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Abstract—We present a fast and precise vision-based software
intended for multiple robot localization. The core component of
the proposed localization system is an efficient method for black
and white circular pattern detection. The method is robust to
variable lighting conditions, achieves sub-pixel precision, and its
computational complexity is independent of the processed image
size. With off-the-shelf computational equipment and low-cost
camera, its core algorithm is able to process hundreds of images
per second while tracking hundreds of objects with millimeter
precision. We propose a mathematical model of the method that
allows to calculate its precision, area of coverage, and processing
speed from the camera’s intrinsic parameters and hardware’s
processing capacity. The correctness of the presented model and
performance of the algorithm in real-world conditions are verified
in several experiments. Apart from the method description, we
also publish its source code; so, it can be used as an enabling
technology for various mobile robotics problems.

I. INTRODUCTION

Although internal localization methods such as SLAM
based approaches [1] are fundamental for autonomous robots,
an external positioning reference (i.e., the ground truth) with-
out any cumulative error is a key component for a proper
evaluation of their performance. Moreover, precise external
localization systems are also enabling technology for a wide
field of possible applications, where some sort of additional
supporting infrastructure can be used. Regarding this, the most
known external localization reference is GPS; however, it
is also known that it cannot be used indoors due to signal
unavailability and also its precision may not be sufficient
for navigation of small vehicles. These limitations motivate a
design of several localization principles, which can be broadly
divided into two major groups by means of the type of sensors
used: active and passive.

In the former group, technologies such as LED emitters [2],
radio beacons, and ceiling projection [3] are used, among
others. However, a widely used approach in recent works [4], is
the commercial motion capture system from ViCon [5], which
uses high-resolution and high-speed IR (infra-red) cameras,
IR emitters and reflective targets. Even though this system
achieves great performance and accuracy, it is a costly solution
not applicable to every research environment.

On the other hand, several passive vision-based localization
methods have been proposed in literature. Most of these
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approaches employ augmented-reality oriented markers such
as ARTag [6] and ARToolKit+ [7], which not only allow
obtaining the pose of the target but can also encode some
additional information. These target detectors were used in
several works in order to obtain pose information of mobile
robots [8], [9], [10], [11]. Alternative target shapes are also
proposed in recent literature, which are specifically designed
for vision-based localization systems with a higher precision
and reduced computational costs. Due to several positive
aspects, circular shaped patterns appear to be best suited as
fiducial markers in external localization systems and can be
found in several works [12], [13], [14], [15], [16].

The herein presented vision-based external localization
system is based on black and white circular planar ring pattern
(roundel) detector. The idea of the proposed pattern detection
has been originally motivated by practical needs for a relative
localization of small unmanned aerial vehicles (UAV) [17] to
keep them in a swarm formation where a fast image process-
ing using only on-board computational resources is required.
Considering the previous passive localization approaches, we
found out that the proposed roundel detector best fits our needs
for fast estimation of a relative distance of flying UAVs using
only the on-board computational resources.

In this paper, we consider the principle of the roundel
detection [17] in a global localization scenario, where the
method is able to detect and track several thousands of images
per second on a common desktop computer. Moreover, we
propose a model of the localization arising from theoretical
analyses of the vision system and experimental evaluation
of the system performance in real scenarios with regard to
its practical deployment. The model provides estimation of
coverage and precision of the localization system from the
resolution of the camera and size of the patterns, which allows
a user to choose between high-end and low-end cameras
depending on the specific application.

Low computational requirements are based on exploiting
the fact the algorithm allows to initiate the pattern search
anywhere in the image without any performance penalty. Thus,
the search for a pattern is started from the point of the
last known pattern position. Since the algorithm does not
contain any phase that processes the entire image, successful
tracking causes the method to process only the area occupied
by the pattern, which makes the algorithm’s computational
complexity independent of the image size.



In addition, the system is easy to use and allows a fast
deployment, which is a useful feature for considering it as an
enabling technology for various robotic projects. The deploy-
ment of the system does not require user-set parameters or
intricate setup process and user interaction with the external
localization system application is reduced to minimum. Only
an initial unattended calibration step is needed to define the
reference frame and to compute a pose of ground robots
moving on a plane with a millimeter precision using an off-
the-shelf camera.

The system has been already deployed in a number of
international mobile robotics projects concerning distributed
quad rotor localization [17], visual based autonomous navi-
gation [18], decentralized formation control [19], evolutionary
swarm [20] and educational [15] robotics. Since the system
has already proved to be useful in a variety of applications,
we publish its source code [21]; so, other roboteers can use it
for their projects.

II. METHOD DESCRIPTION

The proposed system is based on a fast and precise
detection of a black and white roundel, which consists of two
concentric annuli with a white central disc. An initial detection
step is performed to identify the position of the roundel in
pixel coordinates. Using camera re-projection techniques and
known dimensions of the inner and outer roundels, the three-
dimensional position of the target with respect to the camera is
computed. Finally, a transformation of the coordinate frame is
applied to compute target coordinates with respect to a user-
defined frame, either in three or two dimensions, depending
on the chosen scenario.

A. Pattern detection

The pattern detection itself is based on an on-demand
thresholding and a flood fill technique, which computes the
bounding box, number of pixels, and center of gravity on
the fly. Initially, when there is no a priori information about
the target position in the image, the detection seeks possible
candidates and consecutively tests them for certain properties
(with increasing complexity), which determines a positive
match. In subsequent detection steps, when a prior target
position is available, the algorithm starts detection over this
area. If the target is successfully re-detected (i.e., it is tracked),
the detection step involves only pixels belonging to the target
itself. Since the method is quite robust (see the following
sections for detection limits), tracking is generally successful
resulting in a very high performance detection.

1) Segmentation and thresholding: Starting from a pixel
position py, the algorithm classifies the current pixel as either
black or white by thresholding against an adaptively set value.
In a case the pixel is classified as white, the algorithm
proceeds to the next image pixel. In case a black pixel is
found, a segment consisting of the contiguous set of black
pixels is computed using a queue-based flood-fill method, see
Algorithm 1. This black segment is tested for a possible match
of the outer ring of the pattern. At this point, these tests consist
of a minimum size (in terms of the number of pixels belonging
to the segment) and a roundness measure within acceptable
bounds. These simple constraints allow a fast rejection of false

Algorithm 1: examineCircle

Input: (p, pesp, ¢): p - starting pixel position, pegp -
expected area to bounding box dimensions ratio,
c - searched segment type (white or black)
Output: (u, v, vy, vy, 4, valid) : (u,v) - segment
center, (vg,vy) - bounding box, 4 - average
brightness, valid - validity
Sid — Sig +1 // increment segment ID
pixel_class[p] < siq
queue[QSnd++]<_ p
qold < Qend
while Qend > Qstart do
q < queue[qstart++]
foreach offset € {+1,—1, +w, —w} do
r < q + offset
if pixel_class[r] = 0 then
| pixel_class|r] < classify(r)
if pixel class[r] = c then
queue[geng++]— 1
pixel_class[r] < siq
update TminsTmaz>Ymin>Ymazx from TxsTy

S <= Gend — Yoldend

if s> min_size then

U,V <= (mmaw + xmzn)/Qa (yma;ﬂ + yrrnn)/2

(R vy — (zmam - xmvn) + 17 (yma.t - yvmn) + 1

P 4 PeapUaly/s —1 // roundness
if —pio1 < p < pror then

pe 178 Tnage ()

) J=Gstart
valid ¢ true

positives. In a case either test fails, the detection for further
black segments continues starting from the next pixel position.
However, no redundant computation is performed since the
previous segment is labeled with a unique identifier.

The number of pixels s of an elliptic ring with outer and
inner diameters d,, d;, respectively, and dimensions b;, b,
should be

& — &2
5 = bobym =t (D
Thus, the roundness measure p can be calculated as:
bilib p re
= e, @

where pprcq can be estimated from d, and d;. The roundness
test accepts a segment if p is within a tolerance range given
by pattern deformation and spatial orientation.

If a black segment passes both tests, the detection resumes
from the pixel position corresponding to the segment centroid
where a white pixel is expected. In this case, the corresponding
white segment is computed using the flood-fill algorithm. If the
minimum size and roundness tests are valid, further validation
tests are performed involving the centroid positions of both
segments, their area ratio, and a more complex circularity
measure (discussed in following sections). If the segments pass
all these tests, the pattern is considered to be found and its
centroid position will be used as a starting point py for the
next detection run. This detection method is described in detail
in Algorithm 2.



Algorithm 2: detectCircle

Input: (pg, 7, Image): pg - position to start the search,
7 - threshold, Image being processed
Output: (¢, pg, 7): ¢ - the pattern data, py - position to
start the next search, 7 - an updated threshold
if first run then
size <— sizeof(Image);
initialize pixel_class[size]
initialize queue[max_queue_size]
Sid < 0
74— Po
repeat
if pixel_class[i] = unknown then
if classify(i,7) = black then
| pixel_classl[i] « black

// initiate pattern search
if pixel_class[i] = black then
// search for outer ring
Gend < Gstart < 0
Couter <— examineCircle(i,poyter,black)
if couser is valid then
// search for inner ellipse
j < center of (cout)
Cinner <— examineCircle(J,p;nner,white)
if Ciuer is valid then
compute Coyter and Cipper ceNters
check for concentricity
compute ellipse semiaxes eg, €1
if Qend = 7T|8061| then
mark segment as valid
break

i < (i + 1 mod size)
until ¢ # pg;
// hide pattern from other detectors
if ¢inner Is valid then

paint over all inner ellipse pixels as black

T <— average brightness of coyter and Cipner
else

| 7 « pseudo-random number

// go to next pixel

// cleanup
if only two segments examined then
L reset pixel_class[] inside bounding box of
Couter

else
| reset all pixels in pixel_class]] array

2) Efficient thresholding: Thresholding is performed on-
demand over each pixel analyzed during the detection. For the
first access, the RGB values are read and the particular pixel
is classified as either black or white. In the subsequent steps,
the classification result for this pixel is re-used. In cases when
tracking is successful, only the relevant pixels are thresholded,
and therefore, the detection step is not directly dependent on
the input image resolution. Clearing the per-pixel classification
memory area is also efficiently performed by only resetting
values inside the roundel bounding box. When the detection
fails, extra memory accesses resulting from this strategy are
negligible compared to a full-image thresholding approach.

If the detection of a roundel fails, the threshold parameter
T is adaptively updated by a simple binary search scheme over
the range of possible values, up to a pre-defined granularity
level, when 7 is reset to the initial value. Otherwise, if the
detection is successful, the threshold is updated by using the
information obtained during the detection in order to iteratively
improve the precision of the segmentation step:
o+ 1) @)
where i, (1; correspond to the mean brightness value of the
outer and inner segments, respectively.

T

3) Pattern center and dimensions: Once a pattern passes all
the aforementioned tests, the queue, which has been used by
the flood-fill phase, contains positions of all the pattern pixels.
Thus, all the information to calculate the ellipse centre u, v and
semiaxes eg, e; is at hand. The pattern center u, v is calculated
simply as the mean of the pixel positions. Then, the method
calculates the covariance matrix of the pixels positions C. The
eigenvalues and eigenvectors of the matrix correspond to the
ellipse semiaxes lengths and orientations. Finally, the segment
circularity is verified by checking if n & m|egl||eq].

Since the matrix C is two-dimensional, its eigen decom-
position is a matter of solving one quadratic equation. Note
that if it is desirable, the most of the calculation of C can be
performed in the integer arithmetic, which might be useful if
the system runs on an embedded hardware.

4) Multiple target detection: So far, the detection of a sin-
gle pattern was considered. However, the proposed localization
system is capable of detecting and tracking multiple patterns
simultaneously, simply by running the detector several times
consecutively. Each detector changes the color of the inner
circle pixels to black to prevent multiple detection of the same
target. Besides, each detector also uses a different threshold 7,
which increases the system robustness to uneven illumination
across the working area.

B. Pattern localization

The pattern position relative to the camera is determined
from the parameters calculated at the previous step. We assume
that the radial distortion of the camera is not extreme and its
intrinsic parameters have been established by the method [22]
or similar. Then, the ellipse center and semiaxes are calculated
from the covariance matrix eigenvectors and transformed to
a canonical camera coordinate system. The transformed pa-
rameters are then used to establish coefficients of the ellipse
characteristic equation. These coefficients are subsequently
utilized to calculate the pattern’s spatial orientation and its
position within the camera coordinate frame.

A canonical form refers to a pinhole camera model with
unit focal lengths and no radial distortion. The transformation
to a canonical camera system is basically an inverse transform
to the transformation of spatial coordinate to image coordi-
nates. To transform the ellipse center and semiaxes to canon-
ical camera coordinates, we calculate the ellipse (co)vertices,
transform them to the canonical camera coordinates, and use
the transformed vertices to calculate the axes and center again.
The canonical center and axes are then used in the ellipse
characteristic equation, which allows to determine its 3D
position and orientation [13].



C. Transformation to global coordinates

The position x. of the circular pattern established in
the previous step is in a camera centered coordinate frame.
Depending on the particular application scenario, our system
allows to transform the pattern coordinates to 3D and 2D
coordinate frames defined by the user. The user just places
three (to define a 3D coordinate frame) or four (to define a
2D coordinate frame) circular patterns in the coordinate frame
and provides the system with their real positions.

1) Global coordinate frame — 3D case: In the case of the
3D localization, the three patterns at positions Xg, X1, X2 de-
fine coordinate origin and x and y axes, respectively. The trans-
formation between the global x = (z,y, z)T and camera cen-
tered xc = (¢, Ye, zc)T coordinate system can be represented
as x = T (xc — Xo), where the matrix T = (tq,ta,t3) "
represents a transformation of the vector x’ = x. — Xg to the
coordinate system defined by the orthonormal basis t1, ts, ts,
where t1 =x1 — X0, ty = X9 — Xo and t3 =11 X ta.

2) Global coordinate frame — 2D case: The precision of the
3D localization depends mainly on the precision of the pattern
distance estimation, which is generally low. This source of
localization error can be avoided for patterns that are located
only on a plane, e.g., in a case of localization of ground robots
operating on a floor. Here, the transformation from the image
coordinates to an arbitrary world plane is a homography, and
(homogeneous) spatial coordinates x of the patterns can be
calculated directly from their canonical coordinates u’ simply
by x = Hu’, where H is a 3x3 homography matrix. Similarly
to the case of three-dimensional localization, the user can
define H just by placing four patterns in the camera field
of view and providing the system with their positions in the
desired coordinate frame.

III. ESTIMATING THE SYSTEM PERFORMANCE

In this section, we present a set of equations that can be
used to estimate the coverage, precision, and processing speed
of the system. Using these equations, the user can choose an
appropriate camera, computational resources, and pattern size
for a particular application.

A. Localization system coverage

An important property of the system is its “coverage”,
i.e., the space where the pattern is reliably detected and
localized. System coverage has a pyramidal shape with its apex
at the camera, see Figure 1.

We denote the pattern’s maximal detectable distance as v,
and the base dimensions as v, and v,. The circular pattern
appears in the camera image as an ellipse. In order to be
detected reliably, the minor ellipse axis of the projected pattern
must exceed a critical value, which we define as D. The length
(in pixels) of the minor ellipse semiaxis e; can be estimated
by
1.d
5 e cos(). 4
where x is the pattern distance from the image plane, d, is the
pattern diameter, and ¢ represents the pattern tilt. Rewriting

€1 =

VZ

Fig. 1: Geometry of the operational space.

equation (4), the maximal detectable distance v, of the pattern
can be calculated as

Vy = fc%cos(go). 5)

The value of D has been experimentally established as
14 pixels. Notice that increasing camera resolution while
maintaining its field of view increases the focal length f.; so,
setting the camera resolution as high as possible maximizes
the system coverage.

Knowing the value of v,, the base dimensions v, and v,
can be established as

Vy = vzhfc_17 (6)

where w and h are the horizontal and vertical resolutions of
the camera, respectively.

Uy = ’wafc_l,

B. Localization system precision

Another important property of the localization system is
its precision. The localization error is different for the three-
dimensional and two-dimensional system modes.

In the case of the full 3D localization, the main source
of the localization imprecision is an incorrect estimation of
the pattern distance. Since the pattern distance is inversely
proportional to its diameter in pixels, smaller patterns will be
localized less precisely. The expected relative localization error
can be roughly estimated as

M3p =0+ 10 =Apfot + Anegt (7

where Ay is the error of the focal length estimation, A,
represents an error of the ellipse axis estimation due to
image noise and e is the pattern’s major semiaxis length in
pixels. While A, has to be established experimentally, A f
and f. are known camera parameters. For a well-calibrated
camera, Ay f 1 is small and thus the major source of distance
estimation error is the ratio of image noise to the pattern image
size. This suggests that the precision of the 3D localization can
be simply increased by using a higher resolution camera or a
larger pattern.

In the two-dimensional localization mode, the pattern po-
sition is estimated simply from its centre image coordinates
by means of homography. Assuming that the homography is
established correctly, the localization error is affected mainly
by the image radial distortion. Due to this fact, the system
precision depends on the camera lens rather than on the camera
resolution. A thorough model of radial distortion effect is
beyond the scope of this paper.



C. Computational requirements

The computational time needed to process a single image
can be estimated from the number of patterns n, their average
size s, image size s;, tracking failure rate «, and the processor
(single core) speed m by a linear function:

t = (ko + k1(sp(1 — @) + s;)) nm ™1, 8)

where k7 is a constant corresponding to the number of com-
puter operations per pixel (of the pattern), and ky represents
the number of operations needed per pattern regardless of the
pattern size. The values of k; and ky are estimated as 900
and 5.10°, respectively. Having this model, we can estimate
that processing speed for tracking 50 patterns with 30 pixel
diameter on a dual core 53000 GIPS machine should take
1.2 ms, which allows to process 800 frames per second.

IV. EXPERIMENTS

The model of the localization system presented in the
previous sections has been experimentally validated in a series
of practical deployments. First, a coverage of the robots’
operational space has been identified with regards to the
maximal distance of the pattern for a reliable detection. Then,
the localization precision has been measured for both cases:
3D and 2D localization, see Section IV-B. Finally, real com-
putational requirements are reported in Section IV-C.

A. Localization system coverage

The purpose of this experiment is to test the area coverage
of the localization system. A crucial parameter of the coverage
is the maximal distance of the reliable pattern detection v,.
The verification has been performed with two different cameras
tracking three patterns with different diameters. Two sequences
of images with increasing distance of the camera from the
patterns were captured. While the first sequence has the
patterns directly facing the camera, the second sequence has
been taken from the 40 degree angle.

TABLE I: Maximal distance of pattern detection

Distance [m]

Camera Pattern Measured Predicted
type do[em] 0°  40° 0°  40°
. 2.5 1.3 1.2 14 1.1
]a’(%“;f;’ 5.0 31 26 28 2l
7.5 4.1 3.7 4.2 3.2
Olympus 2.5 6.5 59 6.7 5.1
VR340 5.0 128 109 134 103
7.5 19.3 17.1 20.1 15.4

The base dimensions v, and v, can be calculated from v,
and the camera parameters. To check whether Equation (6) is
correct, we placed two patterns at the opposite corners of the
image and compared their positions with the base dimensions.
The measured and predicted distances are presented in Table 1.

B. Localization precision

The system localization precision has been evaluated for
20 patterns placed on the floor of a large room and by
a manual measuring their precise positions. Then, we took

several pictures of the scene with three different cameras
from two different viewpoints (“top” and “side”). The cameras
used were: Creative Live! webcam, Olympus VR-340, and
Canon 550D that has been set to 1280x 720, 4608 x 3456, and
5184 <3456 pixel resolutions, respectively.

Pre-placed roundels were used to define global coordinates
as described in Section II-C. An average distance of the known
pattern positions to the ones estimated by the system was
considered as a measure of the localization error. Both 2D
and 3D localization errors are summarized in Table II and
Table III, which also contain a predicted average localization
error (€preq) calculated by (7). The results show that the

TABLE II: Precision of 3D position estimation

Image Abs. [em] Rel. [%]
camera view €avg €mazx Npred MNavg Nmawx
Webcam side 7.5 17.8 1.01 1.13 2.67
Webcam  top 3.9 11.1 0.73 0.59 1.67
VR-340 side 1.9 6.2 0.28 0.28 0.90
VR-340 top 2.7 7.1 0.26 0.31 0.82
C-550D top 2.0 5.1 0.19 0.34 0.86

TABLE III: Precision of 2D position estimation

Image Abs. [em] Rel. [%]
camera view  €qug €maz Navg Nmaz

Webcam side 0.23 0.62 0.05 0.12

Webcam  top 0.18 0.68 0.04 0.13
VR-340 side 0.64 1.40 0.12 0.26
VR-340 top 0.68 2.08 0.10 0.28
C-550D top 0.15 0.33 0.04 0.08

position estimation of the 2D localization is more precise than
the 3D one. The measured values also confirm the assumption
that while the 3D localization precision increases with the
camera resolution, the 2D localization precision does not.

C. Computational requirements

Equation (8) suggests that if the tracking works correctly,
the computational requirements of the method are independent
of the image size and it is affected only by the number and
size of the tracked patterns. Three datasets have been created
to verify this assumption. The first dataset consists of a fixed
number of patterns of uniform size, but the dimensions of the
dataset images vary. The second dataset consists of uniformly
sized images with a variable pattern size. The third dataset
has both image and pattern dimensions fixed, but the number
of patterns increases from zero to two hundreds. The dataset
images were processed by a single core Intel i5 CPU running
at 2.5 GHz. The average processing times to search a single
image for all the required patterns are shown in Figure 2.

The results clearly prove that in the case of perfect tracking,
the image processing time is proportional to the number of
pixels occupied by the patterns and is unaffected by the
image dimensions. Moreover, the results demonstrate a good
scalability of the algorithm, which can track two hundred
targets at more than one hundred times per second.



T T
Variable pattern dimensions —+—
Variable image dimensions

51 Variable pattern number —*—

Processing time [ms]
w
T
|

0 1 1 1
0 50 100 150 200

Pattern size [1000 pixels]  Image size [10000 pixels] ~Number of patterns [-]

Fig. 2: Influence of the number of tracked patterns, pattern
size, and image size on the computation time.

TABLE IV: The detection speed using individual platforms

Processing time [ms]

CPU Measured Predicted
Static  Moving  Static  Moving
i5 2450M 0.04 0.37 0.04 0.35
Atom N270 0.30 3.25 0.33 2.68
Pentium M 0.20 1.44 0.17 1.45

In addition, we tested the algorithm on three different
platforms and two additional real-world datasets to further
verify the soundness of (8). The first dataset consists of
images of a static, 700 pixel pattern; and the second dataset
contains 130 images of a fast moving pattern, which becomes
obstructed in one of the frames, causing the tracking to fail.
The average computational times to process one image of
each dataset (according to (8)) are summarized in Table IV.
The results indicate the correctness of the model described in
Section III-C.

V. CONCLUSION

In this paper, we present a fast and precise vision-based
system intended for multiple robot localization. Its core al-
gorithm is based on a novel principle of circular roundel
detection that has computational complexity independent of the
processed image size. The resulting system allows to localize a
large robotic swarm with a millimeter precision, while keeping
up with standard camera frame rates. In addition, we propose
a model of the localization system to aid its potential users
in deciding what kind of equipment to use for their particular
setup, The model allows to calculate the camera and computer
parameters from the desired localization precision, coverage,
and update rate. It is also worth to mention that the system
is made of low-cost off-the-shelf components, since a camera
and printable patterns are the only required elements.

In future, we plan to increase the precision and coverage of
the system by using multiple cameras. We also aim to improve
the tracking success rate by predicting the position of the target
by considering the dynamics of the tracked object.
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