]T is reachable in R and is clearly in
Mb: Transition t = (t1, t3) is such that M(p1) = W−R (p1, t),
where p1 ∈ PG and M(p3)<W−R (p3, t), where p3 ∈ PH . Thus,
Mb, as defined in (16), is not sound, because we need to take
into account all transitions in R obtained from t1. This fact
is related to the creation of more than one transition in R
corresponding to t1.

Remark 2. If H is free-labelled (i.e., `H is an injective func-
tion), then the previous definition of uncontrollable marking is

correct. Thus, results proven using the previous definition still
hold when H is free-labelled.

The above reasoning allows us to define the correct notion
of uncontrollable marking in R.

Definition 15 (Uncontrollable Markings). Let G and H be
deterministic PNs and R = G ‖ H. We define the set of
uncontrollable markings as:

Muc = {M ∈ N|PG|+|PH | |
exists tG ∈ Tuc such that
for all p ∈ PG, M(p)≥W−G (p, tG) and
for all t = (tG, tH) ∈ TR exists p ∈ PH

such that M(p)<W−R (p, t)}

(17)

A marking M is uncontrollable if exists an uncontrollable
transition tG that is active in G by the projection of M to PG,
but all the transitions created from tG in R, i.e. pairs in TG×TH
with the first component equal to tG, are not active in H by the
projection of M to PH . Thus, the following proposition can be
proven by a straightforward adaptation for the correct notion
of uncontrollable markings of the proof of Theorem 1 in [4]1.

Proposition 1. Let G and H be two PNs. R = G ‖ H is a
realization of a controllable supervisor for G if and only if
none of the markings in Muc is reachable in R.

Thus, to solve Problem 1, we need to define a procedure to
check if an element of Muc is reachable in R. To do that, we
adapt the procedure given in [3], and represent Muc in terms
of partially covering markings for a given marking M.

Definition 16 (Partially Covering Markings). Let G be a PN,
M ∈N|P|, and P= ⊆ P. We define the set of partially covering
markings as:

S (M,P=) = {M′ ∈ N|P| | M′(p) = M(p) for all p ∈ P=

and M′(p)≥M(p) for all p ∈ P}
(18)

The set S (M,P=) is the (infinite) set of markings which
are equal to M for places in P= and greater or equal than M for
all other places. This set is a generalization of the set defined
in [3], where P= is a singleton. However, in spite of being a
generalization, checking the reachability of an element in this
set (of possibly infinite cardinality) is still decidable. To prove
this, we provide a reduction to the reachability problem of a
single marking, which is known to be decidable for general
PNs [5].

Proposition 2. Let G be a PN, M ∈ N|P|, and P= ⊆ P.
Checking if a marking in S (M,P=) is reachable in G, i.e.,
R(G)∩S (M,P=) 6= /0 is decidable.

Proof. The proof of this proposition relies on a simple adap-
tation of the construction given in [3]. We will reduce the
problem of determining if there exists a reachable marking in
S (M,P=) to the problem of determining if a single marking is
reachable in a modified net G′= 〈P′,T ′,W−′ ,W+′ ,M′0〉, where:
• P′ = P∪{ps, p f }

1Instead of considering a transition (tG, tH)∈ TR, one needs to consider, for
a given tG ∈ TG, the set {(tG, tH) ∈ TR | tH ∈ TH}.

5

• T ′ = T ∪{t f }∪TP\P= , where:

TP\P= = {tp | p ∈ P\P=}

• W−
′

is such that:

W−
′
(p, t) =



W−(p, t) if p ∈ P and t ∈ T
1 if p = ps and t ∈ T
1 if p = ps and t = t f
1 if p = p f and t ∈ TP\P=

M(p) if p ∈ P= and t = t f
1 if p ∈ P\P= and t = tp
0 otherwise

(19)
• W+′ is such that:

W+′(p, t) =



W+(p, t) if p ∈ P and t ∈ T
1 if p = ps and t ∈ T
1 if p = p f and t = t f
1 if p = p f and t ∈ TP\P=

0 if p ∈ P= and t = t f
0 if p ∈ P\P= and t = tp
0 otherwise

(20)
• M′0 is such that:

M′0(p) =

 M0(p) if p ∈ P
1 if p = ps
0 if p = p f

(21)

We were redundant in the definition of W−
′

and W+′ to
facilitate understanding the construction, which is illustrated
in Figure 4. We explain the structure added to G in words:
• Place ps is self-looped with all transitions in T .
• Transition t f has ps as an input place and p f as an output

place.
• Place p f is self-looped with all transitions in {tp | p ∈

P\P=}.
• Each place p in P\P= is an input place of t f , with weight

M(p).
• Each place p in P \P= is an input place of the corre-

sponding transition tp, with weight 1.
The PN G′ initially exactly mimics the behaviour of G.

When G′ gets to a marking M′ that covers M for places
in P \ P=, t f becomes active. After t f fires, the behaviour
of G′ changes to emptying the places in P \ P= by firing
transitions in TP\P= . After all places in P \P= are emptied,
a deadlocked marking Md is reached. If Md(p) = M(p) for all
p ∈ P=, then not only M′(p) ≥M(p) for all p ∈ P \P=, but
also M(p) = M′(p) for all p∈ P=, i.e., M′ ∈S (M,P=). Thus,
the reachability problem of a marking in S (M,P=) in G is
equivalent to the reachability problem of M′ in G′, where:

M′(p) =

 M(p) if p ∈ P=

1 if p = p f
0 if p ∈ P\P= or p = ps

(22)

Before we present the final decidability result, we introduce
some helpful notation.

Fig. 4. Illustration of the construction for Proposition 2.

Definition 17. Let tG ∈ TG. We define the set of transitions in
H that will be synchronized with tG as:

TH(tG) = {t ′ ∈ TH | `(tG) = `(t ′)} (23)

Definition 18. Let tG ∈ TG and TH(tG) = {t1, ..., tr}. We define
the set of combinations of input places for the transitions of
H that will be synchronized with tG as:

PH(tG) =

{p ∈ PH | W−H (p, t1)> 0}× ...×{p ∈ PH | W−H (p, tr)> 0}
(24)

Note that, in the cases where a place p∈PH is an input place
of more than one transition in TH(tG), p can appear more than
one time in a member (p1, ..., pr) of PH(tG).

Definition 19. Let tG ∈ TG, TH(tG) = {t1, ..., tr} and
(p1, ..., pr) ∈ PH(tG). We define the set of bad k’s for tG as:

K(tG,(p1, ..., pr)) = {(k1, ...,kr) ∈ Nr | for all i, j = 1, ...,r,
ki <W−H (pi, ti) and if pi = p j then ki = k j}

(25)

The elements of K(tG,(p1, ..., pr)) will be used to define
partially covering markings where P= = {p1}∪ ...∪{pr}, thus
it is necessary to enforce that if pi = p j then ki = k j, so that
the partially covering marking is well-defined.

Example 2. Figure 5 depicts a system model G (a), and a
language specification H (b).

Following the definitions above, we have the following:
• TH(t1

G) = {t1
H , t

3
H}.

• PH(t1
G) = {(p1

H , p3
H),(p4

H , p3
H)}.

6

Fig. 5. (a) A PN G, representing the system. (b) A PN H, representing the
language specification.

• K(t1
G,(p1

H , p3
H)) = {(0,0),(1,0)} and K(t1

G,(p4
H , p3

H)) =
{(0,0)}.

The set K(tG,(p1, ..., pr)) represents all the possible com-
binations of tokens in the places p1, ..., pr that will not make
any of the transitions of TH(tG) active. Thus, if tG is uncon-
trollable, a marking M ∈ R(R) where (i) M(p) ≥W−G (p, tG)
for all p ∈ PG and (ii) there exists (p1, ..., pr) ∈ PH(tG) and
(k1, ...,kr) ∈ K(tG,(p1, ..., pr)) such that M(pi) = ki for all
i = 1, ...,r, is an uncontrollable marking. From this reasoning,
we have the following result, adapted from [3]:

Proposition 3. Problem 1 can be reduced to checking reach-
ability of a finite union of partially covering markings.

Proof. To check controllability, we need to check if there
exists a marking in Muc which is reachable in R = G ‖ H.
To do that, we note that Muc can be represented by a finite
union of sets of partially covering markings. Let tG ∈ Tuc,
(p1, ..., pr) ∈ PH(tG) and (k1, ...,kr) ∈ K(tG,(p1, ..., pr)), and
consider the marking MtG,(p1,...,pr),(k1,...,kr), defined over PR as:

MtG,(p1,...,pr),(k1,...,kr)(p)=


ki if p = pi for some

element pi of
(p1, ..., pr)

W−G (p, tG) if p ∈ PG
0 otherwise

(26)
Note that MtG,(p1,...,pr),(k1,...,kr) is well-defined because

(k1, ...,kr) ∈ K(tG,(p1, ..., pr)), and we assume that mem-
bers of K(tG,(p1, ..., pr)) are such that if pi = p j,
then ki = k j, for all i, j ∈ {1, ...,r}. Furthermore, as
we previously discussed, the partially covering markings
S
(
MtG,(p1,...,pr),(k1,...,kr),{p1}∪ ...∪{pr}

)
represent an infinite

set of markings that are uncontrollable. Also, all the un-
controllable markings can be represented by partially cover-
ing markings, by going through all possible uncontrollable
transitions tG ∈ Tuc, all elements (p1, ..., pr) of PH(tG) and
all elements (k1, ...,kr) of K(tG,(p1, ..., pr)). Thus, checking
supervisor controllability is equivalent to checking that the
following finite union of sets of partially covering markings
is not reachable in R:

⋃
tG∈Tuc

⋃
(p1,...,pr)∈PH (tG)

⋃
(k1,...,kr)∈K(tG,(p1,...,pr))

S
(
MtG,(p1,...,pr),(k1,...,kr),{p1}∪ ...∪{pr}

)
(27)

This proposition gives us a procedure to check if a supervi-
sor realized as a deterministic PN R = G ‖ H is controllable:
check reachability in R for all the sets of partially covering
markings in the finite union in equation (27). If one of them
is reachable, then the supervisor is not controllable.

IV. CONCLUSION

In this work, we have shown that the notion of uncontrol-
lable marking defined in [2] and used so far in SC theory of
PNs is not sound, by means of a counter-example. We also
presented a corrected definition and provided an adaptation
for the corrected definition of the procedure given in [3] to
check for controllability of deterministic PN supervisors.

ACKNOWLEDGMENTS

The discussion in this paper mainly stems from the work
of Professor Alessandro Giua, whom the authors would like
to thank for his availability to confirm the counter-example
for the previous notion of uncontrollable marking. The work
of the first author was partially funded by the Fundação
para a Ciência e Tecnologia (FCT) (ISR/IST pluriannual
funding) through the PIDDAC Program funds and FCT grant
FRH/BD/45046/2008, the European Union Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement No
600623, STRANDS, and the EPSRC grant EP/K014293/1.

REFERENCES

[1] P. Ramadge and W. Wonham, “Supervisory control of a class of discrete
event processes,” SIAM journal on control and optimization, vol. 25, no. 1,
pp. 206–230, 1987.

[2] A. Giua, “Petri nets as discrete event models for supervisory control,”
Ph.D. dissertation, Rensselaer Polytechnic Institute, 1992.

[3] ——, “Supervisory control of Petri nets with language specifications,”
Control of Discrete-Event Systems – Lecture Notes in Control and
Information Sciences, vol. 433, pp. 235–255, 2013.

[4] R. Kumar and L. Holloway, “Supervisory control of deterministic Petri
nets with regular specification languages,” IEEE Transactions on Auto-
matic Control, vol. 41, no. 2, pp. 245–249, 1996.

[5] E. W. Mayr, “An algorithm for the general Petri net reachability problem,”
SIAM Journal on computing, vol. 13, no. 3, pp. 441–460, 1984.

